DAMASK_EICMD/code/mesh.f90

5328 lines
227 KiB
Fortran
Raw Normal View History

! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced Material Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------------------------
!* $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Krishna Komerla, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
!--------------------------------------------------------------------------------------------------
module mesh
use, intrinsic :: iso_c_binding
use prec, only: pReal, pInt
implicit none
private
integer(pInt), public, protected :: &
mesh_NcpElems, & !< total number of CP elements in mesh
mesh_NelemSets, &
mesh_maxNelemInSet, &
mesh_Nmaterials, &
mesh_Nnodes, & !< total number of nodes in mesh
mesh_Ncellnodes, & !< total number of cell nodes in mesh (including duplicates)
mesh_Ncells, & !< total number of cells in mesh
mesh_maxNnodes, & !< max number of nodes in any CP element
mesh_maxNips, & !< max number of IPs in any CP element
mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element
mesh_maxNsharedElems, & !< max number of CP elements sharing a node
mesh_maxNcellnodes, & !< max number of cell nodes in any CP element
mesh_Nelems !< total number of elements in mesh
integer(pInt), dimension(:,:), allocatable, public, protected :: &
mesh_element, & !< FEid, type(internal representation), material, texture, node indices as CP IDs
mesh_sharedElem, & !< entryCount and list of elements containing node
mesh_nodeTwins !< node twins are surface nodes that lie exactly on opposite sides of the mesh (surfaces nodes with equal coordinate values in two dimensions)
integer(pInt), dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
real(pReal), public, protected :: &
mesh_unitlength !< physical length of one unit in mesh
real(pReal), dimension(:,:), allocatable, public :: &
mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
real(pReal), dimension(:,:), allocatable, public, protected :: &
mesh_ipVolume, & !< volume associated with IP (initially!)
mesh_node0 !< node x,y,z coordinates (initially!)
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
mesh_ipArea !< area of interface to neighboring IP (initially!)
real(pReal), dimension(:,:,:), allocatable, public :: &
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
real(pReal),dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
logical, dimension(3), public, protected :: mesh_periodicSurface !< flag indicating periodic outer surfaces (used for fluxes)
#ifdef Marc4DAMASK
integer(pInt), private :: &
hypoelasticTableStyle, & !< Table style (Marc only)
initialcondTableStyle !< Table style (Marc only)
#endif
integer(pInt), dimension(2), private :: &
mesh_maxValStateVar = 0_pInt
character(len=64), dimension(:), allocatable, private :: &
mesh_nameElemSet, & !< names of elementSet
mesh_nameMaterial, & !< names of material in solid section
mesh_mapMaterial !< name of elementSet for material
integer(pInt), dimension(:,:), allocatable, private :: &
mesh_cellnodeParent, & !< cellnode's parent element ID, cellnode's intra-element ID
mesh_mapElemSet !< list of elements in elementSet
integer(pInt), dimension(:,:), allocatable, target, private :: &
mesh_mapFEtoCPelem, & !< [sorted FEid, corresponding CPid]
mesh_mapFEtoCPnode !< [sorted FEid, corresponding CPid]
integer(pInt),dimension(:,:,:), allocatable, private :: &
mesh_cell !< cell connectivity for each element,ip/cell
integer(pInt), dimension(:,:,:), allocatable, private :: &
FE_nodesAtIP, & !< map IP index to node indices in a specific type of element
FE_ipNeighbor, & !< +x,-x,+y,-y,+z,-z list of intra-element IPs and(negative) neighbor faces per own IP in a specific type of element
FE_cell, & !< list of intra-element cell node IDs that constitute the cells in a specific type of element geometry
FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell
real(pReal), dimension(:,:,:), allocatable, private :: &
FE_cellnodeParentnodeWeights !< list of node weights for the generation of cell nodes
integer(pInt), dimension(:,:,:,:), allocatable, private :: &
FE_subNodeOnIPFace
logical, private :: noPart !< for cases where the ABAQUS input file does not use part/assembly information
#ifdef Spectral
include 'fftw3.f03'
#endif
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
2007-03-22 20:18:58 +05:30
! Hence, I suggest to prefix with "FE_"
integer(pInt), parameter, public :: &
FE_Nelemtypes = 13_pInt, &
FE_Ngeomtypes = 10_pInt, &
FE_Ncelltypes = 4_pInt, &
FE_maxNnodes = 20_pInt, &
FE_maxNips = 27_pInt, &
FE_maxNipNeighbors = 6_pInt, &
FE_maxmaxNnodesAtIP = 8_pInt, & !< max number of (equivalent) nodes attached to an IP
FE_maxNmatchingNodesPerFace = 4_pInt, &
FE_maxNfaces = 6_pInt, &
FE_maxNcellnodes = 64_pInt, &
FE_maxNcellnodesPerCell = 8_pInt, &
FE_maxNcellfaces = 6_pInt, &
FE_maxNcellnodesPerCellface = 4_pInt
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_geomtype = & !< geometry type of particular element type
int([ &
1, & ! element 6 (2D 3node 1ip)
2, & ! element 125 (2D 6node 3ip)
3, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
3, & ! element 54 (2D 8node 4ip)
5, & ! element 134 (3D 4node 1ip)
6, & ! element 157 (3D 5node 4ip)
6, & ! element 127 (3D 10node 4ip)
7, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
9, & ! element 7 (3D 8node 8ip)
9, & ! element 57 (3D 20node 8ip)
10 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_celltype = & !< cell type that is used by each geometry type
int([ &
1, & ! element 6 (2D 3node 1ip)
2, & ! element 125 (2D 6node 3ip)
2, & ! element 11 (2D 4node 4ip)
2, & ! element 27 (2D 8node 9ip)
3, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
4, & ! element 136 (3D 6node 6ip)
4, & ! element 117 (3D 8node 1ip)
4, & ! element 7 (3D 8node 8ip)
4 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_dimension = & !< dimension of geometry type
int([ &
2, & ! element 6 (2D 3node 1ip)
2, & ! element 125 (2D 6node 3ip)
2, & ! element 11 (2D 4node 4ip)
2, & ! element 27 (2D 8node 9ip)
3, & ! element 134 (3D 4node 1ip)
3, & ! element 127 (3D 10node 4ip)
3, & ! element 136 (3D 6node 6ip)
3, & ! element 117 (3D 8node 1ip)
3, & ! element 7 (3D 8node 8ip)
3 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_Nnodes = & !< number of nodes that constitute a specific type of element
int([ &
3, & ! element 6 (2D 3node 1ip)
6, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
8, & ! element 27 (2D 8node 9ip)
8, & ! element 54 (2D 8node 4ip)
4, & ! element 134 (3D 4node 1ip)
5, & ! element 157 (3D 5node 4ip)
10, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
20, & ! element 57 (3D 20node 8ip)
20 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nfaces = & !< number of faces of a specific type of element geometry
int([ &
3, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
5, & ! element 136 (3D 6node 6ip)
6, & ! element 117 (3D 8node 1ip)
6, & ! element 7 (3D 8node 8ip)
6 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry
int([ &
3, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
8 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_maxNfaces,FE_Ngeomtypes), parameter, private :: &
FE_NmatchingNodesPerFace = & !< number of matching nodes per face in a specific type of element geometry
reshape(int([ &
2,2,2,0,0,0, & ! element 6 (2D 3node 1ip)
2,2,2,0,0,0, & ! element 125 (2D 6node 3ip)
2,2,2,2,0,0, & ! element 11 (2D 4node 4ip)
2,2,2,2,0,0, & ! element 27 (2D 8node 9ip)
3,3,3,3,0,0, & ! element 134 (3D 4node 1ip)
3,3,3,3,0,0, & ! element 127 (3D 10node 4ip)
3,4,4,4,3,0, & ! element 136 (3D 6node 6ip)
4,4,4,4,4,4, & ! element 117 (3D 8node 1ip)
4,4,4,4,4,4, & ! element 7 (3D 8node 8ip)
4,4,4,4,4,4 & ! element 21 (3D 20node 27ip)
],pInt),[FE_maxNipNeighbors,FE_Ngeomtypes])
integer(pInt), dimension(FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes), &
parameter, private :: FE_face = & !< List of node indices on each face of a specific type of element geometry
reshape(int([&
1,2,0,0 , & ! element 6 (2D 3node 1ip)
2,3,0,0 , &
3,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 125 (2D 6node 3ip)
2,3,0,0 , &
3,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 11 (2D 4node 4ip)
2,3,0,0 , &
3,4,0,0 , &
4,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 27 (2D 8node 9ip)
2,3,0,0 , &
3,4,0,0 , &
4,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 134 (3D 4node 1ip)
1,4,2,0 , &
2,3,4,0 , &
1,3,4,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 127 (3D 10node 4ip)
1,4,2,0 , &
2,4,3,0 , &
1,3,4,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 136 (3D 6node 6ip)
1,4,5,2 , &
2,5,6,3 , &
1,3,6,4 , &
4,6,5,0 , &
0,0,0,0 , &
1,2,3,4 , & ! element 117 (3D 8node 1ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 , &
1,2,3,4 , & ! element 7 (3D 8node 8ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 , &
1,2,3,4 , & ! element 21 (3D 20node 27ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 &
],pInt),[FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes])
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_Ncellnodes = & !< number of cell nodes in a specific geometry type
int([ &
3, & ! element 6 (2D 3node 1ip)
7, & ! element 125 (2D 6node 3ip)
9, & ! element 11 (2D 4node 4ip)
16, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
15, & ! element 127 (3D 10node 4ip)
21, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
27, & ! element 7 (3D 8node 8ip)
64 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type
int([ &
3, & ! (2D 3node)
4, & ! (2D 4node)
4, & ! (3D 4node)
8 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type
int([&
2, & ! (2D 3node)
2, & ! (2D 4node)
3, & ! (3D 4node)
4 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nips = & !< number of IPs in a specific type of element
int([ &
1, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
9, & ! element 27 (2D 8node 9ip)
1, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
1, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
27 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, public :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type
int([&
3, & ! (2D 3node)
4, & ! (2D 4node)
4, & ! (3D 4node)
6 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_maxNnodesAtIP = & !< maximum number of parent nodes that belong to an IP for a specific type of element
int([ &
3, & ! element 6 (2D 3node 1ip)
1, & ! element 125 (2D 6node 3ip)
1, & ! element 11 (2D 4node 4ip)
2, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
1, & ! element 127 (3D 10node 4ip)
1, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
1, & ! element 7 (3D 8node 8ip)
4 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Nelemtypes), parameter, private :: MESH_VTKELEMTYPE = &
int([ &
5, & ! element 6 (2D 3node 1ip)
22, & ! element 125 (2D 6node 3ip)
9, & ! element 11 (2D 4node 4ip)
23, & ! element 27 (2D 8node 9ip)
23, & ! element 54 (2D 8node 4ip)
10, & ! element 134 (3D 4node 1ip)
10, & ! element 157 (3D 5node 4ip)
24, & ! element 127 (3D 10node 4ip)
13, & ! element 136 (3D 6node 6ip)
12, & ! element 117 (3D 8node 1ip)
12, & ! element 7 (3D 8node 8ip)
25, & ! element 57 (3D 20node 8ip)
25 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: MESH_VTKCELLTYPE = &
int([ &
5, & ! (2D 3node)
9, & ! (2D 4node)
10, & ! (3D 4node)
12 & ! (3D 8node)
],pInt)
public :: &
mesh_init, &
mesh_FEasCP, &
mesh_build_cellnodes, &
mesh_build_ipVolumes, &
mesh_build_ipCoordinates, &
mesh_cellCenterCoordinates, &
mesh_init_postprocessing, &
mesh_get_Ncellnodes, &
mesh_get_unitlength, &
mesh_get_nodeAtIP
#ifdef Spectral
public :: &
mesh_spectral_getGrid, &
mesh_spectral_getSize, &
mesh_regrid, &
mesh_nodesAroundCentres, &
mesh_deformedCoordsFFT, &
mesh_deformedCoordsLinear, &
mesh_volumeMismatch, &
mesh_shapeMismatch
#endif
private :: &
#ifdef Spectral
mesh_spectral_getHomogenization, &
mesh_spectral_count, &
mesh_spectral_mapNodesAndElems, &
mesh_spectral_count_cpSizes, &
mesh_spectral_build_nodes, &
mesh_spectral_build_elements, &
mesh_spectral_build_ipNeighborhood, &
#endif
#ifdef Marc4DAMASK
mesh_marc_get_tableStyles, &
mesh_marc_count_nodesAndElements, &
mesh_marc_count_elementSets, &
mesh_marc_map_elementSets, &
mesh_marc_count_cpElements, &
mesh_marc_map_Elements, &
mesh_marc_map_nodes, &
mesh_marc_build_nodes, &
mesh_marc_count_cpSizes, &
mesh_marc_build_elements, &
#endif
#ifdef Abaqus
mesh_abaqus_count_nodesAndElements, &
mesh_abaqus_count_elementSets, &
mesh_abaqus_count_materials, &
mesh_abaqus_map_elementSets, &
mesh_abaqus_map_materials, &
mesh_abaqus_count_cpElements, &
mesh_abaqus_map_elements, &
mesh_abaqus_map_nodes, &
mesh_abaqus_build_nodes, &
mesh_abaqus_count_cpSizes, &
mesh_abaqus_build_elements, &
#endif
mesh_get_damaskOptions, &
mesh_build_cellconnectivity, &
mesh_build_ipAreas, &
mesh_build_nodeTwins, &
mesh_build_sharedElems, &
mesh_build_ipNeighborhood, &
mesh_tell_statistics, &
FE_mapElemtype, &
mesh_faceMatch, &
mesh_build_FEdata, &
mesh_write_cellGeom, &
mesh_write_elemGeom, &
mesh_write_meshfile, &
mesh_read_meshfile
contains
!--------------------------------------------------------------------------------------------------
!> @brief initializes the mesh by calling all necessary private routines the mesh module
!! Order and routines strongly depend on type of solver
!--------------------------------------------------------------------------------------------------
subroutine mesh_init(ip,el)
use DAMASK_interface
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_timeStamp, &
IO_error, &
IO_write_jobFile, &
#ifdef Abaqus
IO_abaqus_hasNoPart, &
#endif
#ifdef Spectral
IO_open_file
use numerics, only: &
divergence_correction
#else
IO_open_InputFile
#endif
use numerics, only: &
usePingPong, &
numerics_unitlength
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP, &
calcMode, &
lastMode, &
modelName
2007-04-10 16:52:53 +05:30
implicit none
integer(pInt), parameter :: fileUnit = 222_pInt
integer(pInt), intent(in) :: el, ip
integer(pInt) :: j
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
if (allocated(mesh_mapFEtoCPelem)) deallocate(mesh_mapFEtoCPelem)
if (allocated(mesh_mapFEtoCPnode)) deallocate(mesh_mapFEtoCPnode)
if (allocated(mesh_node0)) deallocate(mesh_node0)
if (allocated(mesh_node)) deallocate(mesh_node)
if (allocated(mesh_element)) deallocate(mesh_element)
if (allocated(mesh_cell)) deallocate(mesh_cell)
if (allocated(mesh_cellnode)) deallocate(mesh_cellnode)
if (allocated(mesh_cellnodeParent)) deallocate(mesh_cellnodeParent)
if (allocated(mesh_ipCoordinates)) deallocate(mesh_ipCoordinates)
if (allocated(mesh_ipArea)) deallocate(mesh_ipArea)
if (allocated(mesh_ipAreaNormal)) deallocate(mesh_ipAreaNormal)
if (allocated(mesh_sharedElem)) deallocate(mesh_sharedElem)
if (allocated(mesh_ipNeighborhood)) deallocate(mesh_ipNeighborhood)
if (allocated(mesh_ipVolume)) deallocate(mesh_ipVolume)
if (allocated(mesh_nodeTwins)) deallocate(mesh_nodeTwins)
if (allocated(FE_nodesAtIP)) deallocate(FE_nodesAtIP)
if (allocated(FE_ipNeighbor)) deallocate(FE_ipNeighbor)
if (allocated(FE_cellnodeParentnodeWeights)) deallocate(FE_cellnodeParentnodeWeights)
if (allocated(FE_subNodeOnIPFace)) deallocate(FE_subNodeOnIPFace)
call mesh_build_FEdata ! get properties of the different types of elements
mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh
#ifdef Spectral
call IO_open_file(fileUnit,geometryFile) ! parse info from geometry file...
call mesh_spectral_count(fileUnit)
call mesh_spectral_mapNodesAndElems
call mesh_spectral_count_cpSizes
call mesh_spectral_build_nodes(fileUnit)
call mesh_spectral_build_elements(fileUnit)
call mesh_get_damaskOptions(fileUnit)
call mesh_build_cellconnectivity
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
call mesh_build_ipCoordinates
call mesh_build_ipVolumes
call mesh_build_ipAreas
call mesh_spectral_build_ipNeighborhood(fileUnit)
#endif
#ifdef Marc4DAMASK
call IO_open_inputFile(fileUnit,modelName) ! parse info from input file...
call mesh_marc_get_tableStyles(fileUnit)
call mesh_marc_count_nodesAndElements(fileUnit)
call mesh_marc_count_elementSets(fileUnit)
call mesh_marc_map_elementSets(fileUnit)
call mesh_marc_count_cpElements(fileUnit)
call mesh_marc_map_elements(fileUnit)
call mesh_marc_map_nodes(fileUnit)
call mesh_marc_build_nodes(fileUnit)
call mesh_marc_count_cpSizes(fileunit)
call mesh_marc_build_elements(fileUnit)
call mesh_get_damaskOptions(fileUnit)
call mesh_build_cellconnectivity
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
call mesh_build_ipCoordinates
call mesh_build_ipVolumes
call mesh_build_ipAreas
call mesh_build_nodeTwins
call mesh_build_sharedElems
call mesh_build_ipNeighborhood
#endif
#ifdef Abaqus
call IO_open_inputFile(fileUnit,modelName) ! parse info from input file...
noPart = IO_abaqus_hasNoPart(fileUnit)
call mesh_abaqus_count_nodesAndElements(fileUnit)
call mesh_abaqus_count_elementSets(fileUnit)
call mesh_abaqus_count_materials(fileUnit)
call mesh_abaqus_map_elementSets(fileUnit)
call mesh_abaqus_map_materials(fileUnit)
call mesh_abaqus_count_cpElements(fileUnit)
call mesh_abaqus_map_elements(fileUnit)
call mesh_abaqus_map_nodes(fileUnit)
call mesh_abaqus_build_nodes(fileUnit)
call mesh_abaqus_count_cpSizes(fileunit)
call mesh_abaqus_build_elements(fileUnit)
call mesh_get_damaskOptions(fileUnit)
call mesh_build_cellconnectivity
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
call mesh_build_ipCoordinates
call mesh_build_ipVolumes
call mesh_build_ipAreas
call mesh_build_nodeTwins
call mesh_build_sharedElems
call mesh_build_ipNeighborhood
#endif
close (fileUnit)
call mesh_tell_statistics
call mesh_write_meshfile
call mesh_write_cellGeom
call mesh_write_elemGeom
if (usePingPong .and. (mesh_Nelems /= mesh_NcpElems)) call IO_error(600_pInt) ! ping-pong must be disabled when havin non-DAMASK-elements
2007-04-10 16:52:53 +05:30
FEsolving_execElem = [ 1_pInt,mesh_NcpElems ]
if (allocated(FEsolving_execIP)) deallocate(FEsolving_execIP)
allocate(FEsolving_execIP(2_pInt,mesh_NcpElems)); FEsolving_execIP = 1_pInt
forall (j = 1_pInt:mesh_NcpElems) FEsolving_execIP(2,j) = FE_Nips(FE_geomtype(mesh_element(2,j)))
if (allocated(calcMode)) deallocate(calcMode)
allocate(calcMode(mesh_maxNips,mesh_NcpElems))
calcMode = .false. ! pretend to have collected what first call is asking (F = I)
calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc"
lastMode = .true. ! and its mode is already known...
