DAMASK_EICMD/src/constitutive_plastic_nonloc...

1951 lines
112 KiB
Fortran
Raw Normal View History

!--------------------------------------------------------------------------------------------------
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for plasticity including dislocation flux
!--------------------------------------------------------------------------------------------------
submodule(constitutive) plastic_nonlocal
use geometry_plastic_nonlocal, only: &
2019-06-07 13:50:56 +05:30
nIPneighbors => geometry_plastic_nonlocal_nIPneighbors, &
IPneighborhood => geometry_plastic_nonlocal_IPneighborhood, &
2019-06-06 14:38:58 +05:30
IPvolume => geometry_plastic_nonlocal_IPvolume0, &
IParea => geometry_plastic_nonlocal_IParea0, &
IPareaNormal => geometry_plastic_nonlocal_IPareaNormal0
2019-12-04 23:30:56 +05:30
real(pReal), parameter :: &
2019-03-17 21:32:08 +05:30
KB = 1.38e-23_pReal !< Physical parameter, Boltzmann constant in J/Kelvin
2019-03-17 21:32:08 +05:30
! storage order of dislocation types
integer, dimension(8), parameter :: &
2019-03-17 21:32:08 +05:30
sgl = [1,2,3,4,5,6,7,8] !< signed (single)
integer, dimension(5), parameter :: &
2019-03-17 21:32:08 +05:30
edg = [1,2,5,6,9], & !< edge
scr = [3,4,7,8,10] !< screw
integer, dimension(4), parameter :: &
2019-03-17 21:32:08 +05:30
mob = [1,2,3,4], & !< mobile
imm = [5,6,7,8] !< immobile (blocked)
2019-03-16 23:39:22 +05:30
integer, dimension(2), parameter :: &
2019-03-17 21:32:08 +05:30
dip = [9,10], & !< dipole
imm_edg = imm(1:2), & !< immobile edge
imm_scr = imm(3:4) !< immobile screw
integer, parameter :: &
mob_edg_pos = 1, & !< mobile edge positive
mob_edg_neg = 2, & !< mobile edge negative
mob_scr_pos = 3, & !< mobile screw positive
mob_scr_neg = 4 !< mobile screw positive
! BEGIN DEPRECATES
2019-12-04 23:30:56 +05:30
integer, dimension(:,:,:), allocatable :: &
2019-03-17 21:32:08 +05:30
iRhoU, & !< state indices for unblocked density
iRhoB, & !< state indices for blocked density
iRhoD, & !< state indices for dipole density
iV, & !< state indices for dislcation velocities
iD !< state indices for stable dipole height
2019-12-04 23:30:56 +05:30
integer, dimension(:), allocatable :: &
2019-03-17 21:32:08 +05:30
totalNslip !< total number of active slip systems for each instance
!END DEPRECATED
2019-12-04 23:30:56 +05:30
real(pReal), dimension(:,:,:,:,:,:), allocatable :: &
compatibility !< slip system compatibility between me and my neighbors
2019-12-04 23:30:56 +05:30
type :: tParameters !< container type for internal constitutive parameters
2019-03-17 21:32:08 +05:30
real(pReal) :: &
atomicVolume, & !< atomic volume
Dsd0, & !< prefactor for self-diffusion coefficient
selfDiffusionEnergy, & !< activation enthalpy for diffusion
aTolRho, & !< absolute tolerance for dislocation density in state integration
aTolShear, & !< absolute tolerance for accumulated shear in state integration
significantRho, & !< density considered significant
significantN, & !< number of dislocations considered significant
doublekinkwidth, & !< width of a doubkle kink in multiples of the burgers vector length b
solidSolutionEnergy, & !< activation energy for solid solution in J
solidSolutionSize, & !< solid solution obstacle size in multiples of the burgers vector length
solidSolutionConcentration, & !< concentration of solid solution in atomic parts
p, & !< parameter for kinetic law (Kocks,Argon,Ashby)
q, & !< parameter for kinetic law (Kocks,Argon,Ashby)
viscosity, & !< viscosity for dislocation glide in Pa s
fattack, & !< attack frequency in Hz
rhoSglScatter, & !< standard deviation of scatter in initial dislocation density
surfaceTransmissivity, & !< transmissivity at free surface
grainboundaryTransmissivity, & !< transmissivity at grain boundary (identified by different texture)
CFLfactor, & !< safety factor for CFL flux condition
fEdgeMultiplication, & !< factor that determines how much edge dislocations contribute to multiplication (0...1)
rhoSglRandom, &
rhoSglRandomBinning, &
linetensionEffect, &
edgeJogFactor, &
mu, &
nu
real(pReal), dimension(:), allocatable :: &
minDipoleHeight_edge, & !< minimum stable edge dipole height
minDipoleHeight_screw, & !< minimum stable screw dipole height
2019-02-20 13:43:50 +05:30
peierlsstress_edge, &
peierlsstress_screw, &
2019-03-17 21:32:08 +05:30
rhoSglEdgePos0, & !< initial edge_pos dislocation density
rhoSglEdgeNeg0, & !< initial edge_neg dislocation density
rhoSglScrewPos0, & !< initial screw_pos dislocation density
rhoSglScrewNeg0, & !< initial screw_neg dislocation density
rhoDipEdge0, & !< initial edge dipole dislocation density
rhoDipScrew0,& !< initial screw dipole dislocation density
lambda0, & !< mean free path prefactor for each
burgers !< absolute length of burgers vector [m]
real(pReal), dimension(:,:), allocatable :: &
slip_normal, &
slip_direction, &
slip_transverse, &
minDipoleHeight, & ! edge and screw
peierlsstress, & ! edge and screw
interactionSlipSlip ,& !< coefficients for slip-slip interaction
forestProjection_Edge, & !< matrix of forest projections of edge dislocations
forestProjection_Screw !< matrix of forest projections of screw dislocations
2019-12-04 23:30:56 +05:30
real(pReal), dimension(:), allocatable :: &
2019-03-17 21:32:08 +05:30
nonSchmidCoeff
2019-12-04 23:30:56 +05:30
real(pReal), dimension(:,:,:), allocatable :: &
2019-03-17 21:32:08 +05:30
Schmid, & !< Schmid contribution
nonSchmid_pos, &
nonSchmid_neg !< combined projection of Schmid and non-Schmid contributions to the resolved shear stress (only for screws)
integer :: &
totalNslip
2019-12-04 23:30:56 +05:30
integer, dimension(:) ,allocatable :: &
2019-03-17 21:32:08 +05:30
Nslip,&
colinearSystem !< colinear system to the active slip system (only valid for fcc!)
2020-02-14 13:56:26 +05:30
character(len=pStringLen), allocatable, dimension(:) :: &
output
2019-12-04 23:30:56 +05:30
logical :: &
2019-03-17 21:32:08 +05:30
shortRangeStressCorrection, & !< flag indicating the use of the short range stress correction by a excess density gradient term
probabilisticMultiplication
2019-03-17 21:32:08 +05:30
end type tParameters
2019-12-04 23:30:56 +05:30
type :: tNonlocalMicrostructure
2019-03-17 21:32:08 +05:30
real(pReal), allocatable, dimension(:,:) :: &
tau_pass, &
tau_Back
2019-03-17 21:32:08 +05:30
end type tNonlocalMicrostructure
2019-12-04 23:30:56 +05:30
type :: tNonlocalState
2019-03-17 21:32:08 +05:30
real(pReal), pointer, dimension(:,:) :: &
rho, & ! < all dislocations
rhoSgl, &
rhoSglMobile, & ! iRhoU
2019-03-17 21:32:08 +05:30
rho_sgl_mob_edg_pos, &
rho_sgl_mob_edg_neg, &
rho_sgl_mob_scr_pos, &
rho_sgl_mob_scr_neg, &
rhoSglImmobile, & ! iRhoB
rho_sgl_imm_edg_pos, &
rho_sgl_imm_edg_neg, &
rho_sgl_imm_scr_pos, &
rho_sgl_imm_scr_neg, &
rhoDip, & ! iRhoD
rho_dip_edg, &
rho_dip_scr, &
rho_forest, &
2019-12-01 14:05:44 +05:30
gamma, &
2019-12-01 13:25:24 +05:30
v, &
v_edg_pos, &
v_edg_neg, &
v_scr_pos, &
v_scr_neg
2019-03-17 21:32:08 +05:30
end type tNonlocalState
2019-12-04 23:30:56 +05:30
type(tNonlocalState), allocatable, dimension(:) :: &
2019-03-17 21:32:08 +05:30
deltaState, &
dotState, &
state, &
state0
2019-12-04 23:30:56 +05:30
type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstance)
2019-12-04 23:30:56 +05:30
type(tNonlocalMicrostructure), dimension(:), allocatable :: microstructure
2019-02-18 14:58:08 +05:30
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_init
2019-02-21 04:54:35 +05:30
2019-03-17 18:05:41 +05:30
integer :: &
2019-03-17 21:32:08 +05:30
sizeState, sizeDotState,sizeDependentState, sizeDeltaState, &
2019-02-21 04:54:35 +05:30
maxNinstances, &
p, &
2019-02-21 04:54:35 +05:30
l, &
2019-02-22 13:51:04 +05:30
s1, s2, &
2019-03-17 21:32:08 +05:30
s, &
t, &
c
2019-02-21 04:54:35 +05:30
2019-12-21 16:58:24 +05:30
character(len=pStringLen) :: &
2019-02-21 04:54:35 +05:30
extmsg = '', &
structure
integer :: NofMyPhase
2020-02-14 13:56:26 +05:30
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_NONLOCAL_label//' init -+>>>'; flush(6)
2019-03-23 13:57:58 +05:30
write(6,'(/,a)') ' Reuber et al., Acta Materialia 71:333348, 2014'
write(6,'(a)') ' https://doi.org/10.1016/j.actamat.2014.03.012'
2019-03-09 15:32:12 +05:30
2019-03-23 13:57:58 +05:30
write(6,'(/,a)') ' Kords, Dissertation RWTH Aachen, 2014'
write(6,'(a)') ' http://publications.rwth-aachen.de/record/229993'
2019-03-09 15:32:12 +05:30
2019-03-17 21:32:08 +05:30
maxNinstances = count(phase_plasticity == PLASTICITY_NONLOCAL_ID)
2019-06-07 15:49:36 +05:30
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0) &
2019-02-21 04:54:35 +05:30
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstances
2019-02-21 04:54:35 +05:30
allocate(param(maxNinstances))
allocate(state(maxNinstances))
allocate(state0(maxNinstances))
2019-02-21 04:54:35 +05:30
allocate(dotState(maxNinstances))
allocate(deltaState(maxNinstances))
2019-03-17 21:32:08 +05:30
allocate(microstructure(maxNinstances))
allocate(totalNslip(maxNinstances), source=0)
2013-01-22 05:20:28 +05:30
2019-03-17 18:05:41 +05:30
do p=1, size(config_phase)
2019-02-21 04:54:35 +05:30
if (phase_plasticity(p) /= PLASTICITY_NONLOCAL_ID) cycle
2019-03-17 21:32:08 +05:30
2019-02-21 04:54:35 +05:30
associate(prm => param(phase_plasticityInstance(p)), &
dot => dotState(phase_plasticityInstance(p)), &
stt => state(phase_plasticityInstance(p)), &
st0 => state0(phase_plasticityInstance(p)), &
2019-02-21 04:54:35 +05:30
del => deltaState(phase_plasticityInstance(p)), &
2019-02-22 02:02:22 +05:30
dst => microstructure(phase_plasticityInstance(p)), &
2019-02-21 04:54:35 +05:30
config => config_phase(p))
prm%aTolRho = config%getFloat('atol_rho', defaultVal=0.0_pReal)
prm%aTolShear = config%getFloat('atol_shear', defaultVal=0.0_pReal)
2019-02-21 04:54:35 +05:30
structure = config%getString('lattice_structure')
2019-01-31 18:30:26 +05:30
2019-02-21 04:54:35 +05:30
! This data is read in already in lattice
prm%mu = lattice_mu(p)
prm%nu = lattice_nu(p)
2019-02-21 04:54:35 +05:30
prm%Nslip = config%getInts('nslip',defaultVal=emptyIntArray)
prm%totalNslip = sum(prm%Nslip)
2019-03-17 18:05:41 +05:30
slipActive: if (prm%totalNslip > 0) then
2019-02-21 04:54:35 +05:30
prm%Schmid = lattice_SchmidMatrix_slip(prm%Nslip,config%getString('lattice_structure'),&
config%getFloat('c/a',defaultVal=0.0_pReal))
