DAMASK_EICMD/src/homogenization.f90

821 lines
44 KiB
Fortran
Raw Normal View History

2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
module homogenization
2019-06-15 20:12:16 +05:30
use prec
use IO
use config
use debug
use math
use material
use numerics
use constitutive
use crystallite
use FEsolving
use mesh
use discretization
use thermal_isothermal
use thermal_adiabatic
use thermal_conduction
use damage_none
use damage_local
use damage_nonlocal
use results
use HDF5_utilities
implicit none
private
2019-06-11 13:18:07 +05:30
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
2019-06-15 20:12:16 +05:30
real(pReal), dimension(:,:,:,:), allocatable, public :: &
materialpoint_F0, & !< def grad of IP at start of FE increment
materialpoint_F, & !< def grad of IP to be reached at end of FE increment
materialpoint_P !< first P--K stress of IP
real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: &
materialpoint_dPdF !< tangent of first P--K stress at IP
real(pReal), dimension(:,:,:), allocatable, public :: &
materialpoint_results !< results array of material point
integer, public, protected :: &
materialpoint_sizeResults, &
thermal_maxSizePostResults, &
damage_maxSizePostResults
real(pReal), dimension(:,:,:,:), allocatable :: &
materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment
materialpoint_subF !< def grad of IP to be reached at end of homog inc
real(pReal), dimension(:,:), allocatable :: &
materialpoint_subFrac, &
materialpoint_subStep, &
materialpoint_subdt
logical, dimension(:,:), allocatable :: &
materialpoint_requested, &
materialpoint_converged
logical, dimension(:,:,:), allocatable :: &
materialpoint_doneAndHappy
interface
2019-06-15 20:12:16 +05:30
module subroutine mech_none_init
end subroutine mech_none_init
module subroutine mech_isostrain_init
end subroutine mech_isostrain_init
module subroutine mech_RGC_init
end subroutine mech_RGC_init
module subroutine mech_isostrain_partitionDeformation(F,avgF)
real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient
real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point
end subroutine mech_isostrain_partitionDeformation
module subroutine mech_RGC_partitionDeformation(F,avgF,instance,of)
real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient
real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point
integer, intent(in) :: &
instance, &
of
end subroutine mech_RGC_partitionDeformation
module subroutine mech_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
2019-05-18 11:09:55 +05:30
2019-06-15 20:12:16 +05:30
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
end subroutine mech_isostrain_averageStressAndItsTangent
module subroutine mech_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
end subroutine mech_RGC_averageStressAndItsTangent
module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el)
logical, dimension(2) :: mech_RGC_updateState
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
F,& !< partitioned deformation gradients
F0 !< partitioned initial deformation gradients
real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
end function mech_RGC_updateState
module subroutine mech_RGC_results(instance,group)
integer, intent(in) :: instance !< homogenization instance
character(len=*), intent(in) :: group !< group name in HDF5 file
end subroutine mech_RGC_results
end interface
2019-06-15 20:12:16 +05:30
public :: &
homogenization_init, &
materialpoint_stressAndItsTangent, &
materialpoint_postResults, &
homogenization_results
2012-08-10 21:28:17 +05:30
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init
2019-06-15 20:12:16 +05:30
integer, parameter :: FILEUNIT = 200
integer :: e,i,p
integer, dimension(:,:), pointer :: thisSize
integer, dimension(:) , pointer :: thisNoutput
character(len=64), dimension(:,:), pointer :: thisOutput
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
logical :: valid
2014-09-26 16:04:36 +05:30
2019-06-15 20:12:16 +05:30
if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) call mech_none_init
if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) call mech_isostrain_init