2007-04-10 16:52:53 +05:30
end subroutine mesh_init
!--------------------------------------------------------------------------------------------------
!> @brief Gives the FE to CP ID mapping by binary search through lookup array
!! valid questions (what) are 'elem', 'node'
!--------------------------------------------------------------------------------------------------
integer(pInt) function mesh_FEasCP(what,myID)
use IO, only: &
IO_lc
2007-04-10 16:52:53 +05:30
implicit none
character(len=*), intent(in) :: what
integer(pInt), intent(in) :: myID
2007-04-10 16:52:53 +05:30
integer(pInt), dimension(:,:), pointer :: lookupMap
integer(pInt) :: lower,upper,center
2007-04-10 16:52:53 +05:30
mesh_FEasCP = 0_pInt
select case(IO_lc(what(1:4)))
case('elem')
lookupMap => mesh_mapFEtoCPelem
case('node')
lookupMap => mesh_mapFEtoCPnode
case default
return
endselect
2007-04-10 16:52:53 +05:30
lower = 1_pInt
upper = int(size(lookupMap,2_pInt),pInt)
2007-04-10 16:52:53 +05:30
if (lookupMap(1_pInt,lower) == myID) then ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds?
mesh_FEasCP = lookupMap(2_pInt,lower)
2007-04-10 16:52:53 +05:30
return
elseif (lookupMap(1_pInt,upper) == myID) then
mesh_FEasCP = lookupMap(2_pInt,upper)
2007-04-10 16:52:53 +05:30
return
endif
do while (upper-lower > 1_pInt) ! binary search in between bounds
center = (lower+upper)/2_pInt
if (lookupMap(1_pInt,center) < myID) then
2007-04-10 16:52:53 +05:30
lower = center
elseif (lookupMap(1_pInt,center) > myID) then
2007-04-10 16:52:53 +05:30
upper = center
else
mesh_FEasCP = lookupMap(2_pInt,center)
2007-04-10 16:52:53 +05:30
exit
endif
enddo
2007-04-10 16:52:53 +05:30
end function mesh_FEasCP
2007-04-10 16:52:53 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief Split CP elements into cells.
!> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell').
!> Cell nodes that are also matching nodes are unique in the list of cell nodes,
!> all others (currently) might be stored more than once.
!> Also allocates the 'mesh_node' array.
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_cellconnectivity
implicit none
integer(pInt), dimension(:), allocatable :: &
matchingNode2cellnode
integer(pInt), dimension(:,:), allocatable :: &
cellnodeParent
integer(pInt), dimension(mesh_maxNcellnodes) :: &
localCellnode2globalCellnode
integer(pInt) &
e,t,g,c,n,i, &
matchingNodeID, &
localCellnodeID
!*** Count cell nodes (including duplicates) and generate cell connectivity list
allocate(mesh_cell(FE_maxNcellnodesPerCell,mesh_maxNips,mesh_NcpElems)) ; mesh_cell = 0_pInt
allocate(matchingNode2cellnode(mesh_Nnodes)) ; matchingNode2cellnode = 0_pInt
allocate(cellnodeParent(2_pInt,mesh_maxNcellnodes*mesh_NcpElems)) ; cellnodeParent = 0_pInt
mesh_Ncellnodes = 0_pInt
mesh_Ncells = 0_pInt
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = mesh_element(2_pInt,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
localCellnode2globalCellnode = 0_pInt
mesh_Ncells = mesh_Ncells + FE_Nips(g)
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
localCellnodeID = FE_cell(n,i,g)
if (localCellnodeID <= FE_NmatchingNodes(g)) then ! this cell node is a matching node
matchingNodeID = mesh_element(4_pInt+localCellnodeID,e)
if (matchingNode2cellnode(matchingNodeID) == 0_pInt) then ! if this matching node does not yet exist in the glbal cell node list ...
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and where it belongs to
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
endif
mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID)
else ! this cell node is no matching node
if (localCellnode2globalCellnode(localCellnodeID) == 0_pInt) then ! if this local cell node does not yet exist in the global cell node list ...
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ...
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and it belongs to
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
endif
mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID)
endif
enddo
enddo
enddo
allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes))
allocate(mesh_cellnode(3_pInt,mesh_Ncellnodes))
forall(n = 1_pInt:mesh_Ncellnodes)
mesh_cellnodeParent(1,n) = cellnodeParent(1,n)
mesh_cellnodeParent(2,n) = cellnodeParent(2,n)
endforall
deallocate(matchingNode2cellnode)
deallocate(cellnodeParent)
end subroutine mesh_build_cellconnectivity
!--------------------------------------------------------------------------------------------------
!> @brief Calculate position of cellnodes from the given position of nodes
!> Build list of cellnodes' coordinates.
!> Cellnode coordinates are calculated from a weighted sum of node coordinates.
!--------------------------------------------------------------------------------------------------
function mesh_build_cellnodes(nodes,Ncellnodes)
implicit none
integer(pInt), intent(in) :: Ncellnodes !< requested number of cellnodes
real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes
real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes
integer(pInt) &
e,t,n,m, &
localCellnodeID
real(pReal), dimension(3) :: &
myCoords
mesh_build_cellnodes = 0.0_pReal
!$OMP PARALLEL DO PRIVATE(e,localCellnodeID,t,myCoords)
do n = 1_pInt,Ncellnodes ! loop over cell nodes
e = mesh_cellnodeParent(1,n)
localCellnodeID = mesh_cellnodeParent(2,n)
t = mesh_element(2,e) ! get element type
myCoords = 0.0_pReal
do m = 1_pInt,FE_Nnodes(t)
myCoords = myCoords + nodes(1:3,mesh_element(4_pInt+m,e)) &
* FE_cellnodeParentnodeWeights(m,localCellnodeID,t)
enddo
mesh_build_cellnodes(1:3,n) = myCoords / sum(FE_cellnodeParentnodeWeights(:,localCellnodeID,t))
enddo
!$OMP END PARALLEL DO
end function mesh_build_cellnodes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
!> @details The IP volume is calculated differently depending on the cell type.
!> 2D cells assume an element depth of one in order to calculate the volume.
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
!> calculated as an average of four tetrahedals with three corners on the cell face
!> and one corner at the central ip.
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipVolumes
use math, only: &
math_volTetrahedron, &
math_areaTriangle
implicit none
integer(pInt) :: e,t,g,c,i,m,f,n
real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume
if (.not. allocated(mesh_ipVolume)) then
allocate(mesh_ipVolume(mesh_maxNips,mesh_NcpElems))
mesh_ipVolume = 0.0_pReal
endif
!$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume)
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = mesh_element(2_pInt,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
select case (c)
case (1_pInt) ! 2D 3node
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e)))
case (2_pInt) ! 2D 4node
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e))) &
+ math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), &
mesh_cellnode(1:3,mesh_cell(4,i,e)), &
mesh_cellnode(1:3,mesh_cell(1,i,e)))
case (3_pInt) ! 3D 4node
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e)), &
mesh_cellnode(1:3,mesh_cell(4,i,e)))
case (4_pInt) ! 3D 8node
m = FE_NcellnodesPerCellface(c)
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
subvolume = 0.0_pReal
forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) &
subvolume(n,f) = math_volTetrahedron(&
mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), &
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), &
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), &
mesh_ipCoordinates(1:3,i,e))
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
enddo
end select
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipVolumes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES,
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
! HAS TO BE CHANGED IN A LATER VERSION.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipCoordinates
implicit none
integer(pInt) :: e,t,g,c,i,n
real(pReal), dimension(3) :: myCoords
if (.not. allocated(mesh_ipCoordinates)) then
allocate(mesh_ipCoordinates(3,mesh_maxNips,mesh_NcpElems))
mesh_ipCoordinates = 0.0_pReal
endif
!$OMP PARALLEL DO PRIVATE(t,g,c,myCoords)
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = mesh_element(2_pInt,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
myCoords = 0.0_pReal
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
myCoords = myCoords + mesh_cellnode(1:3,mesh_cell(n,i,e))
enddo
mesh_ipCoordinates(1:3,i,e) = myCoords / FE_NcellnodesPerCell(c)
enddo
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipCoordinates
!--------------------------------------------------------------------------------------------------
!> @brief Calculates cell center coordinates.
!--------------------------------------------------------------------------------------------------
pure function mesh_cellCenterCoordinates(ip,el)
implicit none
integer(pInt), intent(in) :: el, & !< element number
ip !< integration point number
real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell
integer(pInt) :: t,g,c,n
t = mesh_element(2_pInt,el) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
mesh_cellCenterCoordinates = 0.0_pReal
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates + mesh_cellnode(1:3,mesh_cell(n,ip,el))
enddo
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates / FE_NcellnodesPerCell(c)
end function mesh_cellCenterCoordinates
#ifdef Spectral
!--------------------------------------------------------------------------------------------------
!> @brief Reads grid information from geometry file. If fileUnit is given,
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
!--------------------------------------------------------------------------------------------------
function mesh_spectral_getGrid(fileUnit)
use IO, only: &
IO_checkAndRewind, &
IO_open_file, &
IO_stringPos, &
IO_lc, &
IO_stringValue, &
IO_intValue, &
IO_floatValue, &
IO_error
use DAMASK_interface, only: &
geometryFile
implicit none
integer(pInt), dimension(3) :: mesh_spectral_getGrid
integer(pInt), intent(in), optional :: fileUnit
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a,b,c + 3 values + keyword
integer(pInt) :: headerLength = 0_pInt
character(len=1024) :: line, &
keyword
integer(pInt) :: i, j, myUnit
logical :: gotGrid = .false.
mesh_spectral_getGrid = -1_pInt
if(.not. present(fileUnit)) then
myUnit = 289_pInt
call IO_open_file(myUnit,trim(geometryFile))
else
myUnit = fileUnit
endif
call IO_checkAndRewind(myUnit)
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
else
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getGrid')
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
select case ( IO_lc(IO_StringValue(line,positions,1_pInt,.true.)) )
case ('resolution','grid')
gotGrid = .true.
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,positions,j)))
case('a')
mesh_spectral_getGrid(1) = IO_intValue(line,positions,j+1_pInt)
case('b')
mesh_spectral_getGrid(2) = IO_intValue(line,positions,j+1_pInt)
case('c')
mesh_spectral_getGrid(3) = IO_intValue(line,positions,j+1_pInt)
end select
enddo
end select
enddo
if(.not. present(fileUnit)) close(myUnit)
if (.not. gotGrid) &
call IO_error(error_ID = 845_pInt, ext_msg='grid')
if(any(mesh_spectral_getGrid < 1_pInt)) &
call IO_error(error_ID = 843_pInt, ext_msg='mesh_spectral_getGrid')
end function mesh_spectral_getGrid
!--------------------------------------------------------------------------------------------------
!> @brief Reads size information from geometry file. If fileUnit is given,
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
!--------------------------------------------------------------------------------------------------
function mesh_spectral_getSize(fileUnit)
use IO, only: &
IO_checkAndRewind, &
IO_open_file, &
IO_stringPos, &
IO_lc, &
IO_stringValue, &
IO_intValue, &
IO_floatValue, &
IO_error
use DAMASK_interface, only: &
geometryFile
implicit none
real(pReal), dimension(3) :: mesh_spectral_getSize
integer(pInt), intent(in), optional :: fileUnit
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for x,y,z + 3 values + keyword
integer(pInt) :: headerLength = 0_pInt
character(len=1024) :: line, &
keyword
integer(pInt) :: i, j, myUnit
logical :: gotSize = .false.
mesh_spectral_getSize = -1.0_pReal
if(.not. present(fileUnit)) then
myUnit = 289_pInt
call IO_open_file(myUnit,trim(geometryFile))
else
myUnit = fileUnit
endif
call IO_checkAndRewind(myUnit)
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
else
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getSize')
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
select case ( IO_lc(IO_StringValue(line,positions,1,.true.)) )
case ('dimension', 'size')
gotSize = .true.
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,positions,j)))
case('x')
mesh_spectral_getSize(1) = IO_floatValue(line,positions,j+1_pInt)
case('y')
mesh_spectral_getSize(2) = IO_floatValue(line,positions,j+1_pInt)
case('z')
mesh_spectral_getSize(3) = IO_floatValue(line,positions,j+1_pInt)
end select
enddo
end select
enddo
if(.not. present(fileUnit)) close(myUnit)
if (.not. gotSize) &
call IO_error(error_ID = 845_pInt, ext_msg='size')
if (any(mesh_spectral_getSize<=0.0_pReal)) &
call IO_error(error_ID = 844_pInt, ext_msg='mesh_spectral_getSize')
end function mesh_spectral_getSize
!--------------------------------------------------------------------------------------------------
!> @brief Reads homogenization information from geometry file. If fileUnit is given,
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
!--------------------------------------------------------------------------------------------------
integer(pInt) function mesh_spectral_getHomogenization(fileUnit)
use IO, only: &
IO_checkAndRewind, &
IO_open_file, &
IO_stringPos, &
IO_lc, &
IO_stringValue, &
IO_intValue, &
IO_error
use DAMASK_interface, only: &
geometryFile
implicit none
integer(pInt), intent(in), optional :: fileUnit
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a, b, c + 3 values + keyword
integer(pInt) :: headerLength = 0_pInt
character(len=1024) :: line, &
keyword
integer(pInt) :: i, myUnit
logical :: gotHomogenization = .false.
mesh_spectral_getHomogenization = -1_pInt
if(.not. present(fileUnit)) then
myUnit = 289_pInt
call IO_open_file(myUnit,trim(geometryFile))
else
myUnit = fileUnit
endif
call IO_checkAndRewind(myUnit)
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
else
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getHomogenization')
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
select case ( IO_lc(IO_StringValue(line,positions,1,.true.)) )
case ('homogenization')
gotHomogenization = .true.
mesh_spectral_getHomogenization = IO_intValue(line,positions,2_pInt)
end select
enddo
if(.not. present(fileUnit)) close(myUnit)
if (.not. gotHomogenization ) &
call IO_error(error_ID = 845_pInt, ext_msg='homogenization')
if (mesh_spectral_getHomogenization<1_pInt) &
call IO_error(error_ID = 842_pInt, ext_msg='mesh_spectral_getHomogenization')
end function mesh_spectral_getHomogenization
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of nodes and elements in mesh and stores them in
!! 'mesh_Nelems', 'mesh_Nnodes' and 'mesh_NcpElems'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_count(myUnit)
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), dimension(3) :: grid
grid = mesh_spectral_getGrid(myUnit)
mesh_Nelems = product(grid)
mesh_NcpElems = mesh_Nelems
mesh_Nnodes = product(grid+1_pInt)
end subroutine mesh_spectral_count
!--------------------------------------------------------------------------------------------------
!> @brief fake map node from FE ID to internal (consecutive) representation for node and element
!! Allocates global array 'mesh_mapFEtoCPnode' and 'mesh_mapFEtoCPelem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_mapNodesAndElems
use math, only: &
math_range
implicit none
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes), source = 0_pInt)
allocate (mesh_mapFEtoCPelem(2_pInt,mesh_NcpElems), source = 0_pInt)
mesh_mapFEtoCPnode = spread(math_range(mesh_Nnodes),1,2)
mesh_mapFEtoCPelem = spread(math_range(mesh_NcpElems),1,2)
end subroutine mesh_spectral_mapNodesAndElems
!--------------------------------------------------------------------------------------------------
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
!! and mesh_maxNcellnodes
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_count_cpSizes
implicit none
integer(pInt) :: t,g,c
t = FE_mapElemtype('C3D8R') ! fake 3D hexahedral 8 node 1 IP element
g = FE_geomtype(t)
c = FE_celltype(g)
mesh_maxNnodes = FE_Nnodes(t)
mesh_maxNips = FE_Nips(g)
mesh_maxNipNeighbors = FE_NipNeighbors(c)
mesh_maxNcellnodes = FE_Ncellnodes(g)
end subroutine mesh_spectral_count_cpSizes
!--------------------------------------------------------------------------------------------------
!> @brief Store x,y,z coordinates of all nodes in mesh.
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_nodes(myUnit)
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt) :: n
integer(pInt), dimension(3) :: grid
real(pReal), dimension(3) :: geomSize
allocate (mesh_node0 (3,mesh_Nnodes), source = 0.0_pReal)
allocate (mesh_node (3,mesh_Nnodes), source = 0.0_pReal)
grid = mesh_spectral_getGrid(myUnit)
geomSize = mesh_spectral_getSize(myUnit)
forall (n = 0_pInt:mesh_Nnodes-1_pInt)
mesh_node0(1,n+1_pInt) = mesh_unitlength * &
geomSize(1)*real(mod(n,(grid(1)+1_pInt) ),pReal) &
/ real(grid(1),pReal)
mesh_node0(2,n+1_pInt) = mesh_unitlength * &
geomSize(2)*real(mod(n/(grid(1)+1_pInt),(grid(2)+1_pInt)),pReal) &
/ real(grid(2),pReal)
mesh_node0(3,n+1_pInt) = mesh_unitlength * &
geomSize(3)*real(mod(n/(grid(1)+1_pInt)/(grid(2)+1_pInt),(grid(3)+1_pInt)),pReal) &
/ real(grid(3),pReal)
end forall
mesh_node = mesh_node0
end subroutine mesh_spectral_build_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, material, texture, and node list per element.