2019-02-21 04:54:35 +05:30
if(trim(config%getString('lattice_structure')) == 'bcc') then
prm%nonSchmidCoeff = config%getFloats('nonschmid_coefficients',&
defaultVal = emptyRealArray)
2019-03-17 18:05:41 +05:30
prm%nonSchmid_pos = lattice_nonSchmidMatrix(prm%Nslip,prm%nonSchmidCoeff,+1)
prm%nonSchmid_neg = lattice_nonSchmidMatrix(prm%Nslip,prm%nonSchmidCoeff,-1)
2019-02-21 04:54:35 +05:30
else
prm%nonSchmid_pos = prm%Schmid
prm%nonSchmid_neg = prm%Schmid
endif
prm%interactionSlipSlip = lattice_interaction_SlipBySlip(prm%Nslip, &
config%getFloats('interaction_slipslip'), &
config%getString('lattice_structure'))
2019-02-21 04:54:35 +05:30
prm%forestProjection_edge = lattice_forestProjection_edge (prm%Nslip,config%getString('lattice_structure'),&
config%getFloat('c/a',defaultVal=0.0_pReal))
prm%forestProjection_screw = lattice_forestProjection_screw(prm%Nslip,config%getString('lattice_structure'),&
config%getFloat('c/a',defaultVal=0.0_pReal))
prm%slip_direction = lattice_slip_direction (prm%Nslip,config%getString('lattice_structure'),&
config%getFloat('c/a',defaultVal=0.0_pReal))
prm%slip_transverse = lattice_slip_transverse(prm%Nslip,config%getString('lattice_structure'),&
config%getFloat('c/a',defaultVal=0.0_pReal))
prm%slip_normal = lattice_slip_normal (prm%Nslip,config%getString('lattice_structure'),&
config%getFloat('c/a',defaultVal=0.0_pReal))
! collinear systems (only for octahedral slip systems in fcc)
2019-03-17 18:05:41 +05:30
allocate(prm%colinearSystem(prm%totalNslip), source = -1)
do s1 = 1, prm%totalNslip
do s2 = 1, prm%totalNslip
2019-02-21 04:54:35 +05:30
if (all(dEq0 (math_cross(prm%slip_direction(1:3,s1),prm%slip_direction(1:3,s2)))) .and. &
2019-02-21 23:48:06 +05:30
any(dNeq0(math_cross(prm%slip_normal (1:3,s1),prm%slip_normal (1:3,s2))))) &
2019-02-21 04:54:35 +05:30
prm%colinearSystem(s1) = s2
enddo
enddo
2019-02-21 04:54:35 +05:30
prm%rhoSglEdgePos0 = config%getFloats('rhosgledgepos0', requiredSize=size(prm%Nslip))
prm%rhoSglEdgeNeg0 = config%getFloats('rhosgledgeneg0', requiredSize=size(prm%Nslip))
prm%rhoSglScrewPos0 = config%getFloats('rhosglscrewpos0', requiredSize=size(prm%Nslip))
prm%rhoSglScrewNeg0 = config%getFloats('rhosglscrewneg0', requiredSize=size(prm%Nslip))
prm%rhoDipEdge0 = config%getFloats('rhodipedge0', requiredSize=size(prm%Nslip))
prm%rhoDipScrew0 = config%getFloats('rhodipscrew0', requiredSize=size(prm%Nslip))
2019-02-21 04:54:35 +05:30
prm%lambda0 = config%getFloats('lambda0', requiredSize=size(prm%Nslip))
prm%burgers = config%getFloats('burgers', requiredSize=size(prm%Nslip))
2019-02-21 04:54:35 +05:30
prm%lambda0 = math_expand(prm%lambda0,prm%Nslip)
prm%burgers = math_expand(prm%burgers,prm%Nslip)
2019-02-21 04:54:35 +05:30
prm%minDipoleHeight_edge = config%getFloats('minimumdipoleheightedge', requiredSize=size(prm%Nslip))
prm%minDipoleHeight_screw = config%getFloats('minimumdipoleheightscrew', requiredSize=size(prm%Nslip))
prm%minDipoleHeight_edge = math_expand(prm%minDipoleHeight_edge,prm%Nslip)
prm%minDipoleHeight_screw = math_expand(prm%minDipoleHeight_screw,prm%Nslip)
allocate(prm%minDipoleHeight(prm%totalNslip,2))
prm%minDipoleHeight(:,1) = prm%minDipoleHeight_edge
prm%minDipoleHeight(:,2) = prm%minDipoleHeight_screw
2019-02-21 04:54:35 +05:30
prm%peierlsstress_edge = config%getFloats('peierlsstressedge', requiredSize=size(prm%Nslip))
prm%peierlsstress_screw = config%getFloats('peierlsstressscrew', requiredSize=size(prm%Nslip))
prm%peierlsstress_edge = math_expand(prm%peierlsstress_edge,prm%Nslip)
prm%peierlsstress_screw = math_expand(prm%peierlsstress_screw,prm%Nslip)
allocate(prm%peierlsstress(prm%totalNslip,2))
prm%peierlsstress(:,1) = prm%peierlsstress_edge
prm%peierlsstress(:,2) = prm%peierlsstress_screw
prm%significantRho = config%getFloat('significantrho')
prm%significantN = config%getFloat('significantn', 0.0_pReal)
prm%CFLfactor = config%getFloat('cflfactor',defaultVal=2.0_pReal)
2019-02-21 04:54:35 +05:30
prm%atomicVolume = config%getFloat('atomicvolume')
2019-03-17 21:32:08 +05:30
prm%Dsd0 = config%getFloat('selfdiffusionprefactor') !,'dsd0'
prm%selfDiffusionEnergy = config%getFloat('selfdiffusionenergy') !,'qsd'
2019-02-21 04:54:35 +05:30
prm%linetensionEffect = config%getFloat('linetension')
prm%edgeJogFactor = config%getFloat('edgejog')!,'edgejogs'
prm%doublekinkwidth = config%getFloat('doublekinkwidth')
prm%solidSolutionEnergy = config%getFloat('solidsolutionenergy')
prm%solidSolutionSize = config%getFloat('solidsolutionsize')
prm%solidSolutionConcentration = config%getFloat('solidsolutionconcentration')
2019-02-21 04:54:35 +05:30
prm%p = config%getFloat('p')
prm%q = config%getFloat('q')
prm%viscosity = config%getFloat('viscosity')
prm%fattack = config%getFloat('attackfrequency')
2019-02-21 23:48:06 +05:30
! ToDo: discuss logic
2019-02-21 04:54:35 +05:30
prm%rhoSglScatter = config%getFloat('rhosglscatter')
prm%rhoSglRandom = config%getFloat('rhosglrandom',0.0_pReal)
if (config%keyExists('/rhosglrandom/')) &
2019-02-21 04:54:35 +05:30
prm%rhoSglRandomBinning = config%getFloat('rhosglrandombinning',0.0_pReal) !ToDo: useful default?
2019-02-21 23:48:06 +05:30
! if (rhoSglRandom(instance) < 0.0_pReal) &
! if (rhoSglRandomBinning(instance) <= 0.0_pReal) &
2019-02-21 04:54:35 +05:30
prm%surfaceTransmissivity = config%getFloat('surfacetransmissivity',defaultVal=1.0_pReal)
prm%grainboundaryTransmissivity = config%getFloat('grainboundarytransmissivity',defaultVal=-1.0_pReal)
prm%fEdgeMultiplication = config%getFloat('edgemultiplication')
2019-03-16 23:39:22 +05:30
prm%shortRangeStressCorrection = config%keyExists('/shortrangestresscorrection/')
2019-02-21 04:54:35 +05:30
!--------------------------------------------------------------------------------------------------
! sanity checks
if (any(prm%burgers < 0.0_pReal)) extmsg = trim(extmsg)//' burgers'
2019-02-21 23:48:06 +05:30
if (any(prm%lambda0 <= 0.0_pReal)) extmsg = trim(extmsg)//' lambda0'
2019-02-21 04:54:35 +05:30
if (any(prm%rhoSglEdgePos0 < 0.0_pReal)) extmsg = trim(extmsg)//' rhoSglEdgePos0'
if (any(prm%rhoSglEdgeNeg0 < 0.0_pReal)) extmsg = trim(extmsg)//' rhoSglEdgeNeg0'
if (any(prm%rhoSglScrewPos0 < 0.0_pReal)) extmsg = trim(extmsg)//' rhoSglScrewPos0'
if (any(prm%rhoSglScrewNeg0 < 0.0_pReal)) extmsg = trim(extmsg)//' rhoSglScrewNeg0'
if (any(prm%rhoDipEdge0 < 0.0_pReal)) extmsg = trim(extmsg)//' rhoDipEdge0'
if (any(prm%rhoDipScrew0 < 0.0_pReal)) extmsg = trim(extmsg)//' rhoDipScrew0'
2019-02-21 04:54:35 +05:30
if (any(prm%peierlsstress < 0.0_pReal)) extmsg = trim(extmsg)//' peierlsstress'
if (any(prm%minDipoleHeight < 0.0_pReal)) extmsg = trim(extmsg)//' minDipoleHeight'
2019-02-21 04:54:35 +05:30
if (prm%viscosity <= 0.0_pReal) extmsg = trim(extmsg)//' viscosity'
if (prm%selfDiffusionEnergy <= 0.0_pReal) extmsg = trim(extmsg)//' selfDiffusionEnergy'
if (prm%fattack <= 0.0_pReal) extmsg = trim(extmsg)//' fattack'
if (prm%doublekinkwidth <= 0.0_pReal) extmsg = trim(extmsg)//' doublekinkwidth'
if (prm%Dsd0 < 0.0_pReal) extmsg = trim(extmsg)//' Dsd0'
2019-02-21 23:48:06 +05:30
if (prm%atomicVolume <= 0.0_pReal) extmsg = trim(extmsg)//' atomicVolume' ! ToDo: in disloUCLA/dislotwin, the atomic volume is given as a factor
2019-02-21 04:54:35 +05:30
if (prm%significantN < 0.0_pReal) extmsg = trim(extmsg)//' significantN'
if (prm%significantrho < 0.0_pReal) extmsg = trim(extmsg)//' significantrho'
if (prm%atolshear <= 0.0_pReal) extmsg = trim(extmsg)//' atolshear'
if (prm%atolrho <= 0.0_pReal) extmsg = trim(extmsg)//' atolrho'
if (prm%CFLfactor < 0.0_pReal) extmsg = trim(extmsg)//' CFLfactor'
if (prm%p <= 0.0_pReal .or. prm%p > 1.0_pReal) extmsg = trim(extmsg)//' p'
if (prm%q < 1.0_pReal .or. prm%q > 2.0_pReal) extmsg = trim(extmsg)//' q'
2019-02-21 04:54:35 +05:30
if (prm%linetensionEffect < 0.0_pReal .or. prm%linetensionEffect > 1.0_pReal) &
2019-02-21 23:48:06 +05:30
extmsg = trim(extmsg)//' linetensionEffect'
2019-02-21 04:54:35 +05:30
if (prm%edgeJogFactor < 0.0_pReal .or. prm%edgeJogFactor > 1.0_pReal) &
extmsg = trim(extmsg)//' edgeJogFactor'
2019-02-21 04:54:35 +05:30
if (prm%solidSolutionEnergy <= 0.0_pReal) extmsg = trim(extmsg)//' solidSolutionEnergy'
if (prm%solidSolutionSize <= 0.0_pReal) extmsg = trim(extmsg)//' solidSolutionSize'
if (prm%solidSolutionConcentration <= 0.0_pReal) extmsg = trim(extmsg)//' solidSolutionConcentration'
if (prm%grainboundaryTransmissivity > 1.0_pReal) extmsg = trim(extmsg)//' grainboundaryTransmissivity'
2019-02-21 04:54:35 +05:30
if (prm%surfaceTransmissivity < 0.0_pReal .or. prm%surfaceTransmissivity > 1.0_pReal) &
extmsg = trim(extmsg)//' surfaceTransmissivity'
2019-03-17 21:32:08 +05:30
if (prm%fEdgeMultiplication < 0.0_pReal .or. prm%fEdgeMultiplication > 1.0_pReal) &
extmsg = trim(extmsg)//' fEdgeMultiplication'
2019-02-21 04:54:35 +05:30
endif slipActive
2020-02-14 13:56:26 +05:30
prm%output = config%getStrings('(output)',defaultVal=emptyStringArray)
2019-02-21 04:54:35 +05:30
!--------------------------------------------------------------------------------------------------
! allocate state arrays
NofMyPhase = count(material_phaseAt==p) * discretization_nIP
2019-03-17 18:05:41 +05:30
sizeDotState = size([ 'rhoSglEdgePosMobile ','rhoSglEdgeNegMobile ', &
'rhoSglScrewPosMobile ','rhoSglScrewNegMobile ', &
'rhoSglEdgePosImmobile ','rhoSglEdgeNegImmobile ', &
'rhoSglScrewPosImmobile','rhoSglScrewNegImmobile', &
'rhoDipEdge ','rhoDipScrew ', &
2019-12-01 14:05:44 +05:30
'gamma ' ]) * prm%totalNslip !< "basic" microstructural state variables that are independent from other state variables
2019-03-17 21:32:08 +05:30
sizeDependentState = size([ 'rhoForest ']) * prm%totalNslip !< microstructural state variables that depend on other state variables
2019-02-21 04:54:35 +05:30
sizeState = sizeDotState + sizeDependentState &
+ size([ 'velocityEdgePos ','velocityEdgeNeg ', &
2019-03-17 18:05:41 +05:30
'velocityScrewPos ','velocityScrewNeg ', &
2019-03-17 21:32:08 +05:30
'maxDipoleHeightEdge ','maxDipoleHeightScrew' ]) * prm%totalNslip !< other dependent state variables that are not updated by microstructure
2019-02-21 04:54:35 +05:30
sizeDeltaState = sizeDotState
2019-12-21 16:58:24 +05:30
call material_allocatePlasticState(p,NofMyPhase,sizeState,sizeDotState,sizeDeltaState)
2019-02-21 04:54:35 +05:30
plasticState(p)%nonlocal = .true.