if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) call mech_RGC_init
2015-09-24 23:20:11 +05:30
2019-06-15 20:12:16 +05:30
if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init
if (any(thermal_type == THERMAL_adiabatic_ID)) call thermal_adiabatic_init
if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init
2015-09-24 23:20:11 +05:30
2019-06-15 20:12:16 +05:30
if (any(damage_type == DAMAGE_none_ID)) call damage_none_init
if (any(damage_type == DAMAGE_local_ID)) call damage_local_init
if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init
2015-09-24 23:20:11 +05:30
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
! write description file for homogenization output
2019-06-15 20:12:16 +05:30
mainProcess: if (worldrank == 0) then
call IO_write_jobFile(FILEUNIT,'outputHomogenization')
do p = 1,size(config_homogenization)
if (any(material_homogenizationAt == p)) then
write(FILEUNIT,'(/,a,/)') '['//trim(config_name_homogenization(p))//']'
write(FILEUNIT,'(a)') '(type) n/a'
write(FILEUNIT,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p)
i = thermal_typeInstance(p) ! which instance of this thermal type
valid = .true. ! assume valid
select case(thermal_type(p)) ! split per thermal type
case (THERMAL_isothermal_ID)
outputName = THERMAL_isothermal_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (THERMAL_adiabatic_ID)
outputName = THERMAL_adiabatic_label
thisNoutput => thermal_adiabatic_Noutput
thisOutput => thermal_adiabatic_output
thisSize => thermal_adiabatic_sizePostResult
case (THERMAL_conduction_ID)
outputName = THERMAL_conduction_label
thisNoutput => thermal_conduction_Noutput
thisOutput => thermal_conduction_output
thisSize => thermal_conduction_sizePostResult
case default
valid = .false.
end select
if (valid) then
write(FILEUNIT,'(a)') '(thermal)'//char(9)//trim(outputName)
if (thermal_type(p) /= THERMAL_isothermal_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
i = damage_typeInstance(p) ! which instance of this damage type
valid = .true. ! assume valid
select case(damage_type(p)) ! split per damage type
case (DAMAGE_none_ID)
outputName = DAMAGE_none_label
thisNoutput => null()
thisOutput => null()
thisSize => null()
case (DAMAGE_local_ID)
outputName = DAMAGE_local_label
thisNoutput => damage_local_Noutput
thisOutput => damage_local_output
thisSize => damage_local_sizePostResult
case (DAMAGE_nonlocal_ID)
outputName = DAMAGE_nonlocal_label
thisNoutput => damage_nonlocal_Noutput
thisOutput => damage_nonlocal_output
thisSize => damage_nonlocal_sizePostResult
case default
valid = .false.
end select
if (valid) then
write(FILEUNIT,'(a)') '(damage)'//char(9)//trim(outputName)
if (damage_type(p) /= DAMAGE_none_ID) then
do e = 1,thisNoutput(i)
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
enddo
endif
endif
endif
enddo
close(FILEUNIT)
endif mainProcess
call config_deallocate('material.config/homogenization')
2018-06-27 00:20:06 +05:30
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
! allocate and initialize global variables
2019-06-15 20:12:16 +05:30
allocate(materialpoint_dPdF(3,3,3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_F0(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
materialpoint_F0 = spread(spread(math_I3,3,discretization_nIP),4,discretization_nElem) ! initialize to identity
allocate(materialpoint_F(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
materialpoint_F = materialpoint_F0 ! initialize to identity
allocate(materialpoint_subF0(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_subF(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_P(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_subFrac(discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_subStep(discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_subdt(discretization_nIP,discretization_nElem), source=0.0_pReal)
allocate(materialpoint_requested(discretization_nIP,discretization_nElem), source=.false.)
allocate(materialpoint_converged(discretization_nIP,discretization_nElem), source=.true.)
allocate(materialpoint_doneAndHappy(2,discretization_nIP,discretization_nElem), source=.true.)