!! Allocates global array 'mesh_element'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_elements(myUnit)
use IO, only: &
IO_checkAndRewind, &
IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error, &
IO_continuousIntValues, &
IO_intValue, &
IO_countContinuousIntValues
implicit none
integer(pInt), intent(in) :: &
myUnit
integer(pInt), dimension(1_pInt+7_pInt*2_pInt) :: &
myPos
integer(pInt) :: &
e, i, &
headerLength = 0_pInt, &
maxIntCount, &
homog
integer(pInt), dimension(:), allocatable :: &
microstructures
integer(pInt), dimension(3) :: &
grid
integer(pInt), dimension(1,1) :: &
dummySet = 0_pInt
character(len=65536) :: &
line, &
keyword
character(len=64), dimension(1) :: &
dummyName = ''
grid = mesh_spectral_getGrid(myUnit)
homog = mesh_spectral_getHomogenization(myUnit)
call IO_checkAndRewind(myUnit)
read(myUnit,'(a65536)') line
myPos = IO_stringPos(line,7_pInt)
keyword = IO_lc(IO_StringValue(line,myPos,2_pInt,.true.))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,myPos,1_pInt) + 1_pInt
else
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_build_elements')
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a65536)') line
enddo
maxIntCount = 0_pInt
i = 1_pInt
do while (i > 0_pInt)
i = IO_countContinuousIntValues(myUnit)
maxIntCount = max(maxIntCount, i)
enddo
rewind (myUnit)
do i=1_pInt,headerLength ! skip header
read(myUnit,'(a65536)') line
enddo
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)); mesh_element = 0_pInt
allocate (microstructures (1_pInt+maxIntCount)); microstructures = 2_pInt
e = 0_pInt
do while (e < mesh_NcpElems .and. microstructures(1) > 0_pInt) ! fill expected number of elements, stop at end of data (or blank line!)
microstructures = IO_continuousIntValues(myUnit,maxIntCount,dummyName,dummySet,0_pInt) ! get affected elements
do i = 1_pInt,microstructures(1_pInt)
e = e+1_pInt ! valid element entry
mesh_element( 1,e) = e ! FE id
mesh_element( 2,e) = FE_mapElemtype('C3D8R') ! elem type
mesh_element( 3,e) = homog ! homogenization
mesh_element( 4,e) = microstructures(1_pInt+i) ! microstructure
mesh_element( 5,e) = e + (e-1_pInt)/grid(1) + &
((e-1_pInt)/(grid(1)*grid(2)))*(grid(1)+1_pInt) ! base node
mesh_element( 6,e) = mesh_element(5,e) + 1_pInt
mesh_element( 7,e) = mesh_element(5,e) + grid(1) + 2_pInt
mesh_element( 8,e) = mesh_element(5,e) + grid(1) + 1_pInt
mesh_element( 9,e) = mesh_element(5,e) +(grid(1) + 1_pInt) * (grid(2) + 1_pInt) ! second floor base node
mesh_element(10,e) = mesh_element(9,e) + 1_pInt
mesh_element(11,e) = mesh_element(9,e) + grid(1) + 2_pInt
mesh_element(12,e) = mesh_element(9,e) + grid(1) + 1_pInt
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),mesh_element(3,e)) !needed for statistics
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),mesh_element(4,e))
enddo
enddo
deallocate(microstructures)
if (e /= mesh_NcpElems) call IO_error(880_pInt,e) !@ToDo does that make sense?
end subroutine mesh_spectral_build_elements
!--------------------------------------------------------------------------------------------------
!> @brief build neighborhood relations for spectral
!> @details assign globals: mesh_ipNeighborhood
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_ipNeighborhood(myUnit)
implicit none
integer(pInt), intent(in) :: &
myUnit
integer(pInt) :: &
x,y,z, &
e
integer(pInt), dimension(3) :: &
grid
allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems),source=0_pInt)
grid = mesh_spectral_getGrid(myUnit)
e = 0_pInt
do z = 0_pInt,grid(3)-1_pInt
do y = 0_pInt,grid(2)-1_pInt
do x = 0_pInt,grid(1)-1_pInt
e = e + 1_pInt
mesh_ipNeighborhood(1,1,1,e) = z * grid(1) * grid(2) &
+ y * grid(1) &
+ modulo(x+1_pInt,grid(1)) &
+ 1_pInt
mesh_ipNeighborhood(1,2,1,e) = z * grid(1) * grid(2) &
+ y * grid(1) &
+ modulo(x-1_pInt,grid(1)) &
+ 1_pInt
mesh_ipNeighborhood(1,3,1,e) = z * grid(1) * grid(2) &
+ modulo(y+1_pInt,grid(2)) * grid(1) &
+ x &
+ 1_pInt
mesh_ipNeighborhood(1,4,1,e) = z * grid(1) * grid(2) &
+ modulo(y-1_pInt,grid(2)) * grid(1) &
+ x &
+ 1_pInt
mesh_ipNeighborhood(1,5,1,e) = modulo(z+1_pInt,grid(3)) * grid(1) * grid(2) &
+ y * grid(1) &
+ x &
+ 1_pInt
mesh_ipNeighborhood(1,6,1,e) = modulo(z-1_pInt,grid(3)) * grid(1) * grid(2) &
+ y * grid(1) &
+ x &
+ 1_pInt
mesh_ipNeighborhood(2,1:6,1,e) = 1_pInt
mesh_ipNeighborhood(3,1,1,e) = 2_pInt
mesh_ipNeighborhood(3,2,1,e) = 1_pInt
mesh_ipNeighborhood(3,3,1,e) = 4_pInt
mesh_ipNeighborhood(3,4,1,e) = 3_pInt
mesh_ipNeighborhood(3,5,1,e) = 6_pInt
mesh_ipNeighborhood(3,6,1,e) = 5_pInt
enddo
enddo
enddo
end subroutine mesh_spectral_build_ipNeighborhood
!--------------------------------------------------------------------------------------------------
!> @brief Performes a regridding from saved restart information
!--------------------------------------------------------------------------------------------------
function mesh_regrid(adaptive,resNewInput,minRes)
use prec, only: &
pInt, &
pReal
use DAMASK_interface, only: &
getSolverWorkingDirectoryName, &
getSolverJobName, &
GeometryFile
use IO, only: &
IO_open_file, &
IO_read_jobBinaryFile ,&
IO_read_jobBinaryIntFile ,&
IO_write_jobBinaryFile, &
IO_write_jobBinaryIntFile, &
IO_write_jobFile, &
IO_error
use numerics, only: &
mySpectralSolver
use math, only: &
math_periodicNearestNeighbor, &
math_mul33x3
implicit none
logical, intent(in) :: adaptive ! if true, choose adaptive grid based on resNewInput, otherwise keep it constant
integer(pInt), dimension(3), optional, intent(in) :: resNewInput ! f2py cannot handle optional arguments correctly (they are always present)
integer(pInt), dimension(3), optional, intent(in) :: minRes
integer(pInt), dimension(3) :: mesh_regrid, ratio, grid
integer(pInt), parameter :: myUnit = 777_pInt
integer(pInt), dimension(3,2) :: possibleResNew
integer(pInt):: maxsize, i, j, k, ielem, NpointsNew, spatialDim, Nelems
integer(pInt), dimension(3) :: resNew
integer(pInt), dimension(:), allocatable :: indices
real(pReal) :: wgt
real(pReal), dimension(3) :: geomSizeNew, geomSize
real(pReal), dimension(3,3) :: Favg, Favg_LastInc, &
FavgNew, Favg_LastIncNew, &
deltaF, deltaF_lastInc
real(pReal), dimension(:,:), allocatable :: &
coordinates, coordinatesNew
real(pReal), dimension(:,:,:), allocatable :: &
stateHomog
real(pReal), dimension (:,:,:,:), allocatable :: &
spectralF9, spectralF9New, &
Tstar, TstarNew, &
stateConst
real(pReal), dimension(:,:,:,:,:), allocatable :: &
spectralF33, spectralF33New, &
F, FNew, &
Fp, FpNew, &
Lp, LpNew, &
dcsdE, dcsdENew, &
F_lastIncNew
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
dPdF, dPdFNew
character(len=1024):: formatString, N_Digits
integer(pInt), dimension(:,:), allocatable :: &
sizeStateHomog
integer(pInt), dimension(:,:,:), allocatable :: &
material_phase, material_phaseNew, &
sizeStateConst
call IO_open_file(myUnit,trim(geometryFile))
grid = mesh_spectral_getGrid(myUnit)
geomSize = mesh_spectral_getsize(myUnit)
close(myUnit)
Nelems = product(grid)
wgt = 1.0_pReal/real(Nelems,pReal)
write(6,'(a)') 'Regridding geometry'
if (adaptive) then
write(6,'(a)') 'adaptive resolution determination'
if (present(minRes)) then
if (all(minRes /= -1_pInt)) & !the f2py way to tell it is present
write(6,'(a,3(i12))') ' given minimum resolution ', minRes
endif
if (present(resNewInput)) then
if (any (resNewInput<1)) call IO_error(890_pInt, ext_msg = 'resNewInput') !the f2py way to tell it is not present
write(6,'(a,3(i12))') ' target resolution ', resNewInput
else
call IO_error(890_pInt, ext_msg = 'resNewInput')
endif
endif
allocate(coordinates(3,Nelems))
!--------------------------------------------------------------------------------------------------
! read in deformation gradient to calculate coordinates, shape depend of selected solver
select case(myspectralsolver)
case('basic')
allocate(spectralF33(3,3,grid(1),grid(2),grid(3)))
call IO_read_jobBinaryFile(777,'F',trim(getSolverJobName()),size(spectralF33))
read (777,rec=1) spectralF33
close (777)
Favg = sum(sum(sum(spectralF33,dim=5),dim=4),dim=3) * wgt
coordinates = reshape(mesh_deformedCoordsFFT(geomSize,spectralF33),[3,mesh_NcpElems])
case('basicpetsc','al')
allocate(spectralF9(9,grid(1),grid(2),grid(3)))
call IO_read_jobBinaryFile(777,'F',trim(getSolverJobName()),size(spectralF9))
read (777,rec=1) spectralF9
close (777)
Favg = reshape(sum(sum(sum(spectralF9,dim=4),dim=3),dim=2) * wgt, [3,3])
coordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(spectralF9, &
[3,3,grid(1),grid(2),grid(3)])),[3,mesh_NcpElems])
end select
!--------------------------------------------------------------------------------------------------
! sanity check 2D/3D case
if (grid(3)== 1_pInt) then
spatialDim = 2_pInt
if (present (minRes)) then
if (minRes(1) > 0_pInt .or. minRes(2) > 0_pInt) then
if (minRes(3) /= 1_pInt .or. &
mod(minRes(1),2_pInt) /= 0_pInt .or. &
mod(minRes(2),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '2D minRes') ! as f2py has problems with present, use pyf file for initialization to -1
endif; endif
else
spatialDim = 3_pInt
if (present (minRes)) then
if (any(minRes > 0_pInt)) then
if (mod(minRes(1),2_pInt) /= 0_pInt .or. &
mod(minRes(2),2_pInt) /= 0_pInt .or. &
mod(minRes(3),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '3D minRes') ! as f2py has problems with present, use pyf file for initialization to -1
endif; endif
endif
!--------------------------------------------------------------------------------------------------
! Automatic detection based on current geom
geomSizeNew = math_mul33x3(Favg,geomSize)
if (adaptive) then
ratio = floor(real(resNewInput,pReal) * (geomSizeNew/geomSize), pInt)
possibleResNew = 1_pInt
do i = 1_pInt, spatialDim
if (mod(ratio(i),2) == 0_pInt) then
possibleResNew(i,1:2) = [ratio(i),ratio(i) + 2_pInt]
else
possibleResNew(i,1:2) = [ratio(i)-1_pInt, ratio(i) + 1_pInt]
endif
if (.not.present(minRes)) then ! calling from fortran, optional argument not given
possibleResNew = possibleResNew
else ! optional argument is there
if (any(minRes<1_pInt)) then
possibleResNew = possibleResNew ! f2py calling, but without specification (or choosing invalid values), standard from pyf = -1
else ! given useful values
forall(k = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
possibleResNew(j,k) = max(possibleResNew(j,k), minRes(j))
endif
endif
enddo
k = huge(1_pInt)
do i = 0_pInt, 2_pInt**spatialDim - 1
j = abs( possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt) &
* possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt) &
* possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) &
- resNewInput(1)*resNewInput(2)*resNewInput(3))
if (j < k) then
k = j
resNew =[ possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt), &
possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt), &
possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) ]
endif
enddo
else
resNew = grid
endif
mesh_regrid = resNew
NpointsNew = product(resNew)
!--------------------------------------------------------------------------------------------------
! Calculate regular new coordinates
allocate(coordinatesNew(3,NpointsNew))
ielem = 0_pInt
do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1)
ielem = ielem + 1_pInt
coordinatesNew(1:3,ielem) = math_mul33x3(Favg, geomSize/real(resNew,pReal)*real([i,j,k],pReal) &
- geomSize/real(2_pInt*resNew,pReal))
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! Nearest neighbour search
allocate(indices(NpointsNew))
indices = math_periodicNearestNeighbor(geomSize, Favg, coordinatesNew, coordinates)
deallocate(coordinates)
!--------------------------------------------------------------------------------------------------
! write out indices periodic
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal)))
N_Digits = adjustl(N_Digits)
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
call IO_write_jobFile(777,'IDX') ! make it a general open-write file
write(777, '(A)') '1 header'
write(777, '(A)') 'Numbered indices as per the large set'
do i = 1_pInt, NpointsNew
write(777,trim(formatString),advance='no') indices(i), ' '
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
enddo
close(777)
!--------------------------------------------------------------------------------------------------
! calculate and write out indices non periodic
do i = 1_pInt, NpointsNew
indices(i) = indices(i) / 3_pInt**spatialDim +1_pInt ! +1 b'coz index count starts from '0'
enddo
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal)))
N_Digits = adjustl(N_Digits)
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
call IO_write_jobFile(777,'idx') ! make it a general open-write file
write(777, '(A)') '1 header'
write(777, '(A)') 'Numbered indices as per the small set'
do i = 1_pInt, NpointsNew
write(777,trim(formatString),advance='no') indices(i), ' '
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
enddo
close(777)
!--------------------------------------------------------------------------------------------------
! write out new geom file
write(N_Digits, '(I16.16)') 1_pInt+int(log10(real(maxval(mesh_element(4,1:mesh_NcpElems)),pReal)),pInt)
N_Digits = adjustl(N_Digits)
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
open(777,file=trim(getSolverWorkingDirectoryName())//trim(GeometryFile),status='REPLACE')
write(777, '(A)') '3 header'
write(777, '(3(A, I8))') 'grid a ', resNew(1), ' b ', resNew(2), ' c ', resNew(3)
write(777, '(3(A, g17.10))') 'size x ', geomSize(1), ' y ', geomSize(2), ' z ', geomSize(3)
write(777, '(A)') 'homogenization 1'
do i = 1_pInt, NpointsNew
write(777,trim(formatString),advance='no') mesh_element(4,indices(i)), ' '
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
enddo
close(777)
!--------------------------------------------------------------------------------------------------
! set F to average values
select case(myspectralsolver)
case('basic')
allocate(spectralF33New(3,3,resNew(1),resNew(2),resNew(3)))
spectralF33New = spread(spread(spread(Favg,3,resNew(1)),4,resNew(2)),5,resNew(3))
call IO_write_jobBinaryFile(777,'F',size(spectralF33New))
write (777,rec=1) spectralF33New
close (777)
case('basicpetsc','al')
allocate(spectralF9New(9,resNew(1),resNew(2),resNew(3)))
spectralF9New = spread(spread(spread(reshape(Favg,[9]),2,resNew(1)),3,resNew(2)),4,resNew(3))
call IO_write_jobBinaryFile(777,'F',size(spectralF9New))
write (777,rec=1) spectralF9New
close (777)
end select
!---------------------------------------------------------------------------------
allocate(F_lastIncNew(3,3,resNew(1),resNew(2),resNew(3)))
call IO_read_jobBinaryFile(777,'F_aim_lastInc', &
trim(getSolverJobName()),size(Favg_LastInc))
read (777,rec=1) Favg_LastInc
close (777)
F_lastIncNew = spread(spread(spread(Favg_LastInc,3,resNew(1)),4,resNew(2)),5,resNew(3))
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',size(F_LastIncNew))
write (777,rec=1) F_LastIncNew
close (777)
deallocate(F_lastIncNew)
! relocating data of material subroutine ---------------------------------------------------------
allocate(material_phase (1,1, mesh_NcpElems))
allocate(material_phaseNew (1,1, NpointsNew))
call IO_read_jobBinaryIntFile(777,'recordedPhase',trim(getSolverJobName()),size(material_phase))
read (777,rec=1) material_phase
close (777)
do i = 1, NpointsNew
material_phaseNew(1,1,i) = material_phase(1,1,indices(i))
enddo
do i = 1, mesh_NcpElems
if (all(material_phaseNew(1,1,:) /= material_phase(1,1,i))) then
write(6,*) 'mismatch in regridding'
write(6,*) material_phase(1,1,i), 'not found in material_phaseNew'
endif
enddo
call IO_write_jobBinaryIntFile(777,'recordedPhase',size(material_phaseNew))
write (777,rec=1) material_phaseNew
close (777)
deallocate(material_phase)
deallocate(material_phaseNew)
!---------------------------------------------------------------------------
allocate(F (3,3,1,1, mesh_NcpElems))
allocate(FNew (3,3,1,1, NpointsNew))
call IO_read_jobBinaryFile(777,'convergedF',trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
do i = 1, NpointsNew
FNew(1:3,1:3,1,1,i) = F(1:3,1:3,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergedF',size(FNew))
write (777,rec=1) FNew
close (777)
deallocate(F)
deallocate(FNew)
!---------------------------------------------------------------------
allocate(Fp (3,3,1,1,mesh_NcpElems))
allocate(FpNew (3,3,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergedFp',trim(getSolverJobName()),size(Fp))
read (777,rec=1) Fp
close (777)
do i = 1, NpointsNew
FpNew(1:3,1:3,1,1,i) = Fp(1:3,1:3,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergedFp',size(FpNew))
write (777,rec=1) FpNew
close (777)
deallocate(Fp)
deallocate(FpNew)
!------------------------------------------------------------------------
allocate(Lp (3,3,1,1,mesh_NcpElems))
allocate(LpNew (3,3,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergedLp',trim(getSolverJobName()),size(Lp))
read (777,rec=1) Lp
close (777)
do i = 1, NpointsNew
LpNew(1:3,1:3,1,1,i) = Lp(1:3,1:3,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergedLp',size(LpNew))
write (777,rec=1) LpNew
close (777)
deallocate(Lp)
deallocate(LpNew)
!----------------------------------------------------------------------------
allocate(dcsdE (6,6,1,1,mesh_NcpElems))
allocate(dcsdENew (6,6,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergeddcsdE',trim(getSolverJobName()),size(dcsdE))
read (777,rec=1) dcsdE
close (777)
do i = 1, NpointsNew
dcsdENew(1:6,1:6,1,1,i) = dcsdE(1:6,1:6,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergeddcsdE',size(dcsdENew))
write (777,rec=1) dcsdENew
close (777)
deallocate(dcsdE)
deallocate(dcsdENew)
!---------------------------------------------------------------------------
allocate(dPdF (3,3,3,3,1,1,mesh_NcpElems))
allocate(dPdFNew (3,3,3,3,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergeddPdF',trim(getSolverJobName()),size(dPdF))
read (777,rec=1) dPdF
close (777)
do i = 1, NpointsNew
dPdFNew(1:3,1:3,1:3,1:3,1,1,i) = dPdF(1:3,1:3,1:3,1:3,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergeddPdF',size(dPdFNew))
write (777,rec=1) dPdFNew
close (777)
deallocate(dPdF)
deallocate(dPdFNew)
!---------------------------------------------------------------------------
allocate(Tstar (6,1,1,mesh_NcpElems))
allocate(TstarNew (6,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergedTstar',trim(getSolverJobName()),size(Tstar))
read (777,rec=1) Tstar
close (777)
do i = 1, NpointsNew
TstarNew(1:6,1,1,i) = Tstar(1:6,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergedTstar',size(TstarNew))
write (777,rec=1) TstarNew
close (777)
deallocate(Tstar)
deallocate(TstarNew)
! for the state, we first have to know the size------------------------------------------------------------------
allocate(sizeStateConst(1,1,mesh_NcpElems))
call IO_read_jobBinaryIntFile(777,'sizeStateConst',trim(getSolverJobName()),size(sizeStateConst))
read (777,rec=1) sizeStateConst
close (777)
maxsize = maxval(sizeStateConst(1,1,1:mesh_NcpElems))
allocate(StateConst (1,1,mesh_NcpElems,maxsize))
call IO_read_jobBinaryFile(777,'convergedStateConst',trim(getSolverJobName()))
k = 0_pInt
do i =1, mesh_NcpElems
do j = 1,sizeStateConst(1,1,i)
k = k+1_pInt
read(777,rec=k) StateConst(1,1,i,j)
enddo
enddo
close(777)
call IO_write_jobBinaryFile(777,'convergedStateConst')
k = 0_pInt
do i = 1,NpointsNew
do j = 1,sizeStateConst(1,1,indices(i))
k=k+1_pInt
write(777,rec=k) StateConst(1,1,indices(i),j)
enddo
enddo
close (777)
deallocate(sizeStateConst)
deallocate(StateConst)
!----------------------------------------------------------------------------
allocate(sizeStateHomog(1,mesh_NcpElems))
call IO_read_jobBinaryIntFile(777,'sizeStateHomog',trim(getSolverJobName()),size(sizeStateHomog))
read (777,rec=1) sizeStateHomog
close (777)
maxsize = maxval(sizeStateHomog(1,1:mesh_NcpElems))
allocate(stateHomog (1,mesh_NcpElems,maxsize))
call IO_read_jobBinaryFile(777,'convergedStateHomog',trim(getSolverJobName()))
k = 0_pInt
do i =1, mesh_NcpElems
do j = 1,sizeStateHomog(1,i)
k = k+1_pInt
read(777,rec=k) stateHomog(1,i,j)
enddo
enddo
close(777)
call IO_write_jobBinaryFile(777,'convergedStateHomog')
k = 0_pInt
do i = 1,NpointsNew
do j = 1,sizeStateHomog(1,indices(i))
k=k+1_pInt
write(777,rec=k) stateHomog(1,indices(i),j)
enddo
enddo
close (777)
deallocate(sizeStateHomog)
deallocate(stateHomog)
deallocate(indices)
write(6,*) 'finished regridding'