2019-03-17 21:32:08 +05:30
plasticState(p)%offsetDeltaState = 0 ! ToDo: state structure does not follow convention
2019-03-09 17:18:43 +05:30
totalNslip(phase_plasticityInstance(p)) = prm%totalNslip
st0%rho => plasticState(p)%state0 (0*prm%totalNslip+1:10*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
stt%rho => plasticState(p)%state (0*prm%totalNslip+1:10*prm%totalNslip,:)
dot%rho => plasticState(p)%dotState (0*prm%totalNslip+1:10*prm%totalNslip,:)
del%rho => plasticState(p)%deltaState (0*prm%totalNslip+1:10*prm%totalNslip,:)
plasticState(p)%aTolState(1:10*prm%totalNslip) = prm%aTolRho
2019-03-17 21:32:08 +05:30
stt%rhoSgl => plasticState(p)%state (0*prm%totalNslip+1: 8*prm%totalNslip,:)
dot%rhoSgl => plasticState(p)%dotState (0*prm%totalNslip+1: 8*prm%totalNslip,:)
del%rhoSgl => plasticState(p)%deltaState (0*prm%totalNslip+1: 8*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
stt%rhoSglMobile => plasticState(p)%state (0*prm%totalNslip+1: 4*prm%totalNslip,:)
dot%rhoSglMobile => plasticState(p)%dotState (0*prm%totalNslip+1: 4*prm%totalNslip,:)
del%rhoSglMobile => plasticState(p)%deltaState (0*prm%totalNslip+1: 4*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
stt%rho_sgl_mob_edg_pos => plasticState(p)%state (0*prm%totalNslip+1: 1*prm%totalNslip,:)
dot%rho_sgl_mob_edg_pos => plasticState(p)%dotState (0*prm%totalNslip+1: 1*prm%totalNslip,:)
del%rho_sgl_mob_edg_pos => plasticState(p)%deltaState (0*prm%totalNslip+1: 1*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
stt%rho_sgl_mob_edg_neg => plasticState(p)%state (1*prm%totalNslip+1: 2*prm%totalNslip,:)
dot%rho_sgl_mob_edg_neg => plasticState(p)%dotState (1*prm%totalNslip+1: 2*prm%totalNslip,:)
del%rho_sgl_mob_edg_neg => plasticState(p)%deltaState (1*prm%totalNslip+1: 2*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
stt%rho_sgl_mob_scr_pos => plasticState(p)%state (2*prm%totalNslip+1: 3*prm%totalNslip,:)
dot%rho_sgl_mob_scr_pos => plasticState(p)%dotState (2*prm%totalNslip+1: 3*prm%totalNslip,:)
del%rho_sgl_mob_scr_pos => plasticState(p)%deltaState (2*prm%totalNslip+1: 3*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
2019-12-01 13:03:04 +05:30
stt%rho_sgl_mob_scr_neg => plasticState(p)%state (3*prm%totalNslip+1: 4*prm%totalNslip,:)
dot%rho_sgl_mob_scr_neg => plasticState(p)%dotState (3*prm%totalNslip+1: 4*prm%totalNslip,:)
del%rho_sgl_mob_scr_neg => plasticState(p)%deltaState (3*prm%totalNslip+1: 4*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
stt%rhoSglImmobile => plasticState(p)%state (4*prm%totalNslip+1: 8*prm%totalNslip,:)
dot%rhoSglImmobile => plasticState(p)%dotState (4*prm%totalNslip+1: 8*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
del%rhoSglImmobile => plasticState(p)%deltaState (4*prm%totalNslip+1: 8*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
stt%rho_sgl_imm_edg_pos => plasticState(p)%state (4*prm%totalNslip+1: 5*prm%totalNslip,:)
dot%rho_sgl_imm_edg_pos => plasticState(p)%dotState (4*prm%totalNslip+1: 5*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
del%rho_sgl_imm_edg_pos => plasticState(p)%deltaState (4*prm%totalNslip+1: 5*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
stt%rho_sgl_imm_edg_neg => plasticState(p)%state (5*prm%totalNslip+1: 6*prm%totalNslip,:)
dot%rho_sgl_imm_edg_neg => plasticState(p)%dotState (5*prm%totalNslip+1: 6*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
del%rho_sgl_imm_edg_neg => plasticState(p)%deltaState (5*prm%totalNslip+1: 6*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
stt%rho_sgl_imm_scr_pos => plasticState(p)%state (6*prm%totalNslip+1: 7*prm%totalNslip,:)
dot%rho_sgl_imm_scr_pos => plasticState(p)%dotState (6*prm%totalNslip+1: 7*prm%totalNslip,:)
del%rho_sgl_imm_scr_pos => plasticState(p)%deltaState (6*prm%totalNslip+1: 7*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
stt%rho_sgl_imm_scr_neg => plasticState(p)%state (7*prm%totalNslip+1: 8*prm%totalNslip,:)
dot%rho_sgl_imm_scr_neg => plasticState(p)%dotState (7*prm%totalNslip+1: 8*prm%totalNslip,:)
del%rho_sgl_imm_scr_neg => plasticState(p)%deltaState (7*prm%totalNslip+1: 8*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
stt%rhoDip => plasticState(p)%state (8*prm%totalNslip+1:10*prm%totalNslip,:)
dot%rhoDip => plasticState(p)%dotState (8*prm%totalNslip+1:10*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
del%rhoDip => plasticState(p)%deltaState (8*prm%totalNslip+1:10*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
stt%rho_dip_edg => plasticState(p)%state (8*prm%totalNslip+1: 9*prm%totalNslip,:)
dot%rho_dip_edg => plasticState(p)%dotState (8*prm%totalNslip+1: 9*prm%totalNslip,:)
del%rho_dip_edg => plasticState(p)%deltaState (8*prm%totalNslip+1: 9*prm%totalNslip,:)
2019-03-17 21:32:08 +05:30
stt%rho_dip_scr => plasticState(p)%state (9*prm%totalNslip+1:10*prm%totalNslip,:)
dot%rho_dip_scr => plasticState(p)%dotState (9*prm%totalNslip+1:10*prm%totalNslip,:)
2019-12-01 13:03:04 +05:30
del%rho_dip_scr => plasticState(p)%deltaState (9*prm%totalNslip+1:10*prm%totalNslip,:)
2019-12-01 14:05:44 +05:30
stt%gamma => plasticState(p)%state (10*prm%totalNslip + 1:11*prm%totalNslip ,1:NofMyPhase)
dot%gamma => plasticState(p)%dotState (10*prm%totalNslip + 1:11*prm%totalNslip ,1:NofMyPhase)
del%gamma => plasticState(p)%deltaState (10*prm%totalNslip + 1:11*prm%totalNslip ,1:NofMyPhase)
2019-03-17 18:05:41 +05:30
plasticState(p)%aTolState(10*prm%totalNslip + 1:11*prm%totalNslip ) = prm%aTolShear
2019-12-01 13:03:04 +05:30
plasticState(p)%slipRate => plasticState(p)%dotState (10*prm%totalNslip + 1:11*prm%totalNslip ,1:NofMyPhase)
2019-12-01 13:03:04 +05:30
stt%rho_forest => plasticState(p)%state (11*prm%totalNslip + 1:12*prm%totalNslip ,1:NofMyPhase)
stt%v => plasticState(p)%state (12*prm%totalNslip + 1:16*prm%totalNslip ,1:NofMyPhase)
2019-12-01 13:25:24 +05:30
stt%v_edg_pos => plasticState(p)%state (12*prm%totalNslip + 1:13*prm%totalNslip ,1:NofMyPhase)
stt%v_edg_neg => plasticState(p)%state (13*prm%totalNslip + 1:14*prm%totalNslip ,1:NofMyPhase)
stt%v_scr_pos => plasticState(p)%state (14*prm%totalNslip + 1:15*prm%totalNslip ,1:NofMyPhase)
stt%v_scr_neg => plasticState(p)%state (15*prm%totalNslip + 1:16*prm%totalNslip ,1:NofMyPhase)
2014-07-08 20:28:23 +05:30
allocate(dst%tau_pass(prm%totalNslip,NofMyPhase),source=0.0_pReal)
2020-02-14 13:56:26 +05:30
allocate(dst%tau_back(prm%totalNslip,NofMyPhase),source=0.0_pReal)
2019-03-17 21:32:08 +05:30
end associate
2019-03-17 21:32:08 +05:30
if (NofMyPhase > 0) call stateInit(p,NofMyPhase)
plasticState(p)%state0 = plasticState(p)%state
2019-02-22 14:32:43 +05:30
enddo
2019-06-07 13:50:56 +05:30
allocate(compatibility(2,maxval(totalNslip),maxval(totalNslip),nIPneighbors,&
2019-06-07 11:11:12 +05:30
discretization_nIP,discretization_nElem), source=0.0_pReal)
2019-02-22 14:32:43 +05:30
! BEGIN DEPRECATED----------------------------------------------------------------------------------
2019-03-17 18:05:41 +05:30
allocate(iRhoU(maxval(totalNslip),4,maxNinstances), source=0)
allocate(iRhoB(maxval(totalNslip),4,maxNinstances), source=0)
allocate(iRhoD(maxval(totalNslip),2,maxNinstances), source=0)
allocate(iV(maxval(totalNslip),4,maxNinstances), source=0)
allocate(iD(maxval(totalNslip),2,maxNinstances), source=0)
2019-02-22 14:32:43 +05:30
2019-03-17 21:32:08 +05:30
initializeInstances: do p = 1, size(phase_plasticity)
NofMyPhase = count(material_phaseAt==p) * discretization_nIP
2019-03-17 21:32:08 +05:30
myPhase2: if (phase_plasticity(p) == PLASTICITY_NONLOCAL_ID) then
2019-03-17 21:32:08 +05:30
!*** determine indices to state array
2014-07-08 20:28:23 +05:30
2019-03-17 21:32:08 +05:30
l = 0
do t = 1,4
do s = 1,param(phase_plasticityInstance(p))%totalNslip
l = l + 1
iRhoU(s,t,phase_plasticityInstance(p)) = l
enddo
enddo
do t = 1,4
do s = 1,param(phase_plasticityInstance(p))%totalNslip
l = l + 1
iRhoB(s,t,phase_plasticityInstance(p)) = l
enddo
enddo
do c = 1,2
do s = 1,param(phase_plasticityInstance(p))%totalNslip
l = l + 1
iRhoD(s,c,phase_plasticityInstance(p)) = l
enddo
enddo
2019-03-17 21:32:08 +05:30
l = l + param(phase_plasticityInstance(p))%totalNslip ! shear(rates)
l = l + param(phase_plasticityInstance(p))%totalNslip ! rho_forest
2019-03-17 17:06:15 +05:30
2019-03-17 21:32:08 +05:30
do t = 1,4
do s = 1,param(phase_plasticityInstance(p))%totalNslip
l = l + 1
iV(s,t,phase_plasticityInstance(p)) = l
enddo
enddo
do c = 1,2
do s = 1,param(phase_plasticityInstance(p))%totalNslip
l = l + 1
iD(s,c,phase_plasticityInstance(p)) = l
enddo
enddo
if (iD(param(phase_plasticityInstance(p))%totalNslip,2,phase_plasticityInstance(p)) /= plasticState(p)%sizeState) &
call IO_error(0, ext_msg = 'state indices not properly set ('//PLASTICITY_NONLOCAL_label//')')
2019-03-17 21:32:08 +05:30
endif myPhase2
2019-03-17 21:32:08 +05:30
enddo initializeInstances
! END DEPRECATED------------------------------------------------------------------------------------
2019-03-17 21:32:08 +05:30
contains
!--------------------------------------------------------------------------------------------------
!> @brief populates the initial dislocation density
!--------------------------------------------------------------------------------------------------
subroutine stateInit(phase,NofMyPhase)
2019-03-17 21:32:08 +05:30
integer,intent(in) ::&
phase, &
NofMyPhase
integer :: &
e, &
i, &
f, &
from, &
upto, &
s, &
instance, &
phasemember
real(pReal), dimension(2) :: &
noise, &
rnd
2019-03-17 21:32:08 +05:30
real(pReal) :: &
meanDensity, &
totalVolume, &
densityBinning, &
minimumIpVolume
real(pReal), dimension(NofMyPhase) :: &
volume
2019-03-17 21:32:08 +05:30
instance = phase_plasticityInstance(phase)
associate(prm => param(instance), stt => state(instance))
! randomly distribute dislocation segments on random slip system and of random type in the volume
2019-03-17 21:32:08 +05:30
if (prm%rhoSglRandom > 0.0_pReal) then
2019-03-17 21:32:08 +05:30
! get the total volume of the instance
2019-06-07 09:48:42 +05:30
do e = 1,discretization_nElem
do i = 1,discretization_nIP
if (material_phaseAt(1,e) == phase) volume(material_phasememberAt(1,i,e)) = IPvolume(i,e)
2019-03-17 21:32:08 +05:30
enddo
enddo
2019-03-17 21:32:08 +05:30
totalVolume = sum(volume)
minimumIPVolume = minval(volume)
densityBinning = prm%rhoSglRandomBinning / minimumIpVolume ** (2.0_pReal / 3.0_pReal)
2019-03-17 21:32:08 +05:30
! subsequently fill random ips with dislocation segments until we reach the desired overall density
meanDensity = 0.0_pReal
do while(meanDensity < prm%rhoSglRandom)
call random_number(rnd)
phasemember = nint(rnd(1)*real(NofMyPhase,pReal) + 0.5_pReal)
s = nint(rnd(2)*real(prm%totalNslip,pReal)*4.0_pReal + 0.5_pReal)
meanDensity = meanDensity + densityBinning * volume(phasemember) / totalVolume
stt%rhoSglMobile(s,phasemember) = densityBinning
enddo
! homogeneous distribution of density with some noise
else
do e = 1, NofMyPhase
do f = 1,size(prm%Nslip,1)
from = 1 + sum(prm%Nslip(1:f-1))
upto = sum(prm%Nslip(1:f))
do s = from,upto
noise = [math_sampleGaussVar(0.0_pReal, prm%rhoSglScatter), &
math_sampleGaussVar(0.0_pReal, prm%rhoSglScatter)]
stt%rho_sgl_mob_edg_pos(s,e) = prm%rhoSglEdgePos0(f) + noise(1)
stt%rho_sgl_mob_edg_neg(s,e) = prm%rhoSglEdgeNeg0(f) + noise(1)
stt%rho_sgl_mob_scr_pos(s,e) = prm%rhoSglScrewPos0(f) + noise(2)
stt%rho_sgl_mob_scr_neg(s,e) = prm%rhoSglScrewNeg0(f) + noise(2)
enddo
stt%rho_dip_edg(from:upto,e) = prm%rhoDipEdge0(f)
stt%rho_dip_scr(from:upto,e) = prm%rhoDipScrew0(f)
2019-02-20 22:20:26 +05:30
enddo
enddo
2019-03-17 21:32:08 +05:30
endif
2019-03-17 21:32:08 +05:30
end associate
2019-03-17 21:32:08 +05:30
end subroutine stateInit
2019-02-20 22:20:26 +05:30
end subroutine plastic_nonlocal_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates quantities characterizing the microstructure
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_dependentState(F, Fp, ip, el)
2019-03-17 21:32:08 +05:30
integer, intent(in) :: &
ip, &
el
real(pReal), dimension(3,3), intent(in) :: &
F, &
2019-03-17 21:32:08 +05:30
Fp
2019-03-17 21:32:08 +05:30
integer :: &
ph, & !< phase
of, & !< offset
no, & !< neighbor offset
ns, &
neighbor_el, & ! element number of neighboring material point
neighbor_ip, & ! integration point of neighboring material point
instance, & ! my instance of this plasticity
neighbor_instance, & ! instance of this plasticity of neighboring material point
c, & ! index of dilsocation character (edge, screw)
s, & ! slip system index
dir, &
n
real(pReal) :: &
FVsize, &
correction, &
nRealNeighbors ! number of really existing neighbors
integer, dimension(2) :: &
neighbors
real(pReal), dimension(2) :: &
rhoExcessGradient, &
rhoExcessGradient_over_rho, &
rhoTotal
real(pReal), dimension(3) :: &
rhoExcessDifferences, &
normal_latticeConf
real(pReal), dimension(3,3) :: &
invFe, & !< inverse of elastic deformation gradient
invFp, & !< inverse of plastic deformation gradient
connections, &
invConnections
2019-06-07 13:50:56 +05:30
real(pReal), dimension(3,nIPneighbors) :: &
2019-03-17 21:32:08 +05:30
connection_latticeConf
real(pReal), dimension(2,totalNslip(phase_plasticityInstance(material_phaseAt(1,el)))) :: &
2019-03-17 21:32:08 +05:30
rhoExcess
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el)))) :: &
2019-03-17 21:32:08 +05:30
rho_edg_delta, &
rho_scr_delta
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),10) :: &
2019-03-17 21:32:08 +05:30
rho, &
rho0, &
rho_neighbor0
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))), &
totalNslip(phase_plasticityInstance(material_phaseAt(1,el)))) :: &
2019-03-17 21:32:08 +05:30
myInteractionMatrix ! corrected slip interaction matrix
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),nIPneighbors) :: &
2019-03-17 21:32:08 +05:30
rho_edg_delta_neighbor, &
rho_scr_delta_neighbor
2019-06-07 13:50:56 +05:30
real(pReal), dimension(2,maxval(totalNslip),nIPneighbors) :: &
2019-03-17 21:32:08 +05:30
neighbor_rhoExcess, & ! excess density at neighboring material point
neighbor_rhoTotal ! total density at neighboring material point
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),2) :: &
2019-03-17 21:32:08 +05:30
m ! direction of dislocation motion
ph = material_phaseAt(1,el)
of = material_phasememberAt(1,ip,el)
2019-03-17 21:32:08 +05:30
instance = phase_plasticityInstance(ph)
2019-03-17 21:32:08 +05:30
associate(prm => param(instance),dst => microstructure(instance), stt => state(instance))
2019-03-17 21:32:08 +05:30
ns = prm%totalNslip
2019-03-17 21:32:08 +05:30
rho = getRho(instance,of,ip,el)
2019-03-17 21:32:08 +05:30
stt%rho_forest(:,of) = matmul(prm%forestProjection_Edge, sum(abs(rho(:,edg)),2)) &
+ matmul(prm%forestProjection_Screw,sum(abs(rho(:,scr)),2))
! coefficients are corrected for the line tension effect
2019-03-17 21:32:08 +05:30
! (see Kubin,Devincre,Hoc; 2008; Modeling dislocation storage rates and mean free paths in face-centered cubic crystals)
if (lattice_structure(ph) == LATTICE_bcc_ID .or. lattice_structure(ph) == LATTICE_fcc_ID) then
2019-03-17 21:32:08 +05:30
do s = 1,ns
correction = ( 1.0_pReal - prm%linetensionEffect &
+ prm%linetensionEffect &
* log(0.35_pReal * prm%burgers(s) * sqrt(max(stt%rho_forest(s,of),prm%significantRho))) &
/ log(0.35_pReal * prm%burgers(s) * 1e6_pReal)) ** 2.0_pReal
myInteractionMatrix(1:ns,s) = correction * prm%interactionSlipSlip(1:ns,s)
2019-03-17 21:32:08 +05:30
enddo
else
myInteractionMatrix = prm%interactionSlipSlip
endif
forall (s = 1:ns) &
dst%tau_pass(s,of) = prm%mu * prm%burgers(s) &
2019-03-16 20:16:39 +05:30
* sqrt(dot_product(sum(abs(rho),2), myInteractionMatrix(1:ns,s)))
!*** calculate the dislocation stress of the neighboring excess dislocation densities
!*** zero for material points of local plasticity
2019-02-20 19:24:26 +05:30
!#################################################################################################
! ToDo: MD: this is most likely only correct for F_i = I
!#################################################################################################
rho0 = getRho0(instance,of,ip,el)
2019-03-17 21:32:08 +05:30
if (.not. phase_localPlasticity(ph) .and. prm%shortRangeStressCorrection) then
invFp = math_inv33(Fp)
invFe = matmul(Fp,math_inv33(F))
rho_edg_delta = rho0(:,mob_edg_pos) - rho0(:,mob_edg_neg)
rho_scr_delta = rho0(:,mob_scr_pos) - rho0(:,mob_scr_neg)
2019-03-17 21:32:08 +05:30
rhoExcess(1,1:ns) = rho_edg_delta
rhoExcess(2,1:ns) = rho_scr_delta
2019-06-07 02:47:02 +05:30
FVsize = IPvolume(ip,el) ** (1.0_pReal/3.0_pReal)
2019-03-17 21:32:08 +05:30
!* loop through my neighborhood and get the connection vectors (in lattice frame) and the excess densities
2019-03-17 21:32:08 +05:30
nRealNeighbors = 0.0_pReal
neighbor_rhoTotal = 0.0_pReal
2019-06-07 13:50:56 +05:30
do n = 1,nIPneighbors
neighbor_el = IPneighborhood(1,n,ip,el)
neighbor_ip = IPneighborhood(2,n,ip,el)
2019-06-14 12:47:05 +05:30
no = material_phasememberAt(1,neighbor_ip,neighbor_el)
2019-03-17 21:32:08 +05:30
if (neighbor_el > 0 .and. neighbor_ip > 0) then
neighbor_instance = phase_plasticityInstance(material_phaseAt(1,neighbor_el))
2019-03-17 21:32:08 +05:30
if (neighbor_instance == instance) then
2019-03-17 21:32:08 +05:30
nRealNeighbors = nRealNeighbors + 1.0_pReal
rho_neighbor0 = getRho0(instance,no,neighbor_ip,neighbor_el)
rho_edg_delta_neighbor(:,n) = rho_neighbor0(:,mob_edg_pos) - rho_neighbor0(:,mob_edg_neg)
rho_scr_delta_neighbor(:,n) = rho_neighbor0(:,mob_scr_pos) - rho_neighbor0(:,mob_scr_neg)
neighbor_rhoTotal(1,:,n) = sum(abs(rho_neighbor0(:,edg)),2)
neighbor_rhoTotal(2,:,n) = sum(abs(rho_neighbor0(:,scr)),2)
2019-09-28 02:37:03 +05:30
connection_latticeConf(1:3,n) = matmul(invFe, discretization_IPcoords(1:3,neighbor_el+neighbor_ip-1) &
- discretization_IPcoords(1:3,el+neighbor_ip-1))
2019-06-07 14:03:49 +05:30
normal_latticeConf = matmul(transpose(invFp), IPareaNormal(1:3,n,ip,el))
if (math_inner(normal_latticeConf,connection_latticeConf(1:3,n)) < 0.0_pReal) & ! neighboring connection points in opposite direction to face normal: must be periodic image
2019-06-07 14:03:49 +05:30
connection_latticeConf(1:3,n) = normal_latticeConf * IPvolume(ip,el)/IParea(n,ip,el) ! instead take the surface normal scaled with the diameter of the cell
2019-03-17 21:32:08 +05:30
else
! local neighbor or different lattice structure or different constitution instance -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pReal
rho_edg_delta_neighbor(:,n) = rho_edg_delta
rho_scr_delta_neighbor(:,n) = rho_scr_delta
endif
else
2019-03-17 21:32:08 +05:30
! free surface -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pReal
rho_edg_delta_neighbor(:,n) = rho_edg_delta
rho_scr_delta_neighbor(:,n) = rho_scr_delta
endif
2019-03-17 21:32:08 +05:30
enddo
2019-03-17 21:32:08 +05:30
neighbor_rhoExcess(1,:,:) = rho_edg_delta_neighbor
neighbor_rhoExcess(2,:,:) = rho_scr_delta_neighbor
2019-03-17 21:32:08 +05:30
!* loop through the slip systems and calculate the dislocation gradient by
!* 1. interpolation of the excess density in the neighorhood
!* 2. interpolation of the dead dislocation density in the central volume
m(1:3,1:ns,1) = prm%slip_direction
m(1:3,1:ns,2) = -prm%slip_transverse
2019-03-17 21:32:08 +05:30
do s = 1,ns
2019-02-21 23:48:06 +05:30
! gradient from interpolation of neighboring excess density ...
2019-03-17 21:32:08 +05:30
do c = 1,2
do dir = 1,3
neighbors(1) = 2 * dir - 1
neighbors(2) = 2 * dir
connections(dir,1:3) = connection_latticeConf(1:3,neighbors(1)) &
- connection_latticeConf(1:3,neighbors(2))
rhoExcessDifferences(dir) = neighbor_rhoExcess(c,s,neighbors(1)) &
- neighbor_rhoExcess(c,s,neighbors(2))
enddo
invConnections = math_inv33(connections)
if (all(dEq0(invConnections))) call IO_error(-1,ext_msg='back stress calculation: inversion error')
rhoExcessGradient(c) = math_inner(m(1:3,s,c), matmul(invConnections,rhoExcessDifferences))
enddo
2019-03-17 21:32:08 +05:30
! ... plus gradient from deads ...
rhoExcessGradient(1) = rhoExcessGradient(1) + sum(rho(s,imm_edg)) / FVsize
rhoExcessGradient(2) = rhoExcessGradient(2) + sum(rho(s,imm_scr)) / FVsize
2019-03-17 21:32:08 +05:30
! ... normalized with the total density ...
rhoTotal(1) = (sum(abs(rho(s,edg))) + sum(neighbor_rhoTotal(1,s,:))) / (1.0_pReal + nRealNeighbors)
rhoTotal(2) = (sum(abs(rho(s,scr))) + sum(neighbor_rhoTotal(2,s,:))) / (1.0_pReal + nRealNeighbors)
2019-03-17 21:32:08 +05:30
rhoExcessGradient_over_rho = 0.0_pReal
where(rhoTotal > 0.0_pReal) &
rhoExcessGradient_over_rho = rhoExcessGradient / rhoTotal
2019-03-17 21:32:08 +05:30
! ... gives the local stress correction when multiplied with a factor
dst%tau_back(s,of) = - prm%mu * prm%burgers(s) / (2.0_pReal * pi) &
2019-09-26 01:18:16 +05:30
* (rhoExcessGradient_over_rho(1) / (1.0_pReal - prm%nu) &
+ rhoExcessGradient_over_rho(2))
2019-03-17 21:32:08 +05:30
enddo
endif
#ifdef DEBUG
2019-03-17 18:05:41 +05:30
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0 &
.and. ((debug_e == el .and. debug_i == ip)&
2019-03-17 18:05:41 +05:30
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0)) then
write(6,'(/,a,i8,1x,i2,1x,i1,/)') '<< CONST >> nonlocal_microstructure at el ip ',el,ip
write(6,'(a,/,12x,12(e10.3,1x))') '<< CONST >> rhoForest', stt%rho_forest(:,of)
write(6,'(a,/,12x,12(f10.5,1x))') '<< CONST >> tauThreshold / MPa', dst%tau_pass(:,of)*1e-6
write(6,'(a,/,12x,12(f10.5,1x),/)') '<< CONST >> tauBack / MPa', dst%tau_back(:,of)*1e-6
endif
#endif
end associate
2019-02-21 23:48:06 +05:30
2019-02-20 19:24:26 +05:30
end subroutine plastic_nonlocal_dependentState
!--------------------------------------------------------------------------------------------------
!> @brief calculates kinetics
!--------------------------------------------------------------------------------------------------
subroutine plastic_nonlocal_kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, &
2019-02-22 02:02:22 +05:30
tauThreshold, c, Temperature, instance, of)
2019-03-17 21:32:08 +05:30
integer, intent(in) :: &
c, & !< dislocation character (1:edge, 2:screw)
instance, of
real(pReal), intent(in) :: &
Temperature !< temperature
real(pReal), dimension(param(instance)%totalNslip), intent(in) :: &
tau, & !< resolved external shear stress (without non Schmid effects)
tauNS, & !< resolved external shear stress (including non Schmid effects)
tauThreshold !< threshold shear stress
2019-03-17 21:32:08 +05:30
real(pReal), dimension(param(instance)%totalNslip), intent(out) :: &
v, & !< velocity
dv_dtau, & !< velocity derivative with respect to resolved shear stress (without non Schmid contributions)
dv_dtauNS !< velocity derivative with respect to resolved shear stress (including non Schmid contributions)
2019-03-17 21:32:08 +05:30
integer :: &
ns, & !< short notation for the total number of active slip systems
s !< index of my current slip system
real(pReal) :: &
tauRel_P, &
2019-03-17 21:32:08 +05:30
tauRel_S, &
tauEff, & !< effective shear stress
tPeierls, & !< waiting time in front of a peierls barriers
tSolidSolution, & !< waiting time in front of a solid solution obstacle
vViscous, & !< viscous glide velocity
dtPeierls_dtau, & !< derivative with respect to resolved shear stress
dtSolidSolution_dtau, & !< derivative with respect to resolved shear stress
meanfreepath_S, & !< mean free travel distance for dislocations between two solid solution obstacles
meanfreepath_P, & !< mean free travel distance for dislocations between two Peierls barriers
jumpWidth_P, & !< depth of activated area
jumpWidth_S, & !< depth of activated area
activationLength_P, & !< length of activated dislocation line
activationLength_S, & !< length of activated dislocation line
activationVolume_P, & !< volume that needs to be activated to overcome barrier
activationVolume_S, & !< volume that needs to be activated to overcome barrier
activationEnergy_P, & !< energy that is needed to overcome barrier
activationEnergy_S, & !< energy that is needed to overcome barrier
criticalStress_P, & !< maximum obstacle strength
criticalStress_S, & !< maximum obstacle strength
mobility !< dislocation mobility
2019-03-17 21:32:08 +05:30
associate(prm => param(instance))
ns = prm%totalNslip
v = 0.0_pReal
dv_dtau = 0.0_pReal
dv_dtauNS = 0.0_pReal
2019-03-17 21:32:08 +05:30
if (Temperature > 0.0_pReal) then
do s = 1,ns
if (abs(tau(s)) > tauThreshold(s)) then
2019-03-17 21:32:08 +05:30
!* Peierls contribution
!* Effective stress includes non Schmid constributions
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
2019-03-17 21:32:08 +05:30
tauEff = max(0.0_pReal, abs(tauNS(s)) - tauThreshold(s)) ! ensure that the effective stress is positive
meanfreepath_P = prm%burgers(s)
jumpWidth_P = prm%burgers(s)
activationLength_P = prm%doublekinkwidth *prm%burgers(s)
activationVolume_P = activationLength_P * jumpWidth_P * prm%burgers(s)
criticalStress_P = prm%peierlsStress(s,c)
activationEnergy_P = criticalStress_P * activationVolume_P
tauRel_P = min(1.0_pReal, tauEff / criticalStress_P) ! ensure that the activation probability cannot become greater than one
tPeierls = 1.0_pReal / prm%fattack &
* exp(activationEnergy_P / (KB * Temperature) &
* (1.0_pReal - tauRel_P**prm%p)**prm%q)
if (tauEff < criticalStress_P) then
dtPeierls_dtau = tPeierls * prm%p * prm%q * activationVolume_P / (KB * Temperature) &
* (1.0_pReal - tauRel_P**prm%p)**(prm%q-1.0_pReal) &
* tauRel_P**(prm%p-1.0_pReal)
2019-03-17 21:32:08 +05:30
else
dtPeierls_dtau = 0.0_pReal
endif
2019-03-17 21:32:08 +05:30
!* Contribution from solid solution strengthening
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
2019-03-17 21:32:08 +05:30
tauEff = abs(tau(s)) - tauThreshold(s)
meanfreepath_S = prm%burgers(s) / sqrt(prm%solidSolutionConcentration)
jumpWidth_S = prm%solidSolutionSize * prm%burgers(s)
activationLength_S = prm%burgers(s) / sqrt(prm%solidSolutionConcentration)
activationVolume_S = activationLength_S * jumpWidth_S * prm%burgers(s)
activationEnergy_S = prm%solidSolutionEnergy
criticalStress_S = activationEnergy_S / activationVolume_S
tauRel_S = min(1.0_pReal, tauEff / criticalStress_S) ! ensure that the activation probability cannot become greater than one
tSolidSolution = 1.0_pReal / prm%fattack &
* exp(activationEnergy_S / (KB * Temperature) &
* (1.0_pReal - tauRel_S**prm%p)**prm%q)
if (tauEff < criticalStress_S) then
dtSolidSolution_dtau = tSolidSolution * prm%p * prm%q &
* activationVolume_S / (KB * Temperature) &
* (1.0_pReal - tauRel_S**prm%p)**(prm%q-1.0_pReal) &
* tauRel_S**(prm%p-1.0_pReal)
2019-03-17 21:32:08 +05:30
else
dtSolidSolution_dtau = 0.0_pReal
endif
2019-03-17 21:32:08 +05:30
!* viscous glide velocity
2019-03-17 21:32:08 +05:30
tauEff = abs(tau(s)) - tauThreshold(s)
mobility = prm%burgers(s) / prm%viscosity
vViscous = mobility * tauEff
!* Mean velocity results from waiting time at peierls barriers and solid solution obstacles with respective meanfreepath of
!* free flight at glide velocity in between.