end function mesh_regrid
!--------------------------------------------------------------------------------------------------
!> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes)
!--------------------------------------------------------------------------------------------------
function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes)
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
math_mul33x3
implicit none
real(pReal), intent(in), dimension(:,:,:,:) :: &
centres
real(pReal), dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1) :: &
nodes
real(pReal), intent(in), dimension(3) :: &
gDim
real(pReal), intent(in), dimension(3,3) :: &
Favg
real(pReal), dimension(3,size(centres,2)+2,size(centres,3)+2,size(centres,4)+2) :: &
wrappedCentres
integer(pInt) :: &
i,j,k,n
integer(pInt), dimension(3), parameter :: &
diag = 1_pInt
integer(pInt), dimension(3) :: &
shift = 0_pInt, &
lookup = 0_pInt, &
me = 0_pInt, &
iRes = 0_pInt
integer(pInt), dimension(3,8) :: &
neighbor = reshape([ &
0_pInt, 0_pInt, 0_pInt, &
1_pInt, 0_pInt, 0_pInt, &
1_pInt, 1_pInt, 0_pInt, &
0_pInt, 1_pInt, 0_pInt, &
0_pInt, 0_pInt, 1_pInt, &
1_pInt, 0_pInt, 1_pInt, &
1_pInt, 1_pInt, 1_pInt, &
0_pInt, 1_pInt, 1_pInt ], [3,8])
!--------------------------------------------------------------------------------------------------
! initializing variables
iRes = [size(centres,2),size(centres,3),size(centres,4)]
nodes = 0.0_pReal
wrappedCentres = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! report
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Meshing cubes around centroids'
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
write(6,'(a,3(i5))') ' Resolution:', iRes
endif
!--------------------------------------------------------------------------------------------------
! building wrappedCentres = centroids + ghosts
wrappedCentres(1:3,2_pInt:iRes(1)+1_pInt,2_pInt:iRes(2)+1_pInt,2_pInt:iRes(3)+1_pInt) = centres
do k = 0_pInt,iRes(3)+1_pInt
do j = 0_pInt,iRes(2)+1_pInt
do i = 0_pInt,iRes(1)+1_pInt
if (k==0_pInt .or. k==iRes(3)+1_pInt .or. & ! z skin
j==0_pInt .or. j==iRes(2)+1_pInt .or. & ! y skin
i==0_pInt .or. i==iRes(1)+1_pInt ) then ! x skin
me = [i,j,k] ! me on skin
shift = sign(abs(iRes+diag-2_pInt*me)/(iRes+diag),iRes+diag-2_pInt*me)
lookup = me-diag+shift*iRes
wrappedCentres(1:3,i+1_pInt, j+1_pInt, k+1_pInt) = &
centres(1:3,lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt) - &
math_mul33x3(Favg, shift*gDim)
endif
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! averaging
do k = 0_pInt,iRes(3); do j = 0_pInt,iRes(2); do i = 0_pInt,iRes(1)
do n = 1_pInt,8_pInt
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) = &
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) + wrappedCentres(1:3,i+1_pInt+neighbor(1,n), &
j+1_pInt+neighbor(2,n), &
k+1_pInt+neighbor(3,n) )
enddo
enddo; enddo; enddo
nodes = nodes/8.0_pReal
end function mesh_nodesAroundCentres
!--------------------------------------------------------------------------------------------------
!> @brief calculate coordinates in current configuration for given defgrad using linear
! interpolation
!--------------------------------------------------------------------------------------------------
function mesh_deformedCoordsLinear(gDim,F,FavgIn) result(coords)
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
math_mul33x3
implicit none
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
F
real(pReal), dimension(3,size(F,3),size(F,4),size(F,5)) :: &
coords
real(pReal), intent(in), dimension(3) :: &
gDim
real(pReal), intent(in), dimension(3,3), optional :: &
FavgIn
real(pReal), dimension(3,0:size(F,3)-1,0:size(F,4)-1,0:size(F,5)-1,0:7) :: &
coordsAvgOrder
integer(pInt), parameter, dimension(3) :: &
iOnes = 1_pInt
real(pReal), parameter, dimension(3) :: &
fOnes = 1.0_pReal
real(pReal), dimension(3) :: &
myStep, &
negative, &
positive, &
offsetCoords, &
parameterCoords, &
stepLength, &
fRes
real(pReal), dimension(3,3) :: &
Favg
integer(pInt), dimension(3) :: &
rear, &
init, &
oppo, &
me, &
smallRes, &
iRes
integer(pInt) :: &
i, j, k, s, o
integer(pInt), parameter, dimension(3,0:7) :: &
corner = reshape([ &
0_pInt, 0_pInt, 0_pInt,&
1_pInt, 0_pInt, 0_pInt,&
1_pInt, 1_pInt, 0_pInt,&
0_pInt, 1_pInt, 0_pInt,&
1_pInt, 1_pInt, 1_pInt,&
0_pInt, 1_pInt, 1_pInt,&
0_pInt, 0_pInt, 1_pInt,&
1_pInt, 0_pInt, 1_pInt &
],[3,8]), &
step = reshape([&
1_pInt, 1_pInt, 1_pInt,&
-1_pInt, 1_pInt, 1_pInt,&
-1_pInt,-1_pInt, 1_pInt,&
1_pInt,-1_pInt, 1_pInt,&
-1_pInt,-1_pInt,-1_pInt,&
1_pInt,-1_pInt,-1_pInt,&
1_pInt, 1_pInt,-1_pInt,&
-1_pInt, 1_pInt,-1_pInt &
], [3,8])
integer(pInt), parameter, dimension(3,6) :: &
order = reshape([ &
1_pInt, 2_pInt, 3_pInt,&
1_pInt, 3_pInt, 2_pInt,&
2_pInt, 1_pInt, 3_pInt,&
2_pInt, 3_pInt, 1_pInt,&
3_pInt, 1_pInt, 2_pInt,&
3_pInt, 2_pInt, 1_pInt &
], [3,6])
!--------------------------------------------------------------------------------------------------
! initializing variables
iRes = [size(F,3),size(F,4),size(F,5)]
fRes = real(iRes,pReal)
smallRes = iRes - 1_pInt
coordsAvgOrder = 0.0_pReal
stepLength = gDim/fRes
!--------------------------------------------------------------------------------------------------
! report
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Restore geometry using linear integration'
write(6,'(a,3(i12 ))') ' grid a b c: ', iRes
write(6,'(a,3(f12.5))') ' size x y z: ', gDim
endif
!--------------------------------------------------------------------------------------------------
! determine average deformation gradient
if (present(FavgIn)) then
if (all(FavgIn < 0.0_pReal)) then ! the f2py way to tell it is not present
Favg = sum(sum(sum(F,dim=5),dim=4),dim=3) / product(fRes)
else
Favg = FavgIn
endif
else
Favg = sum(sum(sum(F,dim=5),dim=4),dim=3) / product(fRes)
endif
!--------------------------------------------------------------------------------------------------
! loop over starting corners (from 0 to 7)
cornerLooping: do s = 0_pInt, 7_pInt
init = corner(1:3,s) * smallRes + iOnes
oppo = corner(1:3,mod((s+4_pInt),8_pInt)) * smallRes + iOnes
!--------------------------------------------------------------------------------------------------
! permutation of ways on each corner
permutationLooping: do o = 1_pInt,6_pInt
coords = 0.0_pReal
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s)
rear(order(2,o)) = init(order(2,o))
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s)
rear(order(1,o)) = init(order(1,o))
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s)
me(order(1:3,o)) = [i,j,k]
if ( all(me == init)) then
coords(1:3,me(1),me(2),me(3)) = gDim*( math_mul33x3(Favg,real(corner(1:3,s),pReal)) &
+math_mul33x3(F(1:3,1:3,me(1),me(2),me(3)), &
0.5_pReal*real(step(1:3,s)/iRes,pReal)))
else
myStep = (me-rear)*stepLength
coords(1:3,me(1),me(2),me(3)) = coords(1:3,rear(1),rear(2),rear(3)) + &
0.5_pReal*math_mul33x3(F(1:3,1:3,me(1),me(2),me(3)) + &
F(1:3,1:3,rear(1),rear(2),rear(3)),myStep)
endif
rear = me
enddo; enddo; enddo
coordsAvgOrder(1:3,0:smallRes(1),0:smallRes(2),0:smallRes(3),s) = &
coordsAvgOrder(1:3,0:smallRes(1),0:smallRes(2),0:smallRes(3),s) + coords/6.0_pReal
enddo permutationLooping
offsetCoords = coordsAvgOrder(1:3,0,0,0,s)
do k = 0_pInt, smallRes(3); do j = 0_pInt, smallRes(2); do i = 0_pInt, smallRes(1)
coordsAvgOrder(1:3,i,j,k,s) = coordsAvgOrder(1:3,i,j,k,s) - offsetCoords
enddo; enddo; enddo
enddo cornerLooping
!--------------------------------------------------------------------------------------------------
! linear interpolation starting at each corner (comparable to linear shape function FEM)
do k = 0_pInt, smallRes(3); do j = 0_pInt, smallRes(2); do i = 0_pInt, smallRes(1)
parameterCoords = (2.0_pReal*real([i,j,k]+1,pReal)-fRes)/fRes
positive = fones + parameterCoords
negative = fones - parameterCoords
coords(1:3,i+1_pInt,j+1_pInt,k+1_pInt) &
=(coordsAvgOrder(1:3,i,j,k,0) *negative(1)*negative(2)*negative(3)&
+ coordsAvgOrder(1:3,i,j,k,1) *positive(1)*negative(2)*negative(3)&
+ coordsAvgOrder(1:3,i,j,k,2) *positive(1)*positive(2)*negative(3)&
+ coordsAvgOrder(1:3,i,j,k,3) *negative(1)*positive(2)*negative(3)&
+ coordsAvgOrder(1:3,i,j,k,4) *positive(1)*positive(2)*positive(3)&
+ coordsAvgOrder(1:3,i,j,k,5) *negative(1)*positive(2)*positive(3)&
+ coordsAvgOrder(1:3,i,j,k,6) *negative(1)*negative(2)*positive(3)&
+ coordsAvgOrder(1:3,i,j,k,7) *positive(1)*negative(2)*positive(3))*0.125_pReal
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! setting base node to (0,0,0)
offsetCoords = math_mul33x3(F(1:3,1:3,1,1,1),stepLength/2.0_pReal) - coords(1:3,1,1,1)
do k = 1_pInt, iRes(3); do j = 1_pInt, iRes(2); do i = 1_pInt, iRes(1)
coords(1:3,i,j,k) = coords(1:3,i,j,k) + offsetCoords
enddo; enddo; enddo
end function mesh_deformedCoordsLinear
!--------------------------------------------------------------------------------------------------
!> @brief calculate coordinates in current configuration for given defgrad
! using integration in Fourier space
!--------------------------------------------------------------------------------------------------
function mesh_deformedCoordsFFT(gDim,F,FavgIn,scalingIn) result(coords)
use IO, only: &
IO_error
use numerics, only: &
fftw_timelimit, &
fftw_planner_flag
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
PI, &
math_mul33x3
implicit none
real(pReal), intent(in), dimension(:,:,:,:,:) :: F
real(pReal), dimension(3,size(F,3),size(F,4),size(F,5)) :: coords
real(pReal), intent(in), dimension(3) :: gDim
real(pReal), intent(in), dimension(3,3), optional :: FavgIn
real(pReal), intent(in), dimension(3), optional :: scalingIn
! allocatable arrays for fftw c routines
type(C_PTR) :: planForth, planBack
type(C_PTR) :: coords_fftw, defgrad_fftw
real(pReal), dimension(:,:,:,:,:), pointer :: F_real
complex(pReal), dimension(:,:,:,:,:), pointer :: F_fourier
real(pReal), dimension(:,:,:,:), pointer :: coords_real
complex(pReal), dimension(:,:,:,:), pointer :: coords_fourier
! other variables
integer(pInt) :: i, j, k, m, res1Red
integer(pInt), dimension(3) :: k_s, iRes
real(pReal), dimension(3) :: scaling, step, offset_coords, integrator
real(pReal), dimension(3,3) :: Favg
integer(pInt), dimension(2:3,2) :: Nyquist ! highest frequencies to be removed (1 if even, 2 if odd)
if (present(scalingIn)) then
where (scalingIn < 0.0_pReal) ! invalid values. in case of f2py -1 if not present
scaling = [1.0_pReal,1.0_pReal,1.0_pReal]
elsewhere
scaling = scalingIn
end where
else
scaling = 1.0_pReal
endif
iRes = [size(F,3),size(F,4),size(F,5)]
integrator = gDim / 2.0_pReal / PI ! see notes where it is used
res1Red = iRes(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
step = gDim/real(iRes, pReal)
Nyquist(2,1:2) = [iRes(2)/2_pInt + 1_pInt, iRes(2)/2_pInt + 1_pInt + mod(iRes(2),2_pInt)]
Nyquist(3,1:2) = [iRes(3)/2_pInt + 1_pInt, iRes(3)/2_pInt + 1_pInt + mod(iRes(3),2_pInt)]
!--------------------------------------------------------------------------------------------------
! report
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Restore geometry using FFT-based integration'
write(6,'(a,3(i12 ))') ' grid a b c: ', iRes
write(6,'(a,3(f12.5))') ' size x y z: ', gDim
endif
!--------------------------------------------------------------------------------------------------
! sanity check
if (pReal /= C_DOUBLE .or. pInt /= C_INT) &
call IO_error(0_pInt,ext_msg='Fortran to C in mesh_deformedCoordsFFT')
!--------------------------------------------------------------------------------------------------
! allocation and FFTW initialization
defgrad_fftw = fftw_alloc_complex(int(res1Red *iRes(2)*iRes(3)*9_pInt,C_SIZE_T)) ! C_SIZE_T is of type integer(8)
coords_fftw = fftw_alloc_complex(int(res1Red *iRes(2)*iRes(3)*3_pInt,C_SIZE_T)) ! C_SIZE_T is of type integer(8)
call c_f_pointer(defgrad_fftw, F_real, &
[iRes(1)+2_pInt-mod(iRes(1),2_pInt),iRes(2),iRes(3),3_pInt,3_pInt])
call c_f_pointer(defgrad_fftw, F_fourier, &
[res1Red, iRes(2),iRes(3),3_pInt,3_pInt])
call c_f_pointer(coords_fftw, coords_real, &
[iRes(1)+2_pInt-mod(iRes(1),2_pInt),iRes(2),iRes(3),3_pInt])
call c_f_pointer(coords_fftw, coords_fourier, &
[res1Red, iRes(2),iRes(3),3_pInt])
call fftw_set_timelimit(fftw_timelimit)
planForth = fftw_plan_many_dft_r2c(3_pInt,[iRes(3),iRes(2) ,iRes(1)],9_pInt,& ! dimensions , length in each dimension in reversed order
F_real,[iRes(3),iRes(2) ,iRes(1)+2_pInt-mod(iRes(1),2_pInt)],& ! input data , physical length in each dimension in reversed order
1_pInt, iRes(3)*iRes(2)*(iRes(1)+2_pInt-mod(iRes(1),2_pInt)),& ! striding , product of physical lenght in the 3 dimensions
F_fourier,[iRes(3),iRes(2) ,res1Red],&
1_pInt, iRes(3)*iRes(2)* res1Red,fftw_planner_flag)
planBack = fftw_plan_many_dft_c2r(3_pInt,[iRes(3),iRes(2) ,iRes(1)],3_pInt,&
coords_fourier,[iRes(3),iRes(2) ,res1Red],&
1_pInt, iRes(3)*iRes(2)* res1Red,&
coords_real,[iRes(3),iRes(2) ,iRes(1)+2_pInt-mod(iRes(1),2_pInt)],&
1_pInt, iRes(3)*iRes(2)*(iRes(1)+2_pInt-mod(iRes(1),2_pInt)),&
fftw_planner_flag)
F_real(1:iRes(1),1:iRes(2),1:iRes(3),1:3,1:3) = &
reshape(F,[iRes(1),iRes(2),iRes(3),3,3], order = [4,5,1,2,3]) ! F_real is overwritten during plan creatio, is larger (padding) and has different order
!--------------------------------------------------------------------------------------------------
! FFT
call fftw_execute_dft_r2c(planForth, F_real, F_fourier)
!--------------------------------------------------------------------------------------------------
! if no average F is given, compute it in Fourier space
if (present(FavgIn)) then
if (all(FavgIn < 0.0_pReal)) then
Favg = real(F_fourier(1,1,1,1:3,1:3),pReal)/real(product(iRes),pReal) !the f2py way to tell it is not present
else
Favg = FavgIn
endif
else
Favg = real(F_fourier(1,1,1,1:3,1:3),pReal)/real(product(iRes),pReal)
endif
!--------------------------------------------------------------------------------------------------
! remove highest frequency in each direction, in third direction only if not 2D
if(iRes(1)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation
F_fourier (res1Red, 1:iRes(2), 1:iRes(3), 1:3,1:3) &
= cmplx(0.0_pReal,0.0_pReal,pReal)
if(iRes(2)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation
F_fourier (1:res1Red,Nyquist(2,1):Nyquist(2,2),1:iRes(3), 1:3,1:3) &
= cmplx(0.0_pReal,0.0_pReal,pReal)
if(iRes(3)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation
F_fourier (1:res1Red,1:iRes(2), Nyquist(3,1):Nyquist(3,2),1:3,1:3) &
= cmplx(0.0_pReal,0.0_pReal,pReal)
!--------------------------------------------------------------------------------------------------
! integration in Fourier space
coords_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, iRes(3)
k_s(3) = k-1_pInt
if(k > iRes(3)/2_pInt+1_pInt) k_s(3) = k_s(3)-iRes(3)
do j = 1_pInt, iRes(2)
k_s(2) = j-1_pInt
if(j > iRes(2)/2_pInt+1_pInt) k_s(2) = k_s(2)-iRes(2)
do i = 1_pInt, res1Red
k_s(1) = i-1_pInt
do m = 1_pInt,3_pInt
coords_fourier(i,j,k,m) = sum(F_fourier(i,j,k,m,1:3)*&
cmplx(0.0_pReal,real(k_s,pReal)*integrator,pReal))
enddo
if (any(k_s /= 0_pInt)) coords_fourier(i,j,k,1:3) = &
coords_fourier(i,j,k,1:3) / cmplx(-sum(k_s*k_s),0.0_pReal,pReal)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! iFFT and freeing memory
call fftw_execute_dft_c2r(planBack,coords_fourier,coords_real)
coords = reshape(coords_real(1:iRes(1),1:iRes(2),1:iRes(3),1:3), [3,iRes(1),iRes(2),iRes(3)], &
order = [2,3,4,1])/real(product(iRes),pReal) ! weight and change order
call fftw_destroy_plan(planForth)
call fftw_destroy_plan(planBack)
call fftw_free(defgrad_fftw)
call fftw_free(coords_fftw)
!--------------------------------------------------------------------------------------------------
! add average to scaled fluctuation and put (0,0,0) on (0,0,0)
offset_coords = math_mul33x3(F(1:3,1:3,1,1,1),step/2.0_pReal) - scaling*coords(1:3,1,1,1)
forall(k = 1_pInt:iRes(3), j = 1_pInt:iRes(2), i = 1_pInt:iRes(1)) &
coords(1:3,i,j,k) = scaling(1:3)*coords(1:3,i,j,k) &
+ offset_coords &
+ math_mul33x3(Favg,step*real([i,j,k]-1_pInt,pReal))
end function mesh_deformedCoordsFFT
!--------------------------------------------------------------------------------------------------
!> @brief calculates the mismatch between volume of reconstructed (compatible) cube and
! determinant of defgrad at the FP
!--------------------------------------------------------------------------------------------------
function mesh_volumeMismatch(gDim,F,nodes) result(vMismatch)
use IO, only: &
IO_error
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
PI, &
math_det33, &
math_volTetrahedron
implicit none
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
F
real(pReal), dimension(size(F,3),size(F,4),size(F,5)) :: &
vMismatch
real(pReal), intent(in), dimension(:,:,:,:) :: &
nodes
real(pReal), dimension(3) :: &
gDim
integer(pInt), dimension(3) :: &
iRes
real(pReal), dimension(3,8) :: coords
integer(pInt) :: i,j,k
real(pReal) :: volInitial
iRes = [size(F,3),size(F,4),size(F,5)]
volInitial = product(gDim)/real(product(iRes), pReal)
!--------------------------------------------------------------------------------------------------
! report and check
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Calculating volume mismatch'
write(6,'(a,3(i12 ))') ' grid a b c: ', iRes
write(6,'(a,3(f12.5))') ' size x y z: ', gDim
endif
if (any([iRes/=size(nodes,2)-1_pInt,iRes/=size(nodes,3)-1_pInt,iRes/=size(nodes,4)-1_pInt]))&
call IO_error(0_pInt,ext_msg='Arrays F and nodes in mesh_volumeMismatch')
!--------------------------------------------------------------------------------------------------
! calculate actual volume and volume resulting from deformation gradient
do k = 1_pInt,iRes(3)
do j = 1_pInt,iRes(2)
do i = 1_pInt,iRes(1)
coords(1:3,1) = nodes(1:3,i, j, k )
coords(1:3,2) = nodes(1:3,i+1_pInt,j, k )
coords(1:3,3) = nodes(1:3,i+1_pInt,j+1_pInt,k )
coords(1:3,4) = nodes(1:3,i, j+1_pInt,k )
coords(1:3,5) = nodes(1:3,i, j, k+1_pInt)
coords(1:3,6) = nodes(1:3,i+1_pInt,j, k+1_pInt)
coords(1:3,7) = nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt)
coords(1:3,8) = nodes(1:3,i, j+1_pInt,k+1_pInt)
vMismatch(i,j,k) = &
abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,8),coords(1:3,4))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,8),coords(1:3,5))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,3),coords(1:3,4))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,3),coords(1:3,2))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,5),coords(1:3,2),coords(1:3,6))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,5),coords(1:3,2),coords(1:3,1)))
vMismatch(i,j,k) = vMismatch(i,j,k)/math_det33(F(1:3,1:3,i,j,k))
enddo; enddo; enddo
vMismatch = vMismatch/volInitial
end function mesh_volumeMismatch
!--------------------------------------------------------------------------------------------------
!> @brief Routine to calculate the mismatch between the vectors from the central point to
! the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
! the initial volume element with the current deformation gradient
!--------------------------------------------------------------------------------------------------
function mesh_shapeMismatch(gDim,F,nodes,centres) result(sMismatch)
use IO, only: &
IO_error
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
math_mul33x3
implicit none
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
F
real(pReal), dimension(size(F,3),size(F,4),size(F,5)) :: &
sMismatch
real(pReal), intent(in), dimension(:,:,:,:) :: &
nodes, &
centres
real(pReal), dimension(3) :: &
gDim, &
fRes
integer(pInt), dimension(3) :: &
iRes
real(pReal), dimension(3,8) :: coordsInitial
integer(pInt) i,j,k
iRes = [size(F,3),size(F,4),size(F,5)]
fRes = real(iRes,pReal)
!--------------------------------------------------------------------------------------------------
! report and check
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Calculating shape mismatch'
write(6,'(a,3(i12 ))') ' grid a b c: ', iRes
write(6,'(a,3(f12.5))') ' size x y z: ', gDim
endif
if(any([iRes/=size(nodes,2)-1_pInt,iRes/=size(nodes,3)-1_pInt,iRes/=size(nodes,4)-1_pInt]) .or.&
any([iRes/=size(centres,2), iRes/=size(centres,3), iRes/=size(centres,4)]))&
call IO_error(0_pInt,ext_msg='Arrays F and nodes/centres in mesh_shapeMismatch')
!--------------------------------------------------------------------------------------------------