2019-03-17 21:32:08 +05:30
!* adopt sign from resolved stress
2019-03-17 21:32:08 +05:30
v(s) = sign(1.0_pReal,tau(s)) &
/ (tPeierls / meanfreepath_P + tSolidSolution / meanfreepath_S + 1.0_pReal / vViscous)
dv_dtau(s) = v(s) * v(s) * (dtSolidSolution_dtau / meanfreepath_S &
+ mobility / (vViscous * vViscous))
dv_dtauNS(s) = v(s) * v(s) * dtPeierls_dtau / meanfreepath_P
endif
2019-03-17 21:32:08 +05:30
enddo
endif
2019-02-21 23:48:06 +05:30
#ifdef DEBUGTODO
2019-03-17 21:32:08 +05:30
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauThreshold / MPa', tauThreshold * 1e-6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tau / MPa', tau * 1e-6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauNS / MPa', tauNS * 1e-6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> v / mm/s', v * 1e3
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtau', dv_dtau
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtauNS', dv_dtauNS
#endif
2019-03-17 21:32:08 +05:30
end associate
end subroutine plastic_nonlocal_kinetics
2019-03-17 21:32:08 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_LpAndItsTangent(Lp, dLp_dMp, &
Mp, Temperature, volume, ip, el)
2019-03-17 21:32:08 +05:30
integer, intent(in) :: &
ip, & !< current integration point
el !< current element number
real(pReal), intent(in) :: &
Temperature, & !< temperature
volume !< volume of the materialpoint
real(pReal), dimension(3,3), intent(in) :: &
Mp
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLp_dMp !< derivative of Lp with respect to Tstar (9x9 matrix)
2019-03-17 21:32:08 +05:30
integer :: &
instance, & !< current instance of this plasticity
ns, & !< short notation for the total number of active slip systems
i, &
j, &
k, &
l, &
ph, & !phase number
of, & !offset
t, & !< dislocation type
s !< index of my current slip system
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),8) :: &
2019-03-17 21:32:08 +05:30
rhoSgl !< single dislocation densities (including blocked)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),10) :: &
2019-03-17 21:32:08 +05:30
rho
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),4) :: &
2019-03-17 21:32:08 +05:30
v, & !< velocity
tauNS, & !< resolved shear stress including non Schmid and backstress terms
dv_dtau, & !< velocity derivative with respect to the shear stress
dv_dtauNS !< velocity derivative with respect to the shear stress
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el)))) :: &
2019-03-17 21:32:08 +05:30
tau, & !< resolved shear stress including backstress terms
gdotTotal !< shear rate
2019-03-17 21:32:08 +05:30
!*** shortcut for mapping
ph = material_phaseAt(1,el)
of = material_phasememberAt(1,ip,el)
2019-03-17 21:32:08 +05:30
instance = phase_plasticityInstance(ph)
2019-12-01 13:25:24 +05:30
associate(prm => param(instance),dst=>microstructure(instance),stt=>state(instance))
2019-03-17 21:32:08 +05:30
ns = prm%totalNslip
!*** shortcut to state variables
2019-03-17 21:32:08 +05:30
rho = getRho(instance,of,ip,el)
rhoSgl = rho(:,sgl)
2019-03-17 21:32:08 +05:30
!*** get resolved shear stress
!*** for screws possible non-schmid contributions are also taken into account
do s = 1,ns
tau(s) = math_mul33xx33(Mp, prm%Schmid(1:3,1:3,s))
tauNS(s,1) = tau(s)
tauNS(s,2) = tau(s)
if (tau(s) > 0.0_pReal) then
tauNS(s,3) = math_mul33xx33(Mp, +prm%nonSchmid_pos(1:3,1:3,s))
tauNS(s,4) = math_mul33xx33(Mp, -prm%nonSchmid_neg(1:3,1:3,s))
else
tauNS(s,3) = math_mul33xx33(Mp, +prm%nonSchmid_neg(1:3,1:3,s))
tauNS(s,4) = math_mul33xx33(Mp, -prm%nonSchmid_pos(1:3,1:3,s))
endif
enddo
forall (t = 1:4) &
tauNS(1:ns,t) = tauNS(1:ns,t) + dst%tau_back(:,of)
tau = tau + dst%tau_back(:,of)
2019-03-17 21:32:08 +05:30
!*** get dislocation velocity and its tangent and store the velocity in the state array
! edges
2019-03-17 21:32:08 +05:30
call plastic_nonlocal_kinetics(v(1:ns,1), dv_dtau(1:ns,1), dv_dtauNS(1:ns,1), &
tau(1:ns), tauNS(1:ns,1), dst%tau_pass(1:ns,of), &
2019-03-17 21:32:08 +05:30
1, Temperature, instance, of)
v(1:ns,2) = v(1:ns,1)
dv_dtau(1:ns,2) = dv_dtau(1:ns,1)
dv_dtauNS(1:ns,2) = dv_dtauNS(1:ns,1)
2019-03-17 21:32:08 +05:30
!screws
if (size(prm%nonSchmidCoeff) == 0) then
forall(t = 3:4)
v(1:ns,t) = v(1:ns,1)
dv_dtau(1:ns,t) = dv_dtau(1:ns,1)
dv_dtauNS(1:ns,t) = dv_dtauNS(1:ns,1)
endforall
else
2019-03-17 21:32:08 +05:30
do t = 3,4
call plastic_nonlocal_kinetics(v(1:ns,t), dv_dtau(1:ns,t), dv_dtauNS(1:ns,t), &
tau(1:ns), tauNS(1:ns,t), dst%tau_pass(1:ns,of), &
2019-03-17 21:32:08 +05:30
2 , Temperature, instance, of)
enddo
endif
2019-12-01 13:25:24 +05:30
stt%v(:,of) = pack(v,.true.)
2019-03-17 21:32:08 +05:30
!*** Bauschinger effect
forall (s = 1:ns, t = 5:8, rhoSgl(s,t) * v(s,t-4) < 0.0_pReal) &
rhoSgl(s,t-4) = rhoSgl(s,t-4) + abs(rhoSgl(s,t))
2019-03-17 21:32:08 +05:30
gdotTotal = sum(rhoSgl(1:ns,1:4) * v, 2) * prm%burgers(1:ns)
2019-03-17 21:32:08 +05:30
Lp = 0.0_pReal
dLp_dMp = 0.0_pReal
2019-03-17 21:32:08 +05:30
do s = 1,ns
Lp = Lp + gdotTotal(s) * prm%Schmid(1:3,1:3,s)
forall (i=1:3,j=1:3,k=1:3,l=1:3) &
dLp_dMp(i,j,k,l) = dLp_dMp(i,j,k,l) &
+ prm%Schmid(i,j,s) * prm%Schmid(k,l,s) &
* sum(rhoSgl(s,1:4) * dv_dtau(s,1:4)) * prm%burgers(s) &
+ prm%Schmid(i,j,s) &
* ( prm%nonSchmid_pos(k,l,s) * rhoSgl(s,3) * dv_dtauNS(s,3) &
2019-03-17 21:32:08 +05:30
- prm%nonSchmid_neg(k,l,s) * rhoSgl(s,4) * dv_dtauNS(s,4)) * prm%burgers(s)
enddo
2019-03-17 21:32:08 +05:30
end associate
2019-03-17 21:32:08 +05:30
end subroutine plastic_nonlocal_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief (instantaneous) incremental change of microstructure
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_deltaState(Mp,ip,el)
2019-03-17 21:32:08 +05:30
integer, intent(in) :: &
ip, &
el
real(pReal), dimension(3,3), intent(in) :: &
Mp !< MandelStress
2019-03-17 21:32:08 +05:30
integer :: &
ph, & !< phase
of, & !< offset
instance, & ! current instance of this plasticity
ns, & ! short notation for the total number of active slip systems
c, & ! character of dislocation
t, & ! type of dislocation
s ! index of my current slip system
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),10) :: &
2019-03-17 21:32:08 +05:30
deltaRhoRemobilization, & ! density increment by remobilization
deltaRhoDipole2SingleStress ! density increment by dipole dissociation (by stress change)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),10) :: &
2019-03-17 21:32:08 +05:30
rho ! current dislocation densities
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),4) :: &
2019-03-17 21:32:08 +05:30
v ! dislocation glide velocity
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el)))) :: &
2019-03-17 21:32:08 +05:30
tau ! current resolved shear stress
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),2) :: &
2019-03-17 21:32:08 +05:30
rhoDip, & ! current dipole dislocation densities (screw and edge dipoles)
dUpper, & ! current maximum stable dipole distance for edges and screws
dUpperOld, & ! old maximum stable dipole distance for edges and screws
deltaDUpper ! change in maximum stable dipole distance for edges and screws
ph = material_phaseAt(1,el)
of = material_phasememberAt(1,ip,el)
2019-03-17 21:32:08 +05:30
instance = phase_plasticityInstance(ph)
2019-03-17 21:32:08 +05:30
associate(prm => param(instance),dst => microstructure(instance),del => deltaState(instance))
ns = totalNslip(instance)
!*** shortcut to state variables
2019-03-17 21:32:08 +05:30
forall (s = 1:ns, t = 1:4) &
v(s,t) = plasticState(ph)%state(iV(s,t,instance),of)
forall (s = 1:ns, c = 1:2) &
dUpperOld(s,c) = plasticState(ph)%state(iD(s,c,instance),of)
2019-03-17 21:32:08 +05:30
rho = getRho(instance,of,ip,el)
rhoDip = rho(:,dip)
2019-03-17 21:32:08 +05:30
!****************************************************************************
!*** dislocation remobilization (bauschinger effect)
where(rho(:,imm) * v < 0.0_pReal)
deltaRhoRemobilization(:,mob) = abs(rho(:,imm))
deltaRhoRemobilization(:,imm) = - rho(:,imm)
rho(:,mob) = rho(:,mob) + abs(rho(:,imm))
rho(:,imm) = 0.0_pReal
elsewhere
deltaRhoRemobilization(:,mob) = 0.0_pReal
deltaRhoRemobilization(:,imm) = 0.0_pReal
endwhere
2019-03-17 21:32:08 +05:30
deltaRhoRemobilization(:,dip) = 0.0_pReal
2019-03-17 21:32:08 +05:30
!****************************************************************************
!*** calculate dipole formation and dissociation by stress change
2019-03-17 21:32:08 +05:30
!*** calculate limits for stable dipole height
do s = 1,prm%totalNslip
tau(s) = math_mul33xx33(Mp, prm%Schmid(1:3,1:3,s)) +dst%tau_back(s,of)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
2019-03-17 21:32:08 +05:30
dUpper(1:ns,1) = prm%mu * prm%burgers/(8.0_pReal * PI * (1.0_pReal - prm%nu) * abs(tau))
dUpper(1:ns,2) = prm%mu * prm%burgers/(4.0_pReal * PI * abs(tau))
2019-03-17 21:32:08 +05:30
where(dNeq0(sqrt(sum(abs(rho(:,edg)),2)))) &
dUpper(1:ns,1) = min(1.0_pReal/sqrt(sum(abs(rho(:,edg)),2)),dUpper(1:ns,1))
2019-03-17 21:32:08 +05:30
where(dNeq0(sqrt(sum(abs(rho(:,scr)),2)))) &
dUpper(1:ns,2) = min(1.0_pReal/sqrt(sum(abs(rho(:,scr)),2)),dUpper(1:ns,2))
2019-03-17 21:32:08 +05:30
dUpper = max(dUpper,prm%minDipoleHeight)
deltaDUpper = dUpper - dUpperOld
2019-03-17 21:32:08 +05:30
!*** dissociation by stress increase
deltaRhoDipole2SingleStress = 0.0_pReal
forall (c=1:2, s=1:ns, deltaDUpper(s,c) < 0.0_pReal .and. &
dNeq0(dUpperOld(s,c) - prm%minDipoleHeight(s,c))) &
deltaRhoDipole2SingleStress(s,8+c) = rhoDip(s,c) * deltaDUpper(s,c) &
/ (dUpperOld(s,c) - prm%minDipoleHeight(s,c))
2019-03-17 21:32:08 +05:30
forall (t=1:4) &
deltaRhoDipole2SingleStress(1:ns,t) = -0.5_pReal &
* deltaRhoDipole2SingleStress(1:ns,(t-1)/2+9)
2019-03-17 21:32:08 +05:30
forall (s = 1:ns, c = 1:2) &
plasticState(ph)%state(iD(s,c,instance),of) = dUpper(s,c)
2019-03-17 21:32:08 +05:30
plasticState(ph)%deltaState(:,of) = 0.0_pReal
del%rho(:,of) = reshape(deltaRhoRemobilization + deltaRhoDipole2SingleStress, [10*ns])
#ifdef DEBUG
2019-03-17 18:05:41 +05:30
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0 &
.and. ((debug_e == el .and. debug_i == ip)&
2019-03-17 18:05:41 +05:30
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0 )) then
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation remobilization', deltaRhoRemobilization(1:ns,1:8)
write(6,'(a,/,10(12x,12(e12.5,1x),/),/)') '<< CONST >> dipole dissociation by stress increase', deltaRhoDipole2SingleStress
endif
#endif
2019-03-17 21:32:08 +05:30
end associate
end subroutine plastic_nonlocal_deltaState
2019-02-20 05:11:44 +05:30
!---------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!---------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_dotState(Mp, F, Fp, Temperature, &
timestep,ip,el)
2019-03-17 21:32:08 +05:30
integer, intent(in) :: &
ip, & !< current integration point
el !< current element number
real(pReal), intent(in) :: &
Temperature, & !< temperature
timestep !< substepped crystallite time increment
real(pReal), dimension(3,3), intent(in) ::&
Mp !< MandelStress
2019-06-07 09:48:42 +05:30
real(pReal), dimension(3,3,homogenization_maxNgrains,discretization_nIP,discretization_nElem), intent(in) :: &
F, & !< elastic deformation gradient
2019-03-17 21:32:08 +05:30
Fp !< plastic deformation gradient
2019-03-17 21:32:08 +05:30
integer :: &
ph, &
2019-03-17 21:32:08 +05:30
instance, & !< current instance of this plasticity
neighbor_instance, & !< instance of my neighbor's plasticity
ns, & !< short notation for the total number of active slip systems
c, & !< character of dislocation
n, & !< index of my current neighbor
neighbor_el, & !< element number of my neighbor
neighbor_ip, & !< integration point of my neighbor
neighbor_n, & !< neighbor index pointing to me when looking from my neighbor
opposite_neighbor, & !< index of my opposite neighbor
opposite_ip, & !< ip of my opposite neighbor
opposite_el, & !< element index of my opposite neighbor
opposite_n, & !< neighbor index pointing to me when looking from my opposite neighbor
t, & !< type of dislocation
o,& !< offset shortcut
no,& !< neighbor offset shortcut
2019-03-17 21:32:08 +05:30
p,& !< phase shortcut
np,& !< neighbor phase shortcut
2019-03-17 21:32:08 +05:30
topp, & !< type of dislocation with opposite sign to t
s !< index of my current slip system
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),10) :: &
2019-03-17 21:32:08 +05:30
rho, &
2020-02-11 10:11:10 +05:30
rho0, & !< dislocation density at beginning of time step
2019-03-17 21:32:08 +05:30
rhoDot, & !< density evolution
rhoDotMultiplication, & !< density evolution by multiplication
rhoDotFlux, & !< density evolution by flux
rhoDotSingle2DipoleGlide, & !< density evolution by dipole formation (by glide)
rhoDotAthermalAnnihilation, & !< density evolution by athermal annihilation
rhoDotThermalAnnihilation !< density evolution by thermal annihilation
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),8) :: &
2019-03-17 21:32:08 +05:30
rhoSgl, & !< current single dislocation densities (positive/negative screw and edge without dipoles)
2020-02-11 10:11:10 +05:30
neighbor_rhoSgl0, & !< current single dislocation densities of neighboring ip (positive/negative screw and edge without dipoles)
my_rhoSgl0 !< single dislocation densities of central ip (positive/negative screw and edge without dipoles)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),4) :: &
2019-03-17 21:32:08 +05:30
v, & !< current dislocation glide velocity
v0, &
neighbor_v0, & !< dislocation glide velocity of enighboring ip
2019-03-17 21:32:08 +05:30
gdot !< shear rates
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el)))) :: &
2019-03-17 21:32:08 +05:30
tau, & !< current resolved shear stress
vClimb !< climb velocity of edge dipoles
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),2) :: &
2019-03-17 21:32:08 +05:30
rhoDip, & !< current dipole dislocation densities (screw and edge dipoles)
dLower, & !< minimum stable dipole distance for edges and screws
dUpper !< current maximum stable dipole distance for edges and screws
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phaseAt(1,el))),4) :: &
2019-03-17 21:32:08 +05:30
m !< direction of dislocation motion
real(pReal), dimension(3,3) :: &
my_F, & !< my total deformation gradient
neighbor_F, & !< total deformation gradient of my neighbor
my_Fe, & !< my elastic deformation gradient
neighbor_Fe, & !< elastic deformation gradient of my neighbor
Favg !< average total deformation gradient of me and my neighbor
real(pReal), dimension(3) :: &
normal_neighbor2me, & !< interface normal pointing from my neighbor to me in neighbor's lattice configuration
normal_neighbor2me_defConf, & !< interface normal pointing from my neighbor to me in shared deformed configuration
normal_me2neighbor, & !< interface normal pointing from me to my neighbor in my lattice configuration
normal_me2neighbor_defConf !< interface normal pointing from me to my neighbor in shared deformed configuration
real(pReal) :: &
area, & !< area of the current interface
transmissivity, & !< overall transmissivity of dislocation flux to neighboring material point
lineLength, & !< dislocation line length leaving the current interface
selfDiffusion !< self diffusion
2019-03-17 21:32:08 +05:30
logical :: &
considerEnteringFlux, &
considerLeavingFlux
p = material_phaseAt(1,el)
o = material_phasememberAt(1,ip,el)
2019-03-17 21:32:08 +05:30
if (timestep <= 0.0_pReal) then
plasticState(p)%dotState = 0.0_pReal
return
endif
ph = material_phaseAt(1,el)
2019-03-17 21:32:08 +05:30
instance = phase_plasticityInstance(ph)
2019-11-24 18:12:19 +05:30
associate(prm => param(instance), &
dst => microstructure(instance), &
dot => dotState(instance), &
stt => state(instance))
2019-03-17 21:32:08 +05:30
ns = totalNslip(instance)
2019-03-17 21:32:08 +05:30
tau = 0.0_pReal
gdot = 0.0_pReal
2020-02-11 10:11:10 +05:30
rho = getRho(instance,o,ip,el)
2019-03-17 21:32:08 +05:30
rhoSgl = rho(:,sgl)
rhoDip = rho(:,dip)
2020-02-11 10:11:10 +05:30
rho0 = getRho0(instance,o,ip,el)
my_rhoSgl0 = rho0(:,sgl)
2019-03-17 21:32:08 +05:30
forall (s = 1:ns, t = 1:4)
v(s,t) = plasticState(p)%state(iV (s,t,instance),o)
endforall
2019-03-17 21:32:08 +05:30
!****************************************************************************
!*** Calculate shear rate
2019-03-17 21:32:08 +05:30
forall (t = 1:4) &
gdot(1:ns,t) = rhoSgl(1:ns,t) * prm%burgers(1:ns) * v(1:ns,t)
2019-03-17 21:32:08 +05:30
#ifdef DEBUG
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0 &
.and. ((debug_e == el .and. debug_i == ip)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0 )) then
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> rho / 1/m^2', rhoSgl, rhoDip
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> gdot / 1/s',gdot
endif
#endif
2019-03-17 21:32:08 +05:30
!****************************************************************************
!*** calculate limits for stable dipole height
2019-03-17 21:32:08 +05:30
do s = 1,ns ! loop over slip systems
tau(s) = math_mul33xx33(Mp, prm%Schmid(1:3,1:3,s)) + dst%tau_back(s,o)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
2019-03-17 22:29:01 +05:30
dLower = prm%minDipoleHeight
2019-03-17 21:32:08 +05:30
dUpper(1:ns,1) = prm%mu * prm%burgers/(8.0_pReal * PI * (1.0_pReal - prm%nu) * abs(tau))
dUpper(1:ns,2) = prm%mu * prm%burgers/(4.0_pReal * PI * abs(tau))
2019-03-17 22:29:01 +05:30
where(dNeq0(sqrt(sum(abs(rho(:,edg)),2)))) &
dUpper(1:ns,1) = min(1.0_pReal/sqrt(sum(abs(rho(:,edg)),2)),dUpper(1:ns,1))
2019-03-17 22:29:01 +05:30
where(dNeq0(sqrt(sum(abs(rho(:,scr)),2)))) &
dUpper(1:ns,2) = min(1.0_pReal/sqrt(sum(abs(rho(:,scr)),2)),dUpper(1:ns,2))
2019-03-17 21:32:08 +05:30
dUpper = max(dUpper,dLower)
2019-03-17 21:32:08 +05:30
!****************************************************************************
!*** calculate dislocation multiplication
rhoDotMultiplication = 0.0_pReal
isBCC: if (lattice_structure(ph) == LATTICE_bcc_ID) then
forall (s = 1:ns, sum(abs(v(s,1:4))) > 0.0_pReal)
rhoDotMultiplication(s,1:2) = sum(abs(gdot(s,3:4))) / prm%burgers(s) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(stt%rho_forest(s,o)) / prm%lambda0(s) ! & ! mean free path
! * 2.0_pReal * sum(abs(v(s,3:4))) / sum(abs(v(s,1:4))) ! ratio of screw to overall velocity determines edge generation
rhoDotMultiplication(s,3:4) = sum(abs(gdot(s,3:4))) /prm%burgers(s) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(stt%rho_forest(s,o)) / prm%lambda0(s) ! & ! mean free path
! * 2.0_pReal * sum(abs(v(s,1:2))) / sum(abs(v(s,1:4))) ! ratio of edge to overall velocity determines screw generation
endforall
2019-03-17 21:32:08 +05:30
else isBCC
rhoDotMultiplication(1:ns,1:4) = spread( &
(sum(abs(gdot(1:ns,1:2)),2) * prm%fEdgeMultiplication + sum(abs(gdot(1:ns,3:4)),2)) &
* sqrt(stt%rho_forest(:,o)) / prm%lambda0 / prm%burgers(1:ns), 2, 4)
endif isBCC
forall (s = 1:ns, t = 1:4)
v0(s,t) = plasticState(p)%state0(iV(s,t,instance),o)
endforall
2019-03-17 21:32:08 +05:30
!****************************************************************************
!*** calculate dislocation fluxes (only for nonlocal plasticity)
rhoDotFlux = 0.0_pReal
if (.not. phase_localPlasticity(material_phaseAt(1,el))) then
2019-03-17 21:32:08 +05:30
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
.and. prm%CFLfactor * abs(v0) * timestep &
2019-06-07 14:03:49 +05:30
> IPvolume(ip,el) / maxval(IParea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
#ifdef DEBUG
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0) then
write(6,'(a,i5,a,i2)') '<< CONST >> CFL condition not fullfilled at el ',el,' ip ',ip
2012-09-05 16:49:46 +05:30
write(6,'(a,e10.3,a,e10.3)') '<< CONST >> velocity is at ', &
maxval(abs(v0), abs(gdot) > 0.0_pReal &
.and. prm%CFLfactor * abs(v0) * timestep &
2019-06-07 14:03:49 +05:30
> IPvolume(ip,el) / maxval(IParea(:,ip,el))), &
' at a timestep of ',timestep
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
endif
#endif
2019-03-17 21:32:08 +05:30
plasticState(p)%dotState = IEEE_value(1.0_pReal,IEEE_quiet_NaN) ! -> return NaN and, hence, enforce cutback
return
endif
2019-03-17 21:32:08 +05:30
!*** be aware of the definition of slip_transverse = slip_direction x slip_normal !!!
!*** opposite sign to our p vector in the (s,p,n) triplet !!!