! initial positions
coordsInitial(1:3,1) = [-gDim(1)/fRes(1),-gDim(2)/fRes(2),-gDim(3)/fRes(3)]
coordsInitial(1:3,2) = [+gDim(1)/fRes(1),-gDim(2)/fRes(2),-gDim(3)/fRes(3)]
coordsInitial(1:3,3) = [+gDim(1)/fRes(1),+gDim(2)/fRes(2),-gDim(3)/fRes(3)]
coordsInitial(1:3,4) = [-gDim(1)/fRes(1),+gDim(2)/fRes(2),-gDim(3)/fRes(3)]
coordsInitial(1:3,5) = [-gDim(1)/fRes(1),-gDim(2)/fRes(2),+gDim(3)/fRes(3)]
coordsInitial(1:3,6) = [+gDim(1)/fRes(1),-gDim(2)/fRes(2),+gDim(3)/fRes(3)]
coordsInitial(1:3,7) = [+gDim(1)/fRes(1),+gDim(2)/fRes(2),+gDim(3)/fRes(3)]
coordsInitial(1:3,8) = [-gDim(1)/fRes(1),+gDim(2)/fRes(2),+gDim(3)/fRes(3)]
coordsInitial = coordsInitial/2.0_pReal
!--------------------------------------------------------------------------------------------------
! compare deformed original and deformed positions to actual positions
do k = 1_pInt,iRes(3)
do j = 1_pInt,iRes(2)
do i = 1_pInt,iRes(1)
sMismatch(i,j,k) = &
sqrt(sum((nodes(1:3,i, j, k ) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,1)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i+1_pInt,j, k ) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,2)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i+1_pInt,j+1_pInt,k ) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,3)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i, j+1_pInt,k ) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,4)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i, j, k+1_pInt) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,5)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i+1_pInt,j, k+1_pInt) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,6)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,7)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i, j+1_pInt,k+1_pInt) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,8)))**2.0_pReal))
enddo; enddo; enddo
end function mesh_shapeMismatch
#endif
#ifdef Marc4DAMASK
!--------------------------------------------------------------------------------------------------
!> @brief Figures out table styles (Marc only) and stores to 'initialcondTableStyle' and
!! 'hypoelasticTableStyle'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_get_tableStyles(myUnit)
use IO, only: &
IO_lc, &
IO_intValue, &
IO_stringValue, &
IO_stringPos
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 6_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) line
initialcondTableStyle = 0_pInt
hypoelasticTableStyle = 0_pInt
2007-04-10 16:52:53 +05:30
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'table' .and. myPos(1_pInt) > 5) then
initialcondTableStyle = IO_intValue(line,myPos,4_pInt)
hypoelasticTableStyle = IO_intValue(line,myPos,5_pInt)
exit
endif
enddo
620 end subroutine mesh_marc_get_tableStyles
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of nodes and elements in mesh and stores the numbers in
!! 'mesh_Nelems' and 'mesh_Nnodes'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_count_nodesAndElements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_IntValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) line
mesh_Nnodes = 0_pInt
mesh_Nelems = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'sizing') &
mesh_Nelems = IO_IntValue (line,myPos,3_pInt)
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'coordinates') then
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
mesh_Nnodes = IO_IntValue (line,myPos,2_pInt)
exit ! assumes that "coordinates" comes later in file
endif
enddo
620 end subroutine mesh_marc_count_nodesAndElements
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of element sets in mesh. Stores to 'mesh_NelemSets', and
!! 'mesh_maxNelemInSet'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_count_elementSets(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countContinuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) line
mesh_NelemSets = 0_pInt
mesh_maxNelemInSet = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'define' .and. &
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'element' ) then
mesh_NelemSets = mesh_NelemSets + 1_pInt
mesh_maxNelemInSet = max(mesh_maxNelemInSet, &
IO_countContinuousIntValues(myUnit))
endif
enddo
620 end subroutine mesh_marc_count_elementSets
2007-04-10 16:52:53 +05:30
!********************************************************************
! map element sets
2007-04-10 16:52:53 +05:30
!
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
2007-04-10 16:52:53 +05:30
!********************************************************************
subroutine mesh_marc_map_elementSets(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_continuousIntValues
2007-04-10 16:52:53 +05:30
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: elemSet = 0_pInt
allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = ''
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=640) line
myPos = IO_stringPos(line,maxNchunks)
if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'define' ) .and. &
(IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'element' ) ) then
elemSet = elemSet+1_pInt
mesh_nameElemSet(elemSet) = trim(IO_stringValue(line,myPos,4_pInt))
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(myUnit,mesh_maxNelemInSet,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
endif
enddo
640 end subroutine mesh_marc_map_elementSets
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_count_cpElements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countContinuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 1_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
integer(pInt) :: i
character(len=300):: line
mesh_NcpElems = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic') then
do i=1_pInt,3_pInt+hypoelasticTableStyle ! Skip 3 or 4 lines
read (myUnit,610,END=620) line
enddo
mesh_NcpElems = mesh_NcpElems + IO_countContinuousIntValues(myUnit)
exit
endif
enddo
620 end subroutine mesh_marc_count_cpElements
!--------------------------------------------------------------------------------------------------
!> @brief Maps elements from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPelem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_map_elements(myUnit)
use math, only: math_qsort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_continuousIntValues
2007-04-10 16:52:53 +05:30
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 1_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt), dimension (1_pInt+mesh_NcpElems) :: contInts
integer(pInt) :: i,cpElem = 0_pInt
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=660) line
myPos = IO_stringPos(line,maxNchunks)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic' ) then
do i=1_pInt,3_pInt+hypoelasticTableStyle ! skip three (or four if new table style!) lines
read (myUnit,610,END=660) line
enddo
contInts = IO_continuousIntValues(myUnit,mesh_NcpElems,mesh_nameElemSet,&
mesh_mapElemSet,mesh_NelemSets)
do i = 1_pInt,contInts(1)
cpElem = cpElem+1_pInt
mesh_mapFEtoCPelem(1,cpElem) = contInts(1_pInt+i)
mesh_mapFEtoCPelem(2,cpElem) = cpElem
enddo
endif
enddo
660 call math_qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
end subroutine mesh_marc_map_elements
!--------------------------------------------------------------------------------------------------
!> @brief Maps node from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPnode'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_map_nodes(myUnit)
use math, only: math_qsort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_fixedIntValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 1_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt), dimension (mesh_Nnodes) :: node_count
integer(pInt) :: i
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
610 FORMAT(A300)
node_count = 0_pInt
rewind(myUnit)
do
read (myUnit,610,END=650) line
myPos = IO_stringPos(line,maxNchunks)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then
read (myUnit,610,END=650) line ! skip crap line
do i = 1_pInt,mesh_Nnodes
read (myUnit,610,END=650) line
mesh_mapFEtoCPnode(1_pInt,i) = IO_fixedIntValue (line,[ 0_pInt,10_pInt],1_pInt)
mesh_mapFEtoCPnode(2_pInt,i) = i
enddo
exit
endif
enddo
650 call math_qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
end subroutine mesh_marc_map_nodes
!--------------------------------------------------------------------------------------------------
!> @brief store x,y,z coordinates of all nodes in mesh.
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_build_nodes(myUnit)
use IO, only: &
IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_fixedIntValue, &
IO_fixedNoEFloatValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), dimension(5), parameter :: node_ends = int([0,10,30,50,70],pInt)
integer(pInt), parameter :: maxNchunks = 1_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: i,j,m
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=670) line
myPos = IO_stringPos(line,maxNchunks)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then
read (myUnit,610,END=670) line ! skip crap line
do i=1_pInt,mesh_Nnodes
read (myUnit,610,END=670) line
m = mesh_FEasCP('node',IO_fixedIntValue(line,node_ends,1_pInt))
do j = 1_pInt,3_pInt
mesh_node0(j,m) = mesh_unitlength * IO_fixedNoEFloatValue(line,node_ends,j+1_pInt)
enddo
enddo
exit
endif
enddo
670 mesh_node = mesh_node0
end subroutine mesh_marc_build_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and cellnodes among cpElements.
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
!! and mesh_maxNcellnodes
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_count_cpSizes(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_intValue, &
IO_skipChunks
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: i,t,g,e,c
mesh_maxNnodes = 0_pInt
mesh_maxNips = 0_pInt
mesh_maxNipNeighbors = 0_pInt
mesh_maxNcellnodes = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=630) line
myPos = IO_stringPos(line,maxNchunks)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then
read (myUnit,610,END=630) line ! Garbage line
do i=1_pInt,mesh_Nelems ! read all elements
read (myUnit,610,END=630) line
myPos = IO_stringPos(line,maxNchunks) ! limit to id and type
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
if (e /= 0_pInt) then
t = FE_mapElemtype(IO_stringValue(line,myPos,2_pInt))
g = FE_geomtype(t)
c = FE_celltype(g)
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
mesh_maxNips = max(mesh_maxNips,FE_Nips(g))
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(c))
mesh_maxNcellnodes = max(mesh_maxNcellnodes,FE_Ncellnodes(g))
call IO_skipChunks(myUnit,FE_Nnodes(t)-(myPos(1_pInt)-2_pInt)) ! read on if FE_Nnodes exceeds node count present on current line
endif
enddo
exit
endif
enddo
630 end subroutine mesh_marc_count_cpSizes
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, mat, tex, and node list per elemen.
!! Allocates global array 'mesh_element'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_build_elements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_fixedNoEFloatValue, &
IO_skipChunks, &
IO_stringPos, &
IO_intValue, &
IO_continuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 66_pInt ! limit to 64 nodes max (plus ID, type)
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt), dimension(1_pInt+mesh_NcpElems) :: contInts
integer(pInt) :: i,j,t,sv,myVal,e,nNodesAlreadyRead
allocate (mesh_element(4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then
read (myUnit,610,END=620) line ! garbage line
do i = 1_pInt,mesh_Nelems
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
if (e /= 0_pInt) then ! disregard non CP elems
t = FE_mapElemtype(IO_StringValue(line,myPos,2_pInt)) ! elem type
mesh_element(2,e) = t
mesh_element(1,e) = IO_IntValue (line,myPos,1_pInt) ! FE id
nNodesAlreadyRead = 0_pInt
do j = 1_pInt,myPos(1)-2_pInt
mesh_element(4_pInt+j,e) = mesh_FEasCP('node',IO_IntValue(line,myPos,j+2_pInt)) ! CP ids of nodes
enddo
nNodesAlreadyRead = myPos(1) - 2_pInt
do while(nNodesAlreadyRead < FE_Nnodes(t)) ! read on if not all nodes in one line
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
do j = 1_pInt,myPos(1)
mesh_element(4_pInt+nNodesAlreadyRead+j,e) &
= mesh_FEasCP('node',IO_IntValue(line,myPos,j)) ! CP ids of nodes
enddo
nNodesAlreadyRead = nNodesAlreadyRead + myPos(1)
enddo
endif
enddo
exit
endif
enddo
620 rewind(myUnit) ! just in case "initial state" apears before "connectivity"
read (myUnit,610,END=620) line
do
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'initial') .and. &
(IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'state') ) then
if (initialcondTableStyle == 2_pInt) read (myUnit,610,END=620) line ! read extra line for new style
read (myUnit,610,END=630) line ! read line with index of state var
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
sv = IO_IntValue(line,myPos,1_pInt) ! figure state variable index
if( (sv == 2_pInt).or.(sv == 3_pInt) ) then ! only state vars 2 and 3 of interest
read (myUnit,610,END=620) line ! read line with value of state var
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
do while (scan(IO_stringValue(line,myPos,1_pInt),'+-',back=.true.)>1) ! is noEfloat value?
myVal = nint(IO_fixedNoEFloatValue(line,[0_pInt,20_pInt],1_pInt),pInt) ! state var's value
mesh_maxValStateVar(sv-1_pInt) = max(myVal,mesh_maxValStateVar(sv-1_pInt)) ! remember max val of homogenization and microstructure index
if (initialcondTableStyle == 2_pInt) then
read (myUnit,610,END=630) line ! read extra line
read (myUnit,610,END=630) line ! read extra line
endif
contInts = IO_continuousIntValues& ! get affected elements
(myUnit,mesh_Nelems,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
do i = 1_pInt,contInts(1)
e = mesh_FEasCP('elem',contInts(1_pInt+i))
mesh_element(1_pInt+sv,e) = myVal
enddo
if (initialcondTableStyle == 0_pInt) read (myUnit,610,END=620) line ! ignore IP range for old table style
read (myUnit,610,END=630) line
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
enddo
endif
else
read (myUnit,610,END=630) line
endif
enddo
630 end subroutine mesh_marc_build_elements
#endif
#ifdef Abaqus
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of nodes and elements in mesh and stores them in
!! 'mesh_Nelems' and 'mesh_Nnodes'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_nodesAndElements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countDataLines, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) :: line
logical :: inPart
mesh_Nnodes = 0_pInt
mesh_Nelems = 0_pInt
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if (inPart .or. noPart) then
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)))
case('*node')
if( &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' &
) &
mesh_Nnodes = mesh_Nnodes + IO_countDataLines(myUnit)
case('*element')
if( &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' &
) then
mesh_Nelems = mesh_Nelems + IO_countDataLines(myUnit)
endif
endselect
endif
enddo
620 if (mesh_Nnodes < 2_pInt) call IO_error(error_ID=900_pInt)
if (mesh_Nelems == 0_pInt) call IO_error(error_ID=901_pInt)
end subroutine mesh_abaqus_count_nodesAndElements
!--------------------------------------------------------------------------------------------------
!> @brief count overall number of element sets in mesh and write 'mesh_NelemSets' and
!! 'mesh_maxNelemInSet'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_elementSets(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) :: line
logical :: inPart
mesh_NelemSets = 0_pInt
mesh_maxNelemInSet = mesh_Nelems ! have to be conservative, since Abaqus allows for recursive definitons
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) &
mesh_NelemSets = mesh_NelemSets + 1_pInt
enddo
620 continue
if (mesh_NelemSets == 0) call IO_error(error_ID=902_pInt)
end subroutine mesh_abaqus_count_elementSets
!--------------------------------------------------------------------------------------------------
! count overall number of solid sections sets in mesh (Abaqus only)
!
! mesh_Nmaterials
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_materials(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
logical inPart
mesh_Nmaterials = 0_pInt
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. &
IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. &
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) &
mesh_Nmaterials = mesh_Nmaterials + 1_pInt
enddo
620 if (mesh_Nmaterials == 0_pInt) call IO_error(error_ID=903_pInt)
end subroutine mesh_abaqus_count_materials
!--------------------------------------------------------------------------------------------------
! Build element set mapping
!
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_elementSets(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_continuousIntValues, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: elemSet = 0_pInt,i
logical :: inPart = .false.
allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = ''
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=640) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) then
elemSet = elemSet + 1_pInt
mesh_nameElemSet(elemSet) = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'elset'))
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(myUnit,mesh_Nelems,mesh_nameElemSet,&
mesh_mapElemSet,elemSet-1_pInt)
endif
enddo
640 do i = 1_pInt,elemSet
if (mesh_mapElemSet(1,i) == 0_pInt) call IO_error(error_ID=904_pInt,ext_msg=mesh_nameElemSet(i))
enddo
end subroutine mesh_abaqus_map_elementSets
!--------------------------------------------------------------------------------------------------
! map solid section (Abaqus only)
!
! allocate globals: mesh_nameMaterial, mesh_mapMaterial
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_materials(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 20_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt) :: i,c = 0_pInt
logical :: inPart = .false.
character(len=64) :: elemSetName,materialName
allocate (mesh_nameMaterial(mesh_Nmaterials)) ; mesh_nameMaterial = ''
allocate (mesh_mapMaterial(mesh_Nmaterials)) ; mesh_mapMaterial = ''
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. &
IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. &
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) then
elemSetName = ''
materialName = ''
do i = 3_pInt,myPos(1_pInt)
if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset') /= '') &
elemSetName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset'))
if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material') /= '') &
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material'))
enddo
if (elemSetName /= '' .and. materialName /= '') then
c = c + 1_pInt
mesh_nameMaterial(c) = materialName ! name of material used for this section
mesh_mapMaterial(c) = elemSetName ! mapped to respective element set
endif
endif
enddo
620 if (c==0_pInt) call IO_error(error_ID=905_pInt)
do i=1_pInt,c
if (mesh_nameMaterial(i)=='' .or. mesh_mapMaterial(i)=='') call IO_error(error_ID=905_pInt)
enddo
end subroutine mesh_abaqus_map_materials
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_cpElements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error, &
IO_extractValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) line
integer(pInt) :: i,k
logical :: materialFound = .false.
character(len=64) ::materialName,elemSetName
mesh_NcpElems = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) )
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if (IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) & ! matched?
mesh_NcpElems = mesh_NcpElems + mesh_mapElemSet(1,k) ! add those elem count
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
620 if (mesh_NcpElems == 0_pInt) call IO_error(error_ID=906_pInt)
end subroutine mesh_abaqus_count_cpElements
!--------------------------------------------------------------------------------------------------
!> @brief Maps elements from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPelem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_elements(myUnit)
use math, only: math_qsort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) ::i,j,k,cpElem = 0_pInt
logical :: materialFound = .false.
character (len=64) materialName,elemSetName ! why limited to 64? ABAQUS?