2019-03-17 21:32:08 +05:30
m(1:3,1:ns,1) = prm%slip_direction
m(1:3,1:ns,2) = -prm%slip_direction
m(1:3,1:ns,3) = -prm%slip_transverse
m(1:3,1:ns,4) = prm%slip_transverse
my_F = F(1:3,1:3,1,ip,el)
my_Fe = matmul(my_F, math_inv33(Fp(1:3,1:3,1,ip,el)))
2019-06-07 13:50:56 +05:30
neighbors: do n = 1,nIPneighbors
neighbor_el = IPneighborhood(1,n,ip,el)
neighbor_ip = IPneighborhood(2,n,ip,el)
neighbor_n = IPneighborhood(3,n,ip,el)
np = material_phaseAt(1,neighbor_el)
no = material_phasememberAt(1,neighbor_ip,neighbor_el)
2019-03-17 21:32:08 +05:30
opposite_neighbor = n + mod(n,2) - mod(n+1,2)
opposite_el = IPneighborhood(1,opposite_neighbor,ip,el)
opposite_ip = IPneighborhood(2,opposite_neighbor,ip,el)
opposite_n = IPneighborhood(3,opposite_neighbor,ip,el)
2019-03-17 21:32:08 +05:30
if (neighbor_n > 0) then ! if neighbor exists, average deformation gradient
neighbor_instance = phase_plasticityInstance(material_phaseAt(1,neighbor_el))
neighbor_F = F(1:3,1:3,1,neighbor_ip,neighbor_el)
neighbor_Fe = matmul(neighbor_F, math_inv33(Fp(1:3,1:3,1,neighbor_ip,neighbor_el)))
2019-03-17 21:32:08 +05:30
Favg = 0.5_pReal * (my_F + neighbor_F)
else ! if no neighbor, take my value as average
Favg = my_F
endif
2019-03-17 21:32:08 +05:30
!* FLUX FROM MY NEIGHBOR TO ME
!* This is only considered, if I have a neighbor of nonlocal plasticity
!* (also nonlocal constitutive law with local properties) that is at least a little bit
2019-03-17 21:32:08 +05:30
!* compatible.
!* If it's not at all compatible, no flux is arriving, because everything is dammed in front of
!* my neighbor's interface.
!* The entering flux from my neighbor will be distributed on my slip systems according to the
!* compatibility
2019-03-17 21:32:08 +05:30
considerEnteringFlux = .false.
neighbor_v0 = 0.0_pReal ! needed for check of sign change in flux density below
2019-03-17 21:32:08 +05:30
if (neighbor_n > 0) then
if (phase_plasticity(material_phaseAt(1,neighbor_el)) == PLASTICITY_NONLOCAL_ID &
2019-03-17 21:32:08 +05:30
.and. any(compatibility(:,:,:,n,ip,el) > 0.0_pReal)) &
considerEnteringFlux = .true.
endif
2019-03-17 21:32:08 +05:30
enteringFlux: if (considerEnteringFlux) then
2019-11-24 18:12:19 +05:30
forall (s = 1:ns, t = 1:4)
neighbor_v0(s,t) = plasticState(np)%state0(iV (s,t,neighbor_instance),no)
neighbor_rhoSgl0(s,t) = max(plasticState(np)%state0(iRhoU(s,t,neighbor_instance),no), &
2019-03-17 21:32:08 +05:30
0.0_pReal)
2019-11-24 18:12:19 +05:30
endforall
where (neighbor_rhoSgl0 * IPvolume(neighbor_ip,neighbor_el) ** 0.667_pReal < prm%significantN &
.or. neighbor_rhoSgl0 < prm%significantRho) &
neighbor_rhoSgl0 = 0.0_pReal
normal_neighbor2me_defConf = math_det33(Favg) * matmul(math_inv33(transpose(Favg)), &
2019-06-07 14:03:49 +05:30
IPareaNormal(1:3,neighbor_n,neighbor_ip,neighbor_el)) ! calculate the normal of the interface in (average) deformed configuration (now pointing from my neighbor to me!!!)
normal_neighbor2me = matmul(transpose(neighbor_Fe), normal_neighbor2me_defConf) &
2019-03-17 21:32:08 +05:30
/ math_det33(neighbor_Fe) ! interface normal in the lattice configuration of my neighbor
2019-06-07 14:03:49 +05:30
area = IParea(neighbor_n,neighbor_ip,neighbor_el) * norm2(normal_neighbor2me)
2019-03-17 21:32:08 +05:30
normal_neighbor2me = normal_neighbor2me / norm2(normal_neighbor2me) ! normalize the surface normal to unit length
do s = 1,ns
do t = 1,4
c = (t + 1) / 2
topp = t + mod(t,2) - mod(t+1,2)
if (neighbor_v0(s,t) * math_inner(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
.and. v0(s,t) * neighbor_v0(s,t) >= 0.0_pReal ) then ! ... only if no sign change in flux density
lineLength = neighbor_rhoSgl0(s,t) * neighbor_v0(s,t) &
2019-06-07 14:03:49 +05:30
* math_inner(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
2019-03-17 21:32:08 +05:30
where (compatibility(c,1:ns,s,n,ip,el) > 0.0_pReal) & ! positive compatibility...
rhoDotFlux(1:ns,t) = rhoDotFlux(1:ns,t) &
2019-06-07 14:03:49 +05:30
+ lineLength / IPvolume(ip,el) & ! ... transferring to equally signed mobile dislocation type
2019-03-17 22:29:01 +05:30
* compatibility(c,1:ns,s,n,ip,el) ** 2.0_pReal
2019-03-17 21:32:08 +05:30
where (compatibility(c,1:ns,s,n,ip,el) < 0.0_pReal) & ! ..negative compatibility...
rhoDotFlux(1:ns,topp) = rhoDotFlux(1:ns,topp) &
2019-06-07 14:03:49 +05:30
+ lineLength / IPvolume(ip,el) & ! ... transferring to opposite signed mobile dislocation type
2019-03-17 22:29:01 +05:30
* compatibility(c,1:ns,s,n,ip,el) ** 2.0_pReal
2019-03-17 21:32:08 +05:30
endif
enddo
enddo
2019-03-17 21:32:08 +05:30
endif enteringFlux
2019-03-17 21:32:08 +05:30
!* FLUX FROM ME TO MY NEIGHBOR
!* This is not considered, if my opposite neighbor has a different constitutive law than nonlocal (still considered for nonlocal law with local properties).
2019-03-17 21:32:08 +05:30
!* Then, we assume, that the opposite(!) neighbor sends an equal amount of dislocations to me.
!* So the net flux in the direction of my neighbor is equal to zero:
!* leaving flux to neighbor == entering flux from opposite neighbor
!* In case of reduced transmissivity, part of the leaving flux is stored as dead dislocation density.
!* That means for an interface of zero transmissivity the leaving flux is fully converted to dead dislocations.
2019-03-17 21:32:08 +05:30
considerLeavingFlux = .true.
if (opposite_n > 0) then
if (phase_plasticity(material_phaseAt(1,opposite_el)) /= PLASTICITY_NONLOCAL_ID) &
2019-03-17 21:32:08 +05:30
considerLeavingFlux = .false.
endif
2019-03-17 21:32:08 +05:30
leavingFlux: if (considerLeavingFlux) then
normal_me2neighbor_defConf = math_det33(Favg) &
* matmul(math_inv33(transpose(Favg)), &
2019-06-07 14:03:49 +05:30
IPareaNormal(1:3,n,ip,el)) ! calculate the normal of the interface in (average) deformed configuration (pointing from me to my neighbor!!!)
normal_me2neighbor = matmul(transpose(my_Fe), normal_me2neighbor_defConf) &
2019-03-17 21:32:08 +05:30
/ math_det33(my_Fe) ! interface normal in my lattice configuration
2019-06-07 14:03:49 +05:30
area = IParea(n,ip,el) * norm2(normal_me2neighbor)
normal_me2neighbor = normal_me2neighbor / norm2(normal_me2neighbor) ! normalize the surface normal to unit length
2019-03-17 21:32:08 +05:30
do s = 1,ns
do t = 1,4
c = (t + 1) / 2
if (v0(s,t) * math_inner(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
if (v0(s,t) * neighbor_v0(s,t) >= 0.0_pReal) then ! no sign change in flux density
2019-03-17 21:32:08 +05:30
transmissivity = sum(compatibility(c,1:ns,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
transmissivity = 0.0_pReal
endif
2020-02-11 10:11:10 +05:30
lineLength = my_rhoSgl0(s,t) * v0(s,t) &
* math_inner(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of mobiles that wants to leave through this interface
2019-06-07 14:03:49 +05:30
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / IPvolume(ip,el) ! subtract dislocation flux from current type
2019-03-17 21:32:08 +05:30
rhoDotFlux(s,t+4) = rhoDotFlux(s,t+4) &
+ lineLength / IPvolume(ip,el) * (1.0_pReal - transmissivity) &
* sign(1.0_pReal, v0(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
endif
2019-03-17 21:32:08 +05:30
enddo
enddo
2019-03-17 21:32:08 +05:30
endif leavingFlux
2019-03-17 21:32:08 +05:30
enddo neighbors
endif
2019-03-17 21:32:08 +05:30
!****************************************************************************
!*** calculate dipole formation and annihilation
2019-03-17 21:32:08 +05:30
!*** formation by glide
2019-03-17 21:32:08 +05:30
do c = 1,2
rhoDotSingle2DipoleGlide(1:ns,2*c-1) = -2.0_pReal * dUpper(1:ns,c) / prm%burgers(1:ns) &
* (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) ! positive mobile --> negative immobile
2019-03-17 21:32:08 +05:30
rhoDotSingle2DipoleGlide(1:ns,2*c) = -2.0_pReal * dUpper(1:ns,c) / prm%burgers(1:ns) &
* (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c))) ! negative mobile --> positive immobile
2019-03-17 21:32:08 +05:30
rhoDotSingle2DipoleGlide(1:ns,2*c+3) = -2.0_pReal * dUpper(1:ns,c) / prm%burgers(1:ns) &
* rhoSgl(1:ns,2*c+3) * abs(gdot(1:ns,2*c)) ! negative mobile --> positive immobile
2019-03-17 21:32:08 +05:30
rhoDotSingle2DipoleGlide(1:ns,2*c+4) = -2.0_pReal * dUpper(1:ns,c) / prm%burgers(1:ns)&
* rhoSgl(1:ns,2*c+4) * abs(gdot(1:ns,2*c-1)) ! positive mobile --> negative immobile
2019-03-17 21:32:08 +05:30
rhoDotSingle2DipoleGlide(1:ns,c+8) = - rhoDotSingle2DipoleGlide(1:ns,2*c-1) &
- rhoDotSingle2DipoleGlide(1:ns,2*c) &
+ abs(rhoDotSingle2DipoleGlide(1:ns,2*c+3)) &
+ abs(rhoDotSingle2DipoleGlide(1:ns,2*c+4))
enddo
2019-03-17 21:32:08 +05:30
!*** athermal annihilation
2019-03-17 21:32:08 +05:30
rhoDotAthermalAnnihilation = 0.0_pReal
forall (c=1:2) &
2019-03-17 21:32:08 +05:30
rhoDotAthermalAnnihilation(1:ns,c+8) = -2.0_pReal * dLower(1:ns,c) / prm%burgers(1:ns) &
* ( 2.0_pReal * (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) + rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1))) & ! was single hitting single
+ 2.0_pReal * (abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c)) + abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) & ! was single hitting immobile single or was immobile single hit by single
+ rhoDip(1:ns,c) * (abs(gdot(1:ns,2*c-1)) + abs(gdot(1:ns,2*c)))) ! single knocks dipole constituent
! annihilated screw dipoles leave edge jogs behind on the colinear system
2019-03-17 21:32:08 +05:30
if (lattice_structure(ph) == LATTICE_fcc_ID) &
forall (s = 1:ns, prm%colinearSystem(s) > 0) &
rhoDotAthermalAnnihilation(prm%colinearSystem(s),1:2) = - rhoDotAthermalAnnihilation(s,10) &
* 0.25_pReal * sqrt(stt%rho_forest(s,o)) * (dUpper(s,2) + dLower(s,2)) * prm%edgeJogFactor
2019-03-17 21:32:08 +05:30
!*** thermally activated annihilation of edge dipoles by climb
2019-03-17 21:32:08 +05:30
rhoDotThermalAnnihilation = 0.0_pReal
selfDiffusion = prm%Dsd0 * exp(-prm%selfDiffusionEnergy / (KB * Temperature))
vClimb = prm%atomicVolume * selfDiffusion / ( KB * Temperature ) &
* prm%mu / ( 2.0_pReal * PI * (1.0_pReal-prm%nu) ) &
* 2.0_pReal / ( dUpper(1:ns,1) + dLower(1:ns,1) )
forall (s = 1:ns, dUpper(s,1) > dLower(s,1)) &
rhoDotThermalAnnihilation(s,9) = max(- 4.0_pReal * rhoDip(s,1) * vClimb(s) / (dUpper(s,1) - dLower(s,1)), &
- rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) &
- rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
rhoDot = rhoDotFlux &
+ rhoDotMultiplication &
+ rhoDotSingle2DipoleGlide &
+ rhoDotAthermalAnnihilation &
+ rhoDotThermalAnnihilation
#ifdef DEBUG
2019-03-17 18:05:41 +05:30
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0 &
2019-02-21 23:48:06 +05:30
.and. ((debug_e == el .and. debug_i == ip)&
2019-03-17 18:05:41 +05:30
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0 )) then
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> dislocation multiplication', &
rhoDotMultiplication(1:ns,1:4) * timestep
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation flux', &
rhoDotFlux(1:ns,1:8) * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> dipole formation by glide', &
rhoDotSingle2DipoleGlide * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> athermal dipole annihilation', &
rhoDotAthermalAnnihilation * timestep
write(6,'(a,/,2(12x,12(e12.5,1x),/))') '<< CONST >> thermally activated dipole annihilation', &
2012-11-17 19:20:20 +05:30
rhoDotThermalAnnihilation(1:ns,9:10) * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> total density change', &
rhoDot * timestep
write(6,'(a,/,10(12x,12(f12.5,1x),/))') '<< CONST >> relative density change', &
2019-03-16 20:16:39 +05:30
rhoDot(1:ns,1:8) * timestep / (abs(stt%rho(:,sgl))+1.0e-10), &
rhoDot(1:ns,9:10) * timestep / (stt%rho(:,dip)+1.0e-10)
write(6,*)
endif
#endif
2019-03-17 21:32:08 +05:30
if ( any(rho(:,mob) + rhoDot(1:ns,1:4) * timestep < -prm%aTolRho) &
.or. any(rho(:,dip) + rhoDot(1:ns,9:10) * timestep < -prm%aTolRho)) then
#ifdef DEBUG
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0) then
2019-03-17 21:32:08 +05:30
write(6,'(a,i5,a,i2)') '<< CONST >> evolution rate leads to negative density at el ',el,' ip ',ip
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
endif
#endif
2019-03-17 21:32:08 +05:30
plasticState(p)%dotState = IEEE_value(1.0_pReal,IEEE_quiet_NaN)
else
2019-11-24 18:12:19 +05:30
dot%rho(:,o) = pack(rhoDot,.true.)