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=660) line
myPos = IO_stringPos(line,maxNchunks)
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) )
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if (IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
do j = 1_pInt,mesh_mapElemSet(1,k)
cpElem = cpElem + 1_pInt
mesh_mapFEtoCPelem(1,cpElem) = mesh_mapElemSet(1_pInt+j,k) ! store FE id
mesh_mapFEtoCPelem(2,cpElem) = cpElem ! store our id
enddo
endif
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
660 call math_qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
if (int(size(mesh_mapFEtoCPelem),pInt) < 2_pInt) call IO_error(error_ID=907_pInt)
end subroutine mesh_abaqus_map_elements
!--------------------------------------------------------------------------------------------------
!> @brief Maps node from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPnode'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_nodes(myUnit)
use math, only: math_qsort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countDataLines, &
IO_intValue, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt) :: i,c,cpNode = 0_pInt
logical :: inPart = .false.
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=650) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. &
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
) then
c = IO_countDataLines(myUnit)
do i = 1_pInt,c
backspace(myUnit)
enddo
do i = 1_pInt,c
read (myUnit,610,END=650) line
myPos = IO_stringPos(line,maxNchunks)
cpNode = cpNode + 1_pInt
mesh_mapFEtoCPnode(1_pInt,cpNode) = IO_intValue(line,myPos,1_pInt)
mesh_mapFEtoCPnode(2_pInt,cpNode) = cpNode
enddo
endif
enddo
650 call math_qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
if (int(size(mesh_mapFEtoCPnode),pInt) == 0_pInt) call IO_error(error_ID=908_pInt)
end subroutine mesh_abaqus_map_nodes
!--------------------------------------------------------------------------------------------------
!> @brief store x,y,z coordinates of all nodes in mesh.
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_build_nodes(myUnit)
use IO, only: &
IO_lc, &
IO_stringValue, &
IO_floatValue, &
IO_stringPos, &
IO_error, &
IO_countDataLines, &
IO_intValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: i,j,m,c
logical :: inPart
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=670) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. &
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
) then
c = IO_countDataLines(myUnit) ! how many nodes are defined here?
do i = 1_pInt,c
backspace(myUnit) ! rewind to first entry
enddo
do i = 1_pInt,c
read (myUnit,610,END=670) line
myPos = IO_stringPos(line,maxNchunks)
m = mesh_FEasCP('node',IO_intValue(line,myPos,1_pInt))
do j=1_pInt, 3_pInt
mesh_node0(j,m) = mesh_unitlength * IO_floatValue(line,myPos,j+1_pInt)
enddo
enddo
endif
enddo
670 if (int(size(mesh_node0,2_pInt),pInt) /= mesh_Nnodes) call IO_error(error_ID=909_pInt)
mesh_node = mesh_node0
end subroutine mesh_abaqus_build_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
!! and mesh_maxNcellnodes
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_cpSizes(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue ,&
IO_error, &
IO_countDataLines, &
IO_intValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: i,c,t,g
logical :: inPart
mesh_maxNnodes = 0_pInt
mesh_maxNips = 0_pInt
mesh_maxNipNeighbors = 0_pInt
mesh_maxNcellnodes = 0_pInt
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. &
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
) then
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type
g = FE_geomtype(t)
c = FE_celltype(g)
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
mesh_maxNips = max(mesh_maxNips,FE_Nips(g))
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(c))
mesh_maxNcellnodes = max(mesh_maxNcellnodes,FE_Ncellnodes(g))
endif
enddo
620 end subroutine mesh_abaqus_count_cpSizes
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, mat, tex, and node list per elemen.
!! Allocates global array 'mesh_element'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_build_elements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_skipChunks, &
IO_stringPos, &
IO_intValue, &
IO_extractValue, &
IO_floatValue, &
IO_error, &
IO_countDataLines
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 65_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
integer(pInt) :: i,j,k,c,e,t,homog,micro, nNodesAlreadyRead
logical inPart,materialFound
character (len=64) :: materialName,elemSetName
character(len=300) :: line
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. &
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
) then
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type
c = IO_countDataLines(myUnit)
do i = 1_pInt,c
backspace(myUnit)
enddo
do i = 1_pInt,c
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks) ! limit to 64 nodes max
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
if (e /= 0_pInt) then ! disregard non CP elems
mesh_element(1,e) = IO_intValue(line,myPos,1_pInt) ! FE id
mesh_element(2,e) = t ! elem type
nNodesAlreadyRead = 0_pInt
do j = 1_pInt,myPos(1)-1_pInt
mesh_element(4_pInt+j,e) = mesh_FEasCP('node',IO_intValue(line,myPos,1_pInt+j)) ! put CP ids of nodes to position 5:
2013-02-07 16:15:10 +05:30
enddo
nNodesAlreadyRead = myPos(1) - 1_pInt
do while(nNodesAlreadyRead < FE_Nnodes(t)) ! read on if not all nodes in one line
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
do j = 1_pInt,myPos(1)
mesh_element(4_pInt+nNodesAlreadyRead+j,e) &
= mesh_FEasCP('node',IO_IntValue(line,myPos,j)) ! CP ids of nodes
enddo
nNodesAlreadyRead = nNodesAlreadyRead + myPos(1)
enddo
endif
enddo
endif
enddo
620 rewind(myUnit) ! just in case "*material" definitions apear before "*element"
materialFound = .false.
do
read (myUnit,610,END=630) line
myPos = IO_stringPos(line,maxNchunks)
select case ( IO_lc(IO_StringValue(line,myPos,1_pInt)))
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_StringValue(line,myPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if ( IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. &
materialFound ) then
read (myUnit,610,END=630) line ! read homogenization and microstructure
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
homog = nint(IO_floatValue(line,myPos,1_pInt),pInt)
micro = nint(IO_floatValue(line,myPos,2_pInt),pInt)
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
do j = 1_pInt,mesh_mapElemSet(1,k)
e = mesh_FEasCP('elem',mesh_mapElemSet(1+j,k))
mesh_element(3,e) = homog ! store homogenization
mesh_element(4,e) = micro ! store microstructure
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),homog)
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),micro)
enddo
endif
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
630 end subroutine mesh_abaqus_build_elements
#endif
!--------------------------------------------------------------------------------------------------
!> @brief get any additional damask options from input file, sets mesh_periodicSurface
!--------------------------------------------------------------------------------------------------
subroutine mesh_get_damaskOptions(myUnit)
use IO, only: &
IO_lc, &
IO_stringValue, &
IO_stringPos
implicit none
integer(pInt), intent(in) :: myUnit
#ifndef Spectral
integer(pInt), parameter :: maxNchunks = 5_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
integer(pInt) chunk, Nchunks
character(len=300) :: line, damaskOption, v
character(len=300) :: keyword
#endif
#ifdef Spectral
mesh_periodicSurface = .true.
#else
mesh_periodicSurface = .false.
#ifdef Marc4DAMASK
keyword = '$damask'
#endif
#ifdef Abaqus
keyword = '**damask'
#endif
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
Nchunks = myPos(1)
if (IO_lc(IO_stringValue(line,myPos,1_pInt)) == keyword .and. Nchunks > 1_pInt) then ! found keyword for damask option and there is at least one more chunk to read
damaskOption = IO_lc(IO_stringValue(line,myPos,2_pInt))
select case(damaskOption)
case('periodic') ! damask Option that allows to specify periodic fluxes
do chunk = 3_pInt,Nchunks ! loop through chunks (skipping the keyword)
v = IO_lc(IO_stringValue(line,myPos,chunk)) ! chunk matches keyvalues x,y, or z?
mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x'
mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y'
mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z'
enddo
endselect
endif
enddo
610 FORMAT(A300)
#endif
620 end subroutine mesh_get_damaskOptions
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipAreas
use math, only: &
math_norm3, &
math_vectorproduct
implicit none
integer(pInt) :: e,t,g,c,i,f,n,m
real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals
real(pReal), dimension(3) :: normal
allocate(mesh_ipArea(mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)); mesh_ipArea = 0.0_pReal
allocate(mesh_ipAreaNormal(3_pInt,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)); mesh_ipAreaNormal = 0.0_pReal
!$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals)
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = mesh_element(2_pInt,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
select case (c)
case (1_pInt,2_pInt) ! 2D 3 or 4 node
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
normal(3) = 0.0_pReal
mesh_ipArea(f,i,e) = math_norm3(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) ! ensure unit length of area normal
enddo
enddo
case (3_pInt) ! 3D 4node
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
normal = math_vectorproduct(nodePos(1:3,2) - nodePos(1:3,1), &
nodePos(1:3,3) - nodePos(1:3,1))
mesh_ipArea(f,i,e) = math_norm3(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) ! ensure unit length of area normal
enddo
enddo
case (4_pInt) ! 3D 8node
! for this cell type we get the normal of the quadrilateral face as an average of
! four normals of triangular subfaces; since the face consists only of two triangles,
! the sum has to be divided by two; this whole prcedure tries to compensate for
! probable non-planar cell surfaces
m = FE_NcellnodesPerCellface(c)
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
normals(1:3,n) = 0.5_pReal &
* math_vectorproduct(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
normal = 0.5_pReal * sum(normals,2)
mesh_ipArea(f,i,e) = math_norm3(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal)
enddo
enddo
end select
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipAreas
!--------------------------------------------------------------------------------------------------
!> @brief assignment of twin nodes for each cp node, allocate globals '_nodeTwins'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_nodeTwins
implicit none
integer(pInt) dir, & ! direction of periodicity
node, &
minimumNode, &
maximumNode, &
n1, &
n2
integer(pInt), dimension(mesh_Nnodes+1) :: minimumNodes, maximumNodes ! list of surface nodes (minimum and maximum coordinate value) with first entry giving the number of nodes
real(pReal) minCoord, maxCoord, & ! extreme positions in one dimension
tolerance ! tolerance below which positions are assumed identical
real(pReal), dimension(3) :: distance ! distance between two nodes in all three coordinates
logical, dimension(mesh_Nnodes) :: unpaired
allocate(mesh_nodeTwins(3,mesh_Nnodes))
mesh_nodeTwins = 0_pInt
tolerance = 0.001_pReal * minval(mesh_ipVolume) ** 0.333_pReal
do dir = 1_pInt,3_pInt ! check periodicity in directions of x,y,z
if (mesh_periodicSurface(dir)) then ! only if periodicity is requested
!*** find out which nodes sit on the surface
!*** and have a minimum or maximum position in this dimension
minimumNodes = 0_pInt
maximumNodes = 0_pInt
minCoord = minval(mesh_node0(dir,:))
maxCoord = maxval(mesh_node0(dir,:))
do node = 1_pInt,mesh_Nnodes ! loop through all nodes and find surface nodes
if (abs(mesh_node0(dir,node) - minCoord) <= tolerance) then
minimumNodes(1) = minimumNodes(1) + 1_pInt
minimumNodes(minimumNodes(1)+1_pInt) = node
elseif (abs(mesh_node0(dir,node) - maxCoord) <= tolerance) then
maximumNodes(1) = maximumNodes(1) + 1_pInt
maximumNodes(maximumNodes(1)+1_pInt) = node
endif
enddo
!*** find the corresponding node on the other side with the same position in this dimension
unpaired = .true.
do n1 = 1_pInt,minimumNodes(1)
minimumNode = minimumNodes(n1+1_pInt)
if (unpaired(minimumNode)) then
do n2 = 1_pInt,maximumNodes(1)
maximumNode = maximumNodes(n2+1_pInt)
distance = abs(mesh_node0(:,minimumNode) - mesh_node0(:,maximumNode))
if (sum(distance) - distance(dir) <= tolerance) then ! minimum possible distance (within tolerance)
mesh_nodeTwins(dir,minimumNode) = maximumNode
mesh_nodeTwins(dir,maximumNode) = minimumNode
unpaired(maximumNode) = .false. ! remember this node, we don't have to look for his partner again
exit
endif
enddo
endif
enddo
endif
enddo
end subroutine mesh_build_nodeTwins
!--------------------------------------------------------------------------------------------------
!> @brief get maximum count of shared elements among cpElements and build list of elements shared
!! by each node in mesh. Allocate globals '_maxNsharedElems' and '_sharedElem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_sharedElems
implicit none
integer(pint) e, & ! element index
g, & ! element type
node, & ! CP node index
n, & ! node index per element
myDim, & ! dimension index
nodeTwin ! node twin in the specified dimension
integer(pInt), dimension (mesh_Nnodes) :: node_count
integer(pInt), dimension (:), allocatable :: node_seen
allocate(node_seen(maxval(FE_NmatchingNodes)))
node_count = 0_pInt
do e = 1_pInt,mesh_NcpElems
g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
node_seen = 0_pInt ! reset node duplicates
do n = 1_pInt,FE_NmatchingNodes(g) ! check each node of element
node = mesh_element(4+n,e)
if (all(node_seen /= node)) then
node_count(node) = node_count(node) + 1_pInt ! if FE node not yet encountered -> count it
do myDim = 1_pInt,3_pInt ! check in each dimension...
nodeTwin = mesh_nodeTwins(myDim,node)
if (nodeTwin > 0_pInt) & ! if I am a twin of some node...
node_count(nodeTwin) = node_count(nodeTwin) + 1_pInt ! -> count me again for the twin node
enddo
endif
node_seen(n) = node ! remember this node to be counted already
enddo
enddo
mesh_maxNsharedElems = int(maxval(node_count),pInt) ! most shared node
allocate(mesh_sharedElem(1+mesh_maxNsharedElems,mesh_Nnodes))
mesh_sharedElem = 0_pInt
do e = 1_pInt,mesh_NcpElems
g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
node_seen = 0_pInt
do n = 1_pInt,FE_NmatchingNodes(g)
node = mesh_element(4_pInt+n,e)
if (all(node_seen /= node)) then
mesh_sharedElem(1,node) = mesh_sharedElem(1,node) + 1_pInt ! count for each node the connected elements
mesh_sharedElem(mesh_sharedElem(1,node)+1_pInt,node) = e ! store the respective element id
do myDim = 1_pInt,3_pInt ! check in each dimension...
nodeTwin = mesh_nodeTwins(myDim,node)
if (nodeTwin > 0_pInt) then ! if i am a twin of some node...
mesh_sharedElem(1,nodeTwin) = mesh_sharedElem(1,nodeTwin) + 1_pInt ! ...count me again for the twin
mesh_sharedElem(mesh_sharedElem(1,nodeTwin)+1,nodeTwin) = e ! store the respective element id
endif
enddo
endif
node_seen(n) = node
enddo
enddo
deallocate(node_seen)
end subroutine mesh_build_sharedElems
!--------------------------------------------------------------------------------------------------
!> @brief build up of IP neighborhood, allocate globals '_ipNeighborhood'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipNeighborhood
use math, only: &
math_mul3x3
implicit none
integer(pInt) :: myElem, & ! my CP element index
myIP, &
myType, & ! my element type
myFace, &
neighbor, & ! neighor index
neighboringIPkey, & ! positive integer indicating the neighboring IP (for intra-element) and negative integer indicating the face towards neighbor (for neighboring element)
candidateIP, &
neighboringType, & ! element type of neighbor
NlinkedNodes, & ! number of linked nodes
twin_of_linkedNode, & ! node twin of a specific linkedNode
NmatchingNodes, & ! number of matching nodes
dir, & ! direction of periodicity
matchingElem, & ! CP elem number of matching element
matchingFace, & ! face ID of matching element
a, anchor, &
neighboringIP, &
neighboringElem, &
pointingToMe
integer(pInt), dimension(FE_maxmaxNnodesAtIP) :: &
linkedNodes = 0_pInt, &
matchingNodes
logical checkTwins
allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems))
mesh_ipNeighborhood = 0_pInt
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
do neighbor = 1_pInt,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP
neighboringIPkey = FE_ipNeighbor(neighbor,myIP,myType)
!*** if the key is positive, the neighbor is inside the element
!*** that means, we have already found our neighboring IP
if (neighboringIPkey > 0_pInt) then
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = myElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = neighboringIPkey
!*** if the key is negative, the neighbor resides in a neighboring element
!*** that means, we have to look through the face indicated by the key and see which element is behind that face
elseif (neighboringIPkey < 0_pInt) then ! neighboring element's IP
myFace = -neighboringIPkey
call mesh_faceMatch(myElem, myFace, matchingElem, matchingFace) ! get face and CP elem id of face match
if (matchingElem > 0_pInt) then ! found match?
neighboringType = FE_geomtype(mesh_element(2,matchingElem))
!*** trivial solution if neighbor has only one IP
if (FE_Nips(neighboringType) == 1_pInt) then
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = 1_pInt
cycle
endif
!*** find those nodes which build the link to the neighbor
NlinkedNodes = 0_pInt
linkedNodes = 0_pInt
do a = 1_pInt,FE_maxNnodesAtIP(myType) ! figure my anchor nodes on connecting face
anchor = FE_nodesAtIP(a,myIP,myType)
if (anchor /= 0_pInt) then ! valid anchor node
if (any(FE_face(:,myFace,myType) == anchor)) then ! ip anchor sits on face?
NlinkedNodes = NlinkedNodes + 1_pInt
linkedNodes(NlinkedNodes) = mesh_element(4_pInt+anchor,myElem) ! CP id of anchor node
else ! something went wrong with the linkage, since not all anchors sit on my face
NlinkedNodes = 0_pInt
linkedNodes = 0_pInt
exit
endif
endif
enddo
!*** loop through the ips of my neighbor
!*** and try to find an ip with matching nodes
!*** also try to match with node twins
checkCandidateIP: do candidateIP = 1_pInt,FE_Nips(neighboringType)
NmatchingNodes = 0_pInt
matchingNodes = 0_pInt
do a = 1_pInt,FE_maxNnodesAtIP(neighboringType) ! check each anchor node of that ip
anchor = FE_nodesAtIP(a,candidateIP,neighboringType)
if (anchor /= 0_pInt) then ! valid anchor node
if (any(FE_face(:,matchingFace,neighboringType) == anchor)) then ! sits on matching face?
NmatchingNodes = NmatchingNodes + 1_pInt
matchingNodes(NmatchingNodes) = mesh_element(4+anchor,matchingElem) ! CP id of neighbor's anchor node
else ! no matching, because not all nodes sit on the matching face
NmatchingNodes = 0_pInt
matchingNodes = 0_pInt
exit
endif
endif
enddo
if (NmatchingNodes /= NlinkedNodes) & ! this ip has wrong count of anchors on face
cycle checkCandidateIP
!*** check "normal" nodes whether they match or not
checkTwins = .false.
do a = 1_pInt,NlinkedNodes
if (all(matchingNodes /= linkedNodes(a))) then ! this linkedNode does not match any matchingNode
checkTwins = .true.
exit ! no need to search further
endif
enddo
!*** if no match found, then also check node twins
if(checkTwins) then
dir = int(maxloc(abs(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem)),1),pInt) ! check for twins only in direction of the surface normal
do a = 1_pInt,NlinkedNodes
twin_of_linkedNode = mesh_nodeTwins(dir,linkedNodes(a))
if (twin_of_linkedNode == 0_pInt .or. & ! twin of linkedNode does not exist...
all(matchingNodes /= twin_of_linkedNode)) then ! ... or it does not match any matchingNode
cycle checkCandidateIP ! ... then check next candidateIP
endif
enddo
endif
!*** we found a match !!!
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = candidateIP
exit checkCandidateIP
enddo checkCandidateIP
endif ! end of valid external matching
endif ! end of internal/external matching
enddo
enddo
enddo
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
do neighbor = 1_pInt,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP
neighboringElem = mesh_ipNeighborhood(1,neighbor,myIP,myElem)
neighboringIP = mesh_ipNeighborhood(2,neighbor,myIP,myElem)
if (neighboringElem > 0_pInt .and. neighboringIP > 0_pInt) then ! if neighbor exists ...
neighboringType = FE_geomtype(mesh_element(2,neighboringElem))
do pointingToMe = 1_pInt,FE_NipNeighbors(FE_celltype(neighboringType)) ! find neighboring index that points from my neighbor to myself
if ( myElem == mesh_ipNeighborhood(1,pointingToMe,neighboringIP,neighboringElem) &
.and. myIP == mesh_ipNeighborhood(2,pointingToMe,neighboringIP,neighboringElem)) then ! possible candidate
if (math_mul3x3(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem),&
mesh_ipAreaNormal(1:3,pointingToMe,neighboringIP,neighboringElem)) < 0.0_pReal) then ! area normals have opposite orientation (we have to check that because of special case for single element with two ips and periodicity. In this case the neighbor is identical in two different directions.)
mesh_ipNeighborhood(3,neighbor,myIP,myElem) = pointingToMe ! found match
exit ! so no need to search further
endif
endif
enddo
endif
enddo
enddo
enddo
end subroutine mesh_build_ipNeighborhood
!--------------------------------------------------------------------------------------------------
!> @brief write statistics regarding input file parsing to the output file
!--------------------------------------------------------------------------------------------------
subroutine mesh_tell_statistics
use math, only: &
math_range
use IO, only: &
IO_error
use debug, only: &
debug_level, &
debug_MESH, &
debug_LEVELBASIC, &
debug_LEVELEXTENSIVE, &
debug_LEVELSELECTIVE, &
debug_e, &
debug_i
implicit none
integer(pInt), dimension (:,:), allocatable :: mesh_HomogMicro
character(len=64) :: myFmt
integer(pInt) :: i,e,n,f,t,g,c, myDebug
myDebug = debug_level(debug_mesh)
if (mesh_maxValStateVar(1) < 1_pInt) call IO_error(error_ID=170_pInt) ! no homogenization specified
if (mesh_maxValStateVar(2) < 1_pInt) call IO_error(error_ID=180_pInt) ! no microstructure specified
allocate (mesh_HomogMicro(mesh_maxValStateVar(1),mesh_maxValStateVar(2))); mesh_HomogMicro = 0_pInt
do e = 1_pInt,mesh_NcpElems
if (mesh_element(3,e) < 1_pInt) call IO_error(error_ID=170_pInt,e=e) ! no homogenization specified
if (mesh_element(4,e) < 1_pInt) call IO_error(error_ID=180_pInt,e=e) ! no microstructure specified
mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) = &
mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) + 1_pInt ! count combinations of homogenization and microstructure
enddo
!$OMP CRITICAL (write2out)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
write(6,'(/,a,/)') ' Input Parser: STATISTICS'
write(6,*) mesh_Nelems, ' : total number of elements in mesh'
write(6,*) mesh_NcpElems, ' : total number of CP elements in mesh'
write(6,*) mesh_Nnodes, ' : total number of nodes in mesh'
write(6,*) mesh_maxNnodes, ' : max number of nodes in any CP element'
write(6,*) mesh_maxNips, ' : max number of IPs in any CP element'
write(6,*) mesh_maxNipNeighbors, ' : max number of IP neighbors in any CP element'
write(6,*) mesh_maxNsharedElems, ' : max number of CP elements sharing a node'
write(6,'(/,a,/)') ' Input Parser: HOMOGENIZATION/MICROSTRUCTURE'
write(6,*) mesh_maxValStateVar(1), ' : maximum homogenization index'
write(6,*) mesh_maxValStateVar(2), ' : maximum microstructure index'
write(6,*)
write (myFmt,'(a,i32.32,a)') '(9x,a2,1x,',mesh_maxValStateVar(2),'(i8))'
write(6,myFmt) '+-',math_range(mesh_maxValStateVar(2))
write (myFmt,'(a,i32.32,a)') '(i8,1x,a2,1x,',mesh_maxValStateVar(2),'(i8))'
do i=1_pInt,mesh_maxValStateVar(1) ! loop over all (possibly assigned) homogenizations
write(6,myFmt) i,'| ',mesh_HomogMicro(i,:) ! loop over all (possibly assigned) microstructures
enddo
write(6,'(/,a,/)') ' Input Parser: ADDITIONAL MPIE OPTIONS'
write(6,*) 'periodic surface : ', mesh_periodicSurface
write(6,*)
flush(6)
endif
if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then
write(6,*)
write(6,*) 'Input Parser: ELEMENT TYPE'
write(6,*)
write(6,'(a8,3(1x,a8))') 'elem','elemtype','geomtype','celltype'
do e = 1_pInt,mesh_NcpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
t = mesh_element(2,e) ! get elemType
g = FE_geomtype(t) ! get elemGeomType
c = FE_celltype(g) ! get cellType
write(6,'(i8,3(1x,i8))') e,t,g,c
enddo
write(6,*)
write(6,*) 'Input Parser: ELEMENT VOLUME'
write(6,*)
write(6,'(a13,1x,e15.8)') 'total volume', sum(mesh_ipVolume)
write(6,*)
write(6,'(a8,1x,a5,1x,a15,1x,a5,1x,a15,1x,a16)') 'elem','IP','volume','face','area','-- normal --'
do e = 1_pInt,mesh_NcpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
t = mesh_element(2,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
do i = 1_pInt,FE_Nips(g)
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
write(6,'(i8,1x,i5,1x,e15.8)') e,i,mesh_IPvolume(i,e)
do f = 1_pInt,FE_NipNeighbors(c)
write(6,'(i33,1x,e15.8,1x,3(f6.3,1x))') f,mesh_ipArea(f,i,e),mesh_ipAreaNormal(:,f,i,e)
enddo
enddo
enddo
write(6,*)
write(6,*) 'Input Parser: CELLNODE COORDINATES'
write(6,*)
write(6,'(a8,1x,a2,1x,a8,3(1x,a12))') 'elem','IP','cellnode','x','y','z'
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
t = mesh_element(2,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
do i = 1_pInt,FE_Nips(g) ! loop over IPs of elem
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
write(6,'(i8,1x,i2)') e,i
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in the cell
write(6,'(12x,i8,3(1x,f12.8))') mesh_cell(n,i,e), &
mesh_cellnode(1:3,mesh_cell(n,i,e))
enddo
enddo
enddo
write(6,*)
write(6,*) 'Input Parser: IP COORDINATES'
write(6,'(a8,1x,a5,3(1x,a12))') 'elem','IP','x','y','z'
do e = 1_pInt,mesh_NcpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
write(6,'(i8,1x,i5,3(1x,f12.8))') e, i, mesh_ipCoordinates(:,i,e)
enddo
enddo
write(6,*)
#ifndef Spectral
write(6,*) 'Input Parser: NODE TWINS'
write(6,*)
write(6,'(a6,3(3x,a6))') ' node','twin_x','twin_y','twin_z'
do n = 1_pInt,mesh_Nnodes ! loop over cpNodes
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. .not. any(mesh_element(5:,debug_e) == n)) cycle
write(6,'(i6,3(3x,i6))') n, mesh_nodeTwins(1:3,n)
enddo
write(6,*)
#endif
write(6,*) 'Input Parser: IP NEIGHBORHOOD'
write(6,*)
write(6,'(a8,1x,a10,1x,a10,1x,a3,1x,a13,1x,a13)') 'elem','IP','neighbor','','elemNeighbor','ipNeighbor'
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
t = mesh_element(2,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
do i = 1_pInt,FE_Nips(g) ! loop over IPs of elem
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
do n = 1_pInt,FE_NipNeighbors(c) ! loop over neighbors of IP
write(6,'(i8,1x,i10,1x,i10,1x,a3,1x,i13,1x,i13)') e,i,n,'-->',mesh_ipNeighborhood(1,n,i,e),mesh_ipNeighborhood(2,n,i,e)
enddo
enddo
enddo
endif
!$OMP END CRITICAL (write2out)
deallocate(mesh_HomogMicro)
end subroutine mesh_tell_statistics
!--------------------------------------------------------------------------------------------------
!> @brief mapping of FE element types to internal representation
!--------------------------------------------------------------------------------------------------
integer(pInt) function FE_mapElemtype(what)
use IO, only: IO_lc, IO_error
implicit none
character(len=*), intent(in) :: what
select case (IO_lc(what))
case ( '6')
FE_mapElemtype = 1_pInt ! Two-dimensional Plane Strain Triangle
case ( '155', &
'125', &
'128')
FE_mapElemtype = 2_pInt ! Two-dimensional Plane Strain triangle (155: cubic shape function, 125/128: second order isoparametric)
case ( '11', &
'cpe4')
FE_mapElemtype = 3_pInt ! Arbitrary Quadrilateral Plane-strain
case ( '27', &
'cpe8')
FE_mapElemtype = 4_pInt ! Plane Strain, Eight-node Distorted Quadrilateral
case ( '54')
FE_mapElemtype = 5_pInt ! Plane Strain, Eight-node Distorted Quadrilateral with reduced integration
case ('134', &
'c3d4')
FE_mapElemtype = 6_pInt ! Three-dimensional Four-node Tetrahedron
case ('157')
FE_mapElemtype = 7_pInt ! Three-dimensional, Low-order, Tetrahedron, Herrmann Formulations
case ('127')
FE_mapElemtype = 8_pInt ! Three-dimensional Ten-node Tetrahedron
case ('136', &
'c3d6')
FE_mapElemtype = 9_pInt ! Three-dimensional Arbitrarily Distorted Pentahedral
case ( '117', &
'123', &
'c3d8r')
FE_mapElemtype = 10_pInt ! Three-dimensional Arbitrarily Distorted linear hexahedral with reduced integration
case ( '7', &
'c3d8')
FE_mapElemtype = 11_pInt ! Three-dimensional Arbitrarily Distorted Brick
case ( '57', &
'c3d20r')
FE_mapElemtype = 12_pInt ! Three-dimensional Arbitrarily Distorted quad hexahedral with reduced integration
case ( '21', &
'c3d20')
FE_mapElemtype = 13_pInt ! Three-dimensional Arbitrarily Distorted quadratic hexahedral
case default
call IO_error(error_ID=190_pInt,ext_msg=IO_lc(what))
end select
end function FE_mapElemtype
!--------------------------------------------------------------------------------------------------
!> @brief find face-matching element of same type
!--------------------------------------------------------------------------------------------------
subroutine mesh_faceMatch(elem, face ,matchingElem, matchingFace)
implicit none
!*** output variables
integer(pInt), intent(out) :: matchingElem, & ! matching CP element ID
matchingFace ! matching face ID
!*** input variables
integer(pInt), intent(in) :: face, & ! face ID
elem ! CP elem ID
!*** local variables
integer(pInt), dimension(FE_NmatchingNodesPerFace(face,FE_geomtype(mesh_element(2,elem)))) :: &
myFaceNodes ! global node ids on my face
integer(pInt) :: myType, &
candidateType, &
candidateElem, &
candidateFace, &
candidateFaceNode, &
minNsharedElems, &
NsharedElems, &
lonelyNode = 0_pInt, &
i, &
n, &
dir ! periodicity direction
integer(pInt), dimension(:), allocatable :: element_seen
logical checkTwins
matchingElem = 0_pInt
matchingFace = 0_pInt
minNsharedElems = mesh_maxNsharedElems + 1_pInt ! init to worst case
myType = FE_geomtype(mesh_element(2_pInt,elem)) ! figure elemGeomType
do n = 1_pInt,FE_NmatchingNodesPerFace(face,myType) ! loop over nodes on face
myFaceNodes(n) = mesh_element(4_pInt+FE_face(n,face,myType),elem) ! CP id of face node
NsharedElems = mesh_sharedElem(1_pInt,myFaceNodes(n)) ! figure # shared elements for this node
if (NsharedElems < minNsharedElems) then
minNsharedElems = NsharedElems ! remember min # shared elems
lonelyNode = n ! remember most lonely node
endif
enddo
allocate(element_seen(minNsharedElems))
element_seen = 0_pInt
checkCandidate: do i = 1_pInt,minNsharedElems ! iterate over lonelyNode's shared elements
candidateElem = mesh_sharedElem(1_pInt+i,myFaceNodes(lonelyNode)) ! present candidate elem
if (all(element_seen /= candidateElem)) then ! element seen for the first time?
element_seen(i) = candidateElem
candidateType = FE_geomtype(mesh_element(2_pInt,candidateElem)) ! figure elemGeomType of candidate
checkCandidateFace: do candidateFace = 1_pInt,FE_maxNipNeighbors ! check each face of candidate
if (FE_NmatchingNodesPerFace(candidateFace,candidateType) &
/= FE_NmatchingNodesPerFace(face,myType) & ! incompatible face
.or. (candidateElem == elem .and. candidateFace == face)) then ! this is my face
cycle checkCandidateFace
endif
checkTwins = .false.
do n = 1_pInt,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face
candidateFaceNode = mesh_element(4_pInt+FE_face(n,candidateFace,candidateType),candidateElem)
if (all(myFaceNodes /= candidateFaceNode)) then ! candidate node does not match any of my face nodes
checkTwins = .true. ! perhaps the twin nodes do match
exit
endif
enddo
if(checkTwins) then
checkCandidateFaceTwins: do dir = 1_pInt,3_pInt
do n = 1_pInt,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face
candidateFaceNode = mesh_element(4+FE_face(n,candidateFace,candidateType),candidateElem)
if (all(myFaceNodes /= mesh_nodeTwins(dir,candidateFaceNode))) then ! node twin does not match either
if (dir == 3_pInt) then
cycle checkCandidateFace
else
cycle checkCandidateFaceTwins ! try twins in next dimension
endif
endif
enddo
exit checkCandidateFaceTwins
enddo checkCandidateFaceTwins
endif
matchingFace = candidateFace
matchingElem = candidateElem
exit checkCandidate ! found my matching candidate
enddo checkCandidateFace
endif
enddo checkCandidate
deallocate(element_seen)
end subroutine mesh_faceMatch
!--------------------------------------------------------------------------------------------------
!> @brief get properties of different types of finite elements
!> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_cellnodeParentnodeWeights, FE_subNodeOnIPFace
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_FEdata
implicit none
integer(pInt) :: me
allocate(FE_nodesAtIP(FE_maxmaxNnodesAtIP,FE_maxNips,FE_Ngeomtypes)); FE_nodesAtIP = 0_pInt
allocate(FE_ipNeighbor(FE_maxNipNeighbors,FE_maxNips,FE_Ngeomtypes)); FE_ipNeighbor = 0_pInt
allocate(FE_cell(FE_maxNcellnodesPerCell,FE_maxNips,FE_Ngeomtypes)); FE_cell = 0_pInt
allocate(FE_cellnodeParentnodeWeights(FE_maxNnodes,FE_maxNcellnodes,FE_Nelemtypes)); FE_cellnodeParentnodeWeights = 0.0_pReal
allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes)); FE_cellface = 0_pInt
!*** fill FE_nodesAtIP with data ***
me = 0_pInt
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
1,2,3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
2012-04-20 17:28:41 +05:30
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
1, &
2, &
3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
2012-04-12 00:16:36 +05:30
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
1, &
2, &
4, &
3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
1,0, &
1,2, &
2,0, &
1,4, &
0,0, &
2,3, &
4,0, &
3,4, &
3,0 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
1,2,3,4 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
1, &
2, &
3, &
4 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
1, &
2, &
3, &
4, &
5, &
6 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
2012-04-20 17:28:41 +05:30
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
1,2,3,4,5,6,7,8 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
1, &
2, &
4, &
3, &
5, &
6, &
8, &
7 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
1,0, 0,0, &
1,2, 0,0, &
2,0, 0,0, &
1,4, 0,0, &
1,3, 2,4, &
2,3, 0,0, &
4,0, 0,0, &
3,4, 0,0, &
3,0, 0,0, &
1,5, 0,0, &
1,6, 2,5, &
2,6, 0,0, &
1,8, 4,5, &
0,0, 0,0, &
2,7, 3,6, &
4,8, 0,0, &
3,8, 4,7, &
3,7, 0,0, &
5,0, 0,0, &
5,6, 0,0, &
6,0, 0,0, &
5,8, 0,0, &
5,7, 6,8, &
6,7, 0,0, &
8,0, 0,0, &
7,8, 0,0, &
7,0, 0,0 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
2012-04-12 00:16:36 +05:30
! *** FE_ipNeighbor ***
! is a list of the neighborhood of each IP.
! It is sorted in (local) +x,-x, +y,-y, +z,-z direction.
! Positive integers denote an intra-FE IP identifier.
! Negative integers denote the interface behind which the neighboring (extra-FE) IP will be located.
me = 0_pInt
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
-2,-3,-1 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
2,-3, 3,-1, &
-2, 1, 3,-1, &
2,-3,-2, 1 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
2,-4, 3,-1, &
-2, 1, 4,-1, &
4,-4,-3, 1, &
-2, 3,-3, 2 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
2,-4, 4,-1, &
3, 1, 5,-1, &
-2, 2, 6,-1, &
5,-4, 7, 1, &
6, 4, 8, 2, &
-2, 5, 9, 3, &
8,-4,-3, 4, &
9, 7,-3, 5, &
-2, 8,-3, 6 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
-1,-2,-3,-4 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
2,-4, 3,-2, 4,-1, &
-2, 1, 3,-2, 4,-1, &
2,-4,-3, 1, 4,-1, &
2,-4, 3,-2,-3, 1 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
2,-4, 3,-2, 4,-1, &
-3, 1, 3,-2, 5,-1, &
2,-4,-3, 1, 6,-1, &
5,-4, 6,-2,-5, 1, &
-3, 4, 6,-2,-5, 2, &
5,-4,-3, 4,-5, 3 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
-3,-5,-4,-2,-6,-1 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
2,-5, 3,-2, 5,-1, &
-3, 1, 4,-2, 6,-1, &
4,-5,-4, 1, 7,-1, &
-3, 3,-4, 2, 8,-1, &
6,-5, 7,-2,-6, 1, &
-3, 5, 8,-2,-6, 2, &
8,-5,-4, 5,-6, 3, &
-3, 7,-4, 6,-6, 4 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
2,-5, 4,-2,10,-1, &
3, 1, 5,-2,11,-1, &
-3, 2, 6,-2,12,-1, &
5,-5, 7, 1,13,-1, &
6, 4, 8, 2,14,-1, &
-3, 5, 9, 3,15,-1, &
8,-5,-4, 4,16,-1, &
9, 7,-4, 5,17,-1, &
-3, 8,-4, 6,18,-1, &
11,-5,13,-2,19, 1, &
12,10,14,-2,20, 2, &
-3,11,15,-2,21, 3, &
14,-5,16,10,22, 4, &
15,13,17,11,23, 5, &
-3,14,18,12,24, 6, &
17,-5,-4,13,25, 7, &
18,16,-4,14,26, 8, &
-3,17,-4,15,27, 9, &
20,-5,22,-2,-6,10, &
21,19,23,-2,-6,11, &
-3,20,24,-2,-6,12, &
23,-5,25,19,-6,13, &
24,22,26,20,-6,14, &
-3,23,27,21,-6,15, &
26,-5,-4,22,-6,16, &
27,25,-4,23,-6,17, &
-3,26,-4,24,-6,18 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
! *** FE_cell ***
me = 0_pInt
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
1,2,3 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
1, 4, 7, 6, &
2, 5, 7, 4, &
3, 6, 7, 5 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
1, 5, 9, 8, &
5, 2, 6, 9, &
8, 9, 7, 4, &
9, 6, 3, 7 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
1, 5,13,12, &
5, 6,14,13, &
6, 2, 7,14, &
12,13,16,11, &
13,14,15,16, &
14, 7, 8,15, &
11,16,10, 4, &
16,15, 9,10, &
15, 8, 3, 9 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
1, 2, 3, 4 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
1, 5,11, 7, 8,12,15,14, &
5, 2, 6,11,12, 9,13,15, &
7,11, 6, 3,14,15,13,10, &
8,12,15, 4, 4, 9,13,10 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
1, 7,16, 9,10,17,21,19, &
7, 2, 8,16,17,11,18,21, &
9,16, 8, 3,19,21,18,12, &
10,17,21,19, 4,13,20,15, &
17,11,18,21,13, 5,14,20, &
19,21,18,12,15,20,14, 6 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
1, 2, 3, 4, 5, 6, 7, 8 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
1, 9,21,12,13,22,27,25, &
9, 2,10,21,22,14,23,27, &
12,21,11, 4,25,27,24,16, &
21,10, 3,11,27,23,15,24, &
13,22,27,25, 5,17,26,20, &
22,14,23,27,17, 6,18,26, &
25,27,24,16,20,26,19, 8, &
27,23,15,24,26,18, 7,19 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
1, 9,33,16,17,37,57,44, &
9,10,34,33,37,38,58,57, &
10, 2,11,34,38,18,39,58, &
16,33,36,15,44,57,60,43, &
33,34,35,36,57,58,59,60, &
34,11,12,35,58,39,40,59, &
15,36,14, 4,43,60,42,20, &
36,35,13,14,60,59,41,42, &
35,12, 3,13,59,40,19,41, &
17,37,57,44,21,45,61,52, &
37,38,58,57,45,46,62,61, &
38,18,39,58,46,22,47,62, &
44,57,60,43,52,61,64,51, &
57,58,59,60,61,62,63,64, &
58,39,40,59,62,47,48,63, &
43,60,42,20,51,64,50,24, &
60,59,41,42,64,63,49,50, &
59,40,19,41,63,48,23,49, &
21,45,61,52, 5,25,53,32, &
45,46,62,61,25,26,54,53, &
46,22,47,62,26, 6,27,54, &
52,61,64,51,32,53,56,31, &
61,62,63,64,53,54,55,56, &
62,47,48,63,54,27,28,55, &
51,64,50,24,31,56,30, 8, &
64,63,49,50,56,55,29,30, &
63,48,23,49,55,28, 7,29 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
! *** FE_cellnodeParentnodeWeights ***
! center of gravity of the weighted nodes gives the position of the cell node.