2019-03-17 21:32:08 +05:30
forall (s = 1:ns) &
2019-12-01 14:05:44 +05:30
dot%gamma(s,o) = sum(gdot(s,1:4))
2019-03-17 21:32:08 +05:30
endif
2019-03-17 21:32:08 +05:30
end associate
2019-03-17 21:32:08 +05:30
end subroutine plastic_nonlocal_dotState
!--------------------------------------------------------------------------------------------------
2019-03-17 22:29:01 +05:30
!> @brief Compatibility update
!> @detail Compatibility is defined as normalized product of signed cosine of the angle between the slip
2019-03-17 21:32:08 +05:30
! plane normals and signed cosine of the angle between the slip directions. Only the largest values
! that sum up to a total of 1 are considered, all others are set to zero.
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_updateCompatibility(orientation,i,e)
2019-03-17 21:32:08 +05:30
integer, intent(in) :: &
i, &
e
2019-06-07 09:48:42 +05:30
type(rotation), dimension(1,discretization_nIP,discretization_nElem), intent(in) :: &
orientation ! crystal orientation
2019-03-17 21:32:08 +05:30
integer :: &
Nneighbors, & ! number of neighbors
n, & ! neighbor index
2019-03-17 21:32:08 +05:30
neighbor_e, & ! element index of my neighbor
neighbor_i, & ! integration point index of my neighbor
ph, &
neighbor_phase, &
textureID, &
neighbor_textureID, &
instance, & ! instance of plasticity
ns, & ! number of active slip systems
s1, & ! slip system index (me)
s2 ! slip system index (my neighbor)
real(pReal), dimension(2,totalNslip(phase_plasticityInstance(material_phaseAt(1,e))),&
totalNslip(phase_plasticityInstance(material_phaseAt(1,e))),&
nIPneighbors) :: &
my_compatibility ! my_compatibility for current element and ip
2019-03-17 21:32:08 +05:30
real(pReal) :: &
my_compatibilitySum, &
thresholdValue, &
nThresholdValues
logical, dimension(totalNslip(phase_plasticityInstance(material_phaseAt(1,e)))) :: &
2019-03-17 21:32:08 +05:30
belowThreshold
2019-12-02 17:28:23 +05:30
type(rotation) :: mis
2019-03-17 21:32:08 +05:30
2019-06-07 13:50:56 +05:30
Nneighbors = nIPneighbors
ph = material_phaseAt(1,e)
2019-03-17 21:32:08 +05:30
textureID = material_texture(1,i,e)
instance = phase_plasticityInstance(ph)
ns = totalNslip(instance)
associate(prm => param(instance))
2019-03-17 21:32:08 +05:30
!*** start out fully compatible
my_compatibility = 0.0_pReal
forall(s1 = 1:ns) my_compatibility(1:2,s1,s1,1:Nneighbors) = 1.0_pReal
2019-03-17 22:29:01 +05:30
!*** Loop thrugh neighbors and check whether there is any compatibility.
2019-03-17 21:32:08 +05:30
neighbors: do n = 1,Nneighbors
neighbor_e = IPneighborhood(1,n,i,e)
neighbor_i = IPneighborhood(2,n,i,e)
2019-03-17 21:32:08 +05:30
!* FREE SURFACE
!* Set surface transmissivity to the value specified in the material.config
2019-03-17 21:32:08 +05:30
if (neighbor_e <= 0 .or. neighbor_i <= 0) then
forall(s1 = 1:ns) my_compatibility(1:2,s1,s1,n) = sqrt(prm%surfaceTransmissivity)
cycle
endif
2019-03-17 21:32:08 +05:30
!* PHASE BOUNDARY
!* If we encounter a different nonlocal phase at the neighbor,
2019-03-17 21:32:08 +05:30
!* we consider this to be a real "physical" phase boundary, so completely incompatible.
!* If one of the two phases has a local plasticity law,
2019-03-17 21:32:08 +05:30
!* we do not consider this to be a phase boundary, so completely compatible.
neighbor_phase = material_phaseAt(1,neighbor_e)
2019-03-17 21:32:08 +05:30
if (neighbor_phase /= ph) then
if (.not. phase_localPlasticity(neighbor_phase) .and. .not. phase_localPlasticity(ph))&
forall(s1 = 1:ns) my_compatibility(1:2,s1,s1,n) = 0.0_pReal
cycle
endif
2019-03-17 21:32:08 +05:30
!* GRAIN BOUNDARY !
!* fixed transmissivity for adjacent ips with different texture (only if explicitly given in material.config)
if (prm%grainboundaryTransmissivity >= 0.0_pReal) then
neighbor_textureID = material_texture(1,neighbor_i,neighbor_e)
if (neighbor_textureID /= textureID) then
if (.not. phase_localPlasticity(neighbor_phase)) then
forall(s1 = 1:ns) &
my_compatibility(1:2,s1,s1,n) = sqrt(prm%grainboundaryTransmissivity)
endif
cycle
endif
2019-03-17 21:32:08 +05:30
!* GRAIN BOUNDARY ?
!* Compatibility defined by relative orientation of slip systems:
!* The my_compatibility value is defined as the product of the slip normal projection and the slip direction projection.
!* Its sign is always positive for screws, for edges it has the same sign as the slip normal projection.
!* Since the sum for each slip system can easily exceed one (which would result in a transmissivity larger than one),
2019-03-17 21:32:08 +05:30
!* only values above or equal to a certain threshold value are considered. This threshold value is chosen, such that
!* the number of compatible slip systems is minimized with the sum of the original compatibility values exceeding one.
!* Finally the smallest compatibility value is decreased until the sum is exactly equal to one.
2019-03-17 21:32:08 +05:30
!* All values below the threshold are set to zero.
else
2019-12-02 17:28:23 +05:30
mis = orientation(1,i,e)%misorientation(orientation(1,neighbor_i,neighbor_e))
2019-03-17 21:32:08 +05:30
mySlipSystems: do s1 = 1,ns
neighborSlipSystems: do s2 = 1,ns
my_compatibility(1,s2,s1,n) = math_inner(prm%slip_normal(1:3,s1), &
2019-12-02 17:28:23 +05:30
mis%rotate(prm%slip_normal(1:3,s2))) &
* abs(math_inner(prm%slip_direction(1:3,s1), &
2019-12-02 17:28:23 +05:30
mis%rotate(prm%slip_direction(1:3,s2))))
my_compatibility(2,s2,s1,n) = abs(math_inner(prm%slip_normal(1:3,s1), &
2019-12-02 17:28:23 +05:30
mis%rotate(prm%slip_normal(1:3,s2)))) &
* abs(math_inner(prm%slip_direction(1:3,s1), &
2019-12-02 17:28:23 +05:30
mis%rotate(prm%slip_direction(1:3,s2))))
2019-03-17 21:32:08 +05:30
enddo neighborSlipSystems
2019-03-17 21:32:08 +05:30
my_compatibilitySum = 0.0_pReal
belowThreshold = .true.
do while (my_compatibilitySum < 1.0_pReal .and. any(belowThreshold(1:ns)))
thresholdValue = maxval(my_compatibility(2,1:ns,s1,n), belowThreshold(1:ns)) ! screws always positive
nThresholdValues = real(count(my_compatibility(2,1:ns,s1,n) >= thresholdValue),pReal)
where (my_compatibility(2,1:ns,s1,n) >= thresholdValue) &
belowThreshold(1:ns) = .false.
if (my_compatibilitySum + thresholdValue * nThresholdValues > 1.0_pReal) &
where (abs(my_compatibility(1:2,1:ns,s1,n)) >= thresholdValue) & ! MD: rather check below threshold?
my_compatibility(1:2,1:ns,s1,n) = sign((1.0_pReal - my_compatibilitySum) &
/ nThresholdValues, my_compatibility(1:2,1:ns,s1,n))
my_compatibilitySum = my_compatibilitySum + nThresholdValues * thresholdValue
enddo
where (belowThreshold(1:ns)) my_compatibility(1,1:ns,s1,n) = 0.0_pReal
where (belowThreshold(1:ns)) my_compatibility(2,1:ns,s1,n) = 0.0_pReal
enddo mySlipSystems
endif
2019-03-17 21:32:08 +05:30
enddo neighbors
2019-03-17 21:32:08 +05:30
compatibility(1:2,1:ns,1:ns,1:Nneighbors,i,e) = my_compatibility
2019-03-17 21:32:08 +05:30
end associate
end subroutine plastic_nonlocal_updateCompatibility
2019-03-17 22:29:01 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief returns copy of current dislocation densities from state
!> @details raw values is rectified
!--------------------------------------------------------------------------------------------------
function getRho(instance,of,ip,el)
integer, intent(in) :: instance, of,ip,el
real(pReal), dimension(param(instance)%totalNslip,10) :: getRho
associate(prm => param(instance))
getRho = reshape(state(instance)%rho(:,of),[prm%totalNslip,10])
2019-11-24 18:12:19 +05:30
! ensure positive densities (not for imm, they have a sign)
getRho(:,mob) = max(getRho(:,mob),0.0_pReal)
getRho(:,dip) = max(getRho(:,dip),0.0_pReal)
2019-06-07 02:47:02 +05:30
where(abs(getRho) < max(prm%significantN/IPvolume(ip,el)**(2.0_pReal/3.0_pReal),prm%significantRho)) &
getRho = 0.0_pReal
end associate
2019-03-17 22:29:01 +05:30
end function getRho
!--------------------------------------------------------------------------------------------------
!> @brief returns copy of current dislocation densities from state
!> @details raw values is rectified
!--------------------------------------------------------------------------------------------------
function getRho0(instance,of,ip,el)
integer, intent(in) :: instance, of,ip,el
real(pReal), dimension(param(instance)%totalNslip,10) :: getRho0
associate(prm => param(instance))
getRho0 = reshape(state0(instance)%rho(:,of),[prm%totalNslip,10])
! ensure positive densities (not for imm, they have a sign)
getRho0(:,mob) = max(getRho0(:,mob),0.0_pReal)
getRho0(:,dip) = max(getRho0(:,dip),0.0_pReal)
where(abs(getRho0) < max(prm%significantN/IPvolume(ip,el)**(2.0_pReal/3.0_pReal),prm%significantRho)) &
getRho0 = 0.0_pReal
end associate
end function getRho0
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
module subroutine plastic_nonlocal_results(instance,group)
integer, intent(in) :: instance
character(len=*),intent(in) :: group
2020-02-14 13:56:26 +05:30
integer :: o
associate(prm => param(instance),dst => microstructure(instance),stt=>state(instance))
2020-02-14 13:56:26 +05:30
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case('rho_sgl_mob_edg_pos')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_sgl_mob_edg_pos, 'rho_sgl_mob_edg_pos', &
'positive mobile edge density','1/m²')
case('rho_sgl_imm_edg_pos')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_sgl_imm_edg_pos, 'rho_sgl_imm_edg_pos',&
'positive immobile edge density','1/m²')
case('rho_sgl_mob_edg_neg')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_sgl_mob_edg_neg, 'rho_sgl_mob_edg_neg',&
'negative mobile edge density','1/m²')
case('rho_sgl_imm_edg_neg')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_sgl_imm_edg_neg, 'rho_sgl_imm_edg_neg',&
'negative immobile edge density','1/m²')
2020-02-21 14:12:56 +05:30
case('rho_dip_edg')
2020-02-14 13:56:26 +05:30
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_dip_edg, 'rho_dip_edg',&
'edge dipole density','1/m²')
case('rho_sgl_mob_scr_pos')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_sgl_mob_scr_pos, 'rho_sgl_mob_scr_pos',&
'positive mobile screw density','1/m²')
case('rho_sgl_imm_scr_pos')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_sgl_imm_scr_pos, 'rho_sgl_imm_scr_pos',&
'positive immobile screw density','1/m²')
case('rho_sgl_mob_scr_neg')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_sgl_mob_scr_neg, 'rho_sgl_mob_scr_neg',&
'negative mobile screw density','1/m²')
case('rho_sgl_imm_scr_neg')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_sgl_imm_scr_neg, 'rho_sgl_imm_scr_neg',&
'negative immobile screw density','1/m²')
case('rho_dip_scr')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_dip_scr, 'rho_dip_scr',&
'screw dipole density','1/m²')
case('rho_forest')
if(prm%totalNslip>0) call results_writeDataset(group,stt%rho_forest, 'rho_forest',&
'forest density','1/m²')
case('v_edg_pos')
if(prm%totalNslip>0) call results_writeDataset(group,stt%v_edg_pos, 'v_edg_pos',&
'positive edge velocity','m/s')
case('v_edg_neg')
if(prm%totalNslip>0) call results_writeDataset(group,stt%v_edg_neg, 'v_edg_neg',&
'negative edge velocity','m/s')
case('v_scr_pos')
if(prm%totalNslip>0) call results_writeDataset(group,stt%v_scr_pos, 'v_scr_pos',&
'positive srew velocity','m/s')
case('v_scr_neg')
if(prm%totalNslip>0) call results_writeDataset(group,stt%v_scr_neg, 'v_scr_neg',&
'negative screw velocity','m/s')
case('gamma')
if(prm%totalNslip>0) call results_writeDataset(group,stt%gamma,'gamma',&
'plastic shear','1')
case('tau_pass')
if(prm%totalNslip>0) call results_writeDataset(group,dst%tau_pass,'tau_pass',&
'passing stress for slip','Pa')
end select
enddo outputsLoop
end associate
end subroutine plastic_nonlocal_results
end submodule plastic_nonlocal