! fill with 0.
! example: face-centered cell node with face nodes 1,2,5,6 to be used in,
! e.g., an 8 node element, would be encoded:
! 1, 1, 0, 0, 1, 1, 0, 0
me = 0_pInt
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 6 (2D 3node 1ip)
reshape(real([&
1, 0, 0, &
0, 1, 0, &
0, 0, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 125 (2D 6node 3ip)
reshape(real([&
1, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, &
0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 1, &
1, 1, 1, 2, 2, 2 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 11 (2D 4node 4ip)
reshape(real([&
1, 0, 0, 0, &
0, 1, 0, 0, &
0, 0, 1, 0, &
0, 0, 0, 1, &
1, 1, 0, 0, &
0, 1, 1, 0, &
0, 0, 1, 1, &
1, 0, 0, 1, &
1, 1, 1, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 27 (2D 8node 9ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, 0, 0, &
0, 0, 0, 1, 0, 0, 0, 0, &
1, 0, 0, 0, 2, 0, 0, 0, &
0, 1, 0, 0, 2, 0, 0, 0, &
0, 1, 0, 0, 0, 2, 0, 0, &
0, 0, 1, 0, 0, 2, 0, 0, &
0, 0, 1, 0, 0, 0, 2, 0, &
0, 0, 0, 1, 0, 0, 2, 0, &
0, 0, 0, 1, 0, 0, 0, 2, &
1, 0, 0, 0, 0, 0, 0, 2, &
4, 1, 1, 1, 8, 2, 2, 8, &
1, 4, 1, 1, 8, 8, 2, 2, &
1, 1, 4, 1, 2, 8, 8, 2, &
1, 1, 1, 4, 2, 2, 8, 8 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 54 (2D 8node 4ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, 0, 0, &
0, 0, 0, 1, 0, 0, 0, 0, &
0, 0, 0, 0, 1, 0, 0, 0, &
0, 0, 0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 0, 0, 1, &
1, 1, 1, 1, 2, 2, 2, 2 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 134 (3D 4node 1ip)
reshape(real([&
1, 0, 0, 0, &
0, 1, 0, 0, &
0, 0, 1, 0, &
0, 0, 0, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 157 (3D 5node 4ip)
reshape(real([&
1, 0, 0, 0, 0, &
0, 1, 0, 0, 0, &
0, 0, 1, 0, 0, &
0, 0, 0, 1, 0, &
1, 1, 0, 0, 0, &
0, 1, 1, 0, 0, &
1, 0, 1, 0, 0, &
1, 0, 0, 1, 0, &
0, 1, 0, 1, 0, &
0, 0, 1, 1, 0, &
1, 1, 1, 0, 0, &
1, 1, 0, 1, 0, &
0, 1, 1, 1, 0, &
1, 0, 1, 1, 0, &
0, 0, 0, 0, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 127 (3D 10node 4ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, &
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, &
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, &
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, &
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, &
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, &
1, 1, 1, 0, 2, 2, 2, 0, 0, 0, &
1, 1, 0, 1, 2, 0, 0, 2, 2, 0, &
0, 1, 1, 1, 0, 2, 0, 0, 2, 2, &
1, 0, 1, 1, 0, 0, 2, 2, 0, 2, &
3, 3, 3, 3, 4, 4, 4, 4, 4, 4 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 136 (3D 6node 6ip)
reshape(real([&
1, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, &
0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 1, &
1, 1, 0, 0, 0, 0, &
0, 1, 1, 0, 0, 0, &
1, 0, 1, 0, 0, 0, &
1, 0, 0, 1, 0, 0, &
0, 1, 0, 0, 1, 0, &
0, 0, 1, 0, 0, 1, &
0, 0, 0, 1, 1, 0, &
0, 0, 0, 0, 1, 1, &
0, 0, 0, 1, 0, 1, &
1, 1, 1, 0, 0, 0, &
1, 1, 0, 1, 1, 0, &
0, 1, 1, 0, 1, 1, &
1, 0, 1, 1, 0, 1, &
0, 0, 0, 1, 1, 1, &
1, 1, 1, 1, 1, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 117 (3D 8node 1ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, 0, 0, &
0, 0, 0, 1, 0, 0, 0, 0, &
0, 0, 0, 0, 1, 0, 0, 0, &
0, 0, 0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 0, 0, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 7 (3D 8node 8ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 0, 0, 0, & ! 5
0, 0, 0, 0, 0, 1, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, & !
1, 1, 0, 0, 0, 0, 0, 0, & !
0, 1, 1, 0, 0, 0, 0, 0, & ! 10
0, 0, 1, 1, 0, 0, 0, 0, & !
1, 0, 0, 1, 0, 0, 0, 0, & !
1, 0, 0, 0, 1, 0, 0, 0, & !
0, 1, 0, 0, 0, 1, 0, 0, & !
0, 0, 1, 0, 0, 0, 1, 0, & ! 15
0, 0, 0, 1, 0, 0, 0, 1, & !
0, 0, 0, 0, 1, 1, 0, 0, & !
0, 0, 0, 0, 0, 1, 1, 0, & !
0, 0, 0, 0, 0, 0, 1, 1, & !
0, 0, 0, 0, 1, 0, 0, 1, & ! 20
1, 1, 1, 1, 0, 0, 0, 0, & !
1, 1, 0, 0, 1, 1, 0, 0, & !
0, 1, 1, 0, 0, 1, 1, 0, & !
0, 0, 1, 1, 0, 0, 1, 1, & !
1, 0, 0, 1, 1, 0, 0, 1, & ! 25
0, 0, 0, 0, 1, 1, 1, 1, & !
1, 1, 1, 1, 1, 1, 1, 1 & !
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 57 (3D 20node 8ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, & ! 15
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, & ! 20
1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, & !
0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, & !
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, & !
1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, & ! 25
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, & !
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 & !
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 21 (3D 20node 27ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10
0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 15
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & ! 20
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & !
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & !
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & ! 25
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & ! 30
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & !
4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 35
1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, & !
4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, & !
1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, 0, & !
0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, & !
0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, & ! 40
0, 0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, & !
0, 0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, & !
1, 0, 0, 4, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 2, 0, 0, 8, & !
4, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, 2, & !
1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, 0, & ! 45
1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, & !
0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, & !
0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, & !
0, 0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, & !
0, 0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, & ! 50
1, 0, 0, 1, 1, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, 8, & !
1, 0, 0, 1, 4, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 8, 8, 0, 0, 2, & !
0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, & ! 55
0, 0, 0, 0, 1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, & !
24, 8, 4, 8, 8, 4, 3, 4, 32,12,12,32, 12, 4, 4,12, 32,12, 4,12, & !
8,24, 8, 4, 4, 8, 4, 3, 32,32,12,12, 12,12, 4, 4, 12,32,12, 4, & !
4, 8,24, 8, 3, 4, 8, 4, 12,32,32,12, 4,12,12, 4, 4,12,32,12, & !
8, 4, 8,24, 4, 3, 4, 8, 12,12,32,32, 4, 4,12,12, 12, 4,12,32, & ! 60
8, 4, 3, 4, 24, 8, 4, 8, 12, 4, 4,12, 32,12,12,32, 32,12, 4,12, & !
4, 8, 4, 3, 8,24, 8, 4, 12,12, 4, 4, 32,32,12,12, 12,32,12, 4, & !
3, 4, 8, 4, 4, 8,24, 8, 4,12,12, 4, 12,32,32,12, 4,12,32,12, & !
4, 3, 4, 8, 8, 4, 8,24, 4, 4,12,12, 12,12,32,32, 12, 4,12,32 & !
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
! *** FE_cellface ***
me = 0_pInt
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5)
reshape(int([&
2,3, &
3,1, &
1,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9)
reshape(int([&
2,3, &
4,1, &
3,4, &
1,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10)
reshape(int([&
1,3,2, &
1,2,4, &
2,3,4, &
1,4,3 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12)
reshape(int([&
2,3,7,6, &
4,1,5,8, &
3,4,8,7, &
1,2,6,5, &
5,6,7,8, &
1,4,3,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
end subroutine mesh_build_FEdata
!--------------------------------------------------------------------------------------------------
!> @brief writes out initial cell geometry
!--------------------------------------------------------------------------------------------------
subroutine mesh_write_cellGeom
use DAMASK_interface, only: &
getSolverJobName, &
getSolverWorkingDirectoryName
use Lib_VTK_IO, only: &
VTK_ini, &
VTK_geo, &
VTK_con, &
VTK_end
implicit none
integer(pInt), dimension(1:mesh_Ncells) :: celltype
integer(pInt), dimension(mesh_Ncells*(1_pInt+FE_maxNcellnodesPerCell)) :: cellconnection
integer(pInt):: err, g, c, e, CellID, i, j
cellID = 0_pInt
j = 0_pInt
do e = 1_pInt, mesh_NcpElems ! loop over cpElems
g = FE_geomtype(mesh_element(2_pInt,e)) ! get geometry type
c = FE_celltype(g) ! get cell type
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
cellID = cellID + 1_pInt
celltype(cellID) = MESH_VTKCELLTYPE(c)
cellconnection(j+1_pInt:j+FE_NcellnodesPerCell(c)+1_pInt) &
= [FE_NcellnodesPerCell(c),mesh_cell(1:FE_NcellnodesPerCell(c),i,e)-1_pInt] ! number of cellnodes per cell & list of global cellnode IDs belnging to this cell (cellnode counting starts at 0)
j = j + FE_NcellnodesPerCell(c) + 1_pInt
enddo
enddo
err = VTK_ini(output_format = 'ASCII', &
title=trim(getSolverJobName())//' cell mesh', &
filename = trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'_ipbased.vtk', &
mesh_topology = 'UNSTRUCTURED_GRID')
err = VTK_geo(NN = mesh_Ncellnodes, &
X = mesh_cellnode(1,1:mesh_Ncellnodes), &
Y = mesh_cellnode(2,1:mesh_Ncellnodes), &
Z = mesh_cellnode(3,1:mesh_Ncellnodes))
err = VTK_con(NC = mesh_Ncells, &
connect = cellconnection(1:j), &
cell_type = celltype)
err = VTK_end()
end subroutine mesh_write_cellGeom
!--------------------------------------------------------------------------------------------------
!> @brief writes out initial element geometry
!--------------------------------------------------------------------------------------------------
subroutine mesh_write_elemGeom
use DAMASK_interface, only: &
getSolverJobName, &
getSolverWorkingDirectoryName
use Lib_VTK_IO, only: &
VTK_ini, &
VTK_geo, &
VTK_con, &
VTK_end
implicit none
integer(pInt), dimension(1:mesh_NcpElems) :: elemtype
integer(pInt), dimension(mesh_NcpElems*(1_pInt+FE_maxNnodes)) :: elementconnection
integer(pInt):: err, e, t, n, i
i = 0_pInt
do e = 1_pInt, mesh_NcpElems ! loop over cpElems
t = mesh_element(2,e) ! get element type
elemtype(e) = MESH_VTKELEMTYPE(t)
elementconnection(i+1_pInt) = FE_Nnodes(t) ! number of nodes per element
do n = 1_pInt,FE_Nnodes(t)
elementconnection(i+1_pInt+n) = mesh_element(4_pInt+n,e) - 1_pInt ! global node ID of node that belongs to this element (node counting starts at 0)
enddo
i = i + 1_pInt + FE_Nnodes(t)
enddo
err =VTK_ini(output_format = 'ASCII', &
title=trim(getSolverJobName())//' element mesh', &
filename = trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'_nodebased.vtk', &
mesh_topology = 'UNSTRUCTURED_GRID')
err =VTK_geo(NN = mesh_Nnodes, &
X = mesh_node0(1,1:mesh_Nnodes), &
Y = mesh_node0(2,1:mesh_Nnodes), &
Z = mesh_node0(3,1:mesh_Nnodes))
err =VTK_con(NC = mesh_Nelems, &
connect = elementconnection(1:i), &
cell_type = elemtype)
err =VTK_end()
end subroutine mesh_write_elemGeom
!--------------------------------------------------------------------------------------------------
!> @brief writes description file for mesh
!--------------------------------------------------------------------------------------------------
subroutine mesh_write_meshfile
use IO, only: &
IO_write_jobFile
implicit none
integer(pInt), parameter :: fileUnit = 223_pInt
integer(pInt) :: e,i,t,g,c,n
call IO_write_jobFile(fileUnit,'mesh')
write(fileUnit,'(A16,E10.3)') 'unitlength', mesh_unitlength
write(fileUnit,'(A16,I10)') 'maxNcellnodes', mesh_maxNcellnodes
write(fileUnit,'(A16,I10)') 'maxNips', mesh_maxNips
write(fileUnit,'(A16,I10)') 'maxNnodes', mesh_maxNnodes
write(fileUnit,'(A16,I10)') 'Nnodes', mesh_Nnodes
write(fileUnit,'(A16,I10)') 'NcpElems', mesh_NcpElems
do e = 1_pInt,mesh_NcpElems
t = mesh_element(2,e)
write(fileUnit,'(20(I10))') mesh_element(1_pInt:4_pInt+FE_Nnodes(t),e)
enddo
write(fileUnit,'(A16,I10)') 'Ncellnodes', mesh_Ncellnodes
do n = 1_pInt,mesh_Ncellnodes
write(fileUnit,'(2(I10))') mesh_cellnodeParent(1:2,n)
enddo
write(fileUnit,'(A16,I10)') 'Ncells', mesh_Ncells
do e = 1_pInt,mesh_NcpElems
t = mesh_element(2,e)
g = FE_geomtype(t)
c = FE_celltype(g)
do i = 1_pInt,FE_Nips(g)
write(fileUnit,'(8(I10))') &
mesh_cell(1_pInt:FE_NcellnodesPerCell(c),i,e)
enddo
enddo
close(fileUnit)
end subroutine mesh_write_meshfile
!--------------------------------------------------------------------------------------------------
!> @brief reads mesh description file
!--------------------------------------------------------------------------------------------------
integer function mesh_read_meshfile(filepath)
implicit none
character(len=*), intent(in) :: filepath
integer(pInt), parameter :: fileUnit = 223_pInt
integer(pInt) :: e,i,t,g,n
open(fileUnit,status='old',err=100,iostat=mesh_read_meshfile,action='read',file=filepath)
read(fileUnit,'(TR16,E10.3)',err=100,iostat=mesh_read_meshfile) mesh_unitlength
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNcellnodes
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNips
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNnodes
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Nnodes
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_NcpElems
if (.not. allocated(mesh_element)) allocate(mesh_element(4_pInt+mesh_maxNnodes,mesh_NcpElems))
mesh_element = 0_pInt
do e = 1_pInt,mesh_NcpElems
read(fileUnit,'(20(I10))',err=100,iostat=mesh_read_meshfile) &
mesh_element(:,e)
enddo
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Ncellnodes
if (.not. allocated(mesh_cellnodeParent)) allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes))
do n = 1_pInt,mesh_Ncellnodes
read(fileUnit,'(2(I10))',err=100,iostat=mesh_read_meshfile) mesh_cellnodeParent(1:2,n)
enddo
read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Ncells
if (.not. allocated(mesh_cell)) allocate(mesh_cell(FE_maxNcellnodesPerCell,mesh_maxNips,mesh_NcpElems))
do e = 1_pInt,mesh_NcpElems
t = mesh_element(2,e)
g = FE_geomtype(t)
do i = 1_pInt,FE_Nips(g)
read(fileUnit,'(8(I10))',err=100,iostat=mesh_read_meshfile) mesh_cell(:,i,e)
enddo
enddo
close(fileUnit)
mesh_read_meshfile = 0 ! successfully read data
100 continue
end function mesh_read_meshfile
!--------------------------------------------------------------------------------------------------
!> @brief initializes mesh data for use in post processing
!--------------------------------------------------------------------------------------------------
integer function mesh_init_postprocessing(filepath)
implicit none
character(len=*), intent(in) :: filepath
call mesh_build_FEdata
mesh_init_postprocessing = mesh_read_meshfile(filepath)
end function mesh_init_postprocessing
!--------------------------------------------------------------------------------------------------
!> @brief returns global variable mesh_Ncellnodes
!--------------------------------------------------------------------------------------------------
integer(pInt) function mesh_get_Ncellnodes()
implicit none
mesh_get_Ncellnodes = mesh_Ncellnodes
end function mesh_get_Ncellnodes
!--------------------------------------------------------------------------------------------------
!> @brief returns global variable mesh_unitlength
!--------------------------------------------------------------------------------------------------
real(pReal) function mesh_get_unitlength()
implicit none
mesh_get_unitlength = mesh_unitlength
end function mesh_get_unitlength
!--------------------------------------------------------------------------------------------------
!> @brief returns node that is located at an ip
!> @details return zero if requested ip does not exist or not available (more ips than nodes)
!--------------------------------------------------------------------------------------------------
integer(pInt) function mesh_get_nodeAtIP(elemtypeFE,ip)
implicit none
character(len=*), intent(in) :: elemtypeFE
integer(pInt), intent(in) :: ip
integer(pInt) :: elemtype
integer(pInt) :: geomtype
mesh_get_nodeAtIP = 0_pInt
elemtype = FE_mapElemtype(elemtypeFE)
geomtype = FE_geomtype(elemtype)
if (FE_Nips(geomtype) >= ip .and. FE_Nips(geomtype) <= FE_Nnodes(elemtype)) &
mesh_get_nodeAtIP = FE_nodesAtIP(1,ip,geomtype)
end function mesh_get_nodeAtIP
end module mesh