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
! allocate and initialize global state and postresutls variables
2019-06-15 20:12:16 +05:30
thermal_maxSizePostResults = 0
damage_maxSizePostResults = 0
do p = 1,size(config_homogenization)
thermal_maxSizePostResults = max(thermal_maxSizePostResults, thermalState (p)%sizePostResults)
damage_maxSizePostResults = max(damage_maxSizePostResults ,damageState (p)%sizePostResults)
enddo
materialpoint_sizeResults = 1 & ! grain count
+ 1 + thermal_maxSizePostResults &
+ damage_maxSizePostResults &
+ homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results
+ 1 + constitutive_plasticity_maxSizePostResults & ! constitutive size & constitutive results
+ constitutive_source_maxSizePostResults)
allocate(materialpoint_results(materialpoint_sizeResults,discretization_nIP,discretization_nElem))
write(6,'(/,a)') ' <<<+- homogenization init -+>>>'
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested)
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged)
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
endif
flush(6)
if (debug_g < 1 .or. debug_g > homogenization_Ngrains(material_homogenizationAt(debug_e))) &
call IO_error(602,ext_msg='constituent', el=debug_e, g=debug_g)
2012-08-10 21:28:17 +05:30
end subroutine homogenization_init
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
2019-06-15 20:12:16 +05:30
real(pReal), intent(in) :: dt !< time increment
logical, intent(in) :: updateJaco !< initiating Jacobian update
integer :: &
NiterationHomog, &
NiterationMPstate, &
g, & !< grain number
i, & !< integration point number
e, & !< element number
mySource, &
myNgrains
#ifdef DEBUG
2019-06-15 20:12:16 +05:30
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then
write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', &
transpose(materialpoint_F0(1:3,1:3,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', &
transpose(materialpoint_F(1:3,1:3,debug_i,debug_e))
endif
#endif
!--------------------------------------------------------------------------------------------------
! initialize restoration points of ...
2019-06-15 20:12:16 +05:30
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e);
do g = 1,myNgrains
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%state0( :,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%state0( :,material_phasememberAt(g,i,e))
enddo
crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e)
crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e)
crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e)
crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e)
crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e)
crystallite_partionedS0(1:3,1:3,g,i,e) = crystallite_S0(1:3,1:3,g,i,e)
enddo
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e)
materialpoint_subFrac(i,e) = 0.0_pReal
materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <<added to adopt flexibility in cutback size>>
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
materialpoint_requested(i,e) = .true. ! everybody requires calculation
if (homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
homogState(material_homogenizationAt(e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state
if (thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
thermalState(material_homogenizationAt(e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal thermal state
if (damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
damageState(material_homogenizationAt(e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal damage state
enddo
enddo
NiterationHomog = 0
2019-06-15 20:12:16 +05:30
cutBackLooping: do while (.not. terminallyIll .and. &
any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog))
2019-06-15 20:12:16 +05:30
!$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
IpLooping1: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
2019-06-15 20:12:16 +05:30
converged: if (materialpoint_converged(i,e)) then
#ifdef DEBUG
2019-06-15 20:12:16 +05:30
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0)) then
write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', &
materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', &
materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i
endif
#endif
!---------------------------------------------------------------------------------------------------
! calculate new subStep and new subFrac
2019-06-15 20:12:16 +05:30
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), &
stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration
steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then
! wind forward grain starting point of...
crystallite_partionedF0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedF(1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFp0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_Fp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLp0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_Lp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFi0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_Fi (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLi0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_Li (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e) = &
crystallite_S (1:3,1:3,1:myNgrains,i,e)
do g = 1,myNgrains
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%state (:,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%state (:,material_phasememberAt(g,i,e))
enddo
enddo
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
homogState(material_homogenizationAt(e))%State (:,mappingHomogenization(1,i,e))
if(thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
thermalState(material_homogenizationAt(e))%State (:,mappingHomogenization(1,i,e))
if(damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e)) = &
damageState(material_homogenizationAt(e))%State (:,mappingHomogenization(1,i,e))
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e)
endif steppingNeeded
else converged
if ( (myNgrains == 1 .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep
! cutback makes no sense
2019-06-15 20:12:16 +05:30
!$OMP FLUSH(terminallyIll)
if (.not. terminallyIll) then ! so first signals terminally ill...
!$OMP CRITICAL (write2out)
write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
!$OMP END CRITICAL (write2out)
endif
!$OMP CRITICAL (setTerminallyIll)
terminallyIll = .true. ! ...and kills all others
!$OMP END CRITICAL (setTerminallyIll)
else ! cutback makes sense
materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
#ifdef DEBUG
2019-06-15 20:12:16 +05:30
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0)) then
write(6,'(a,1x,f12.8,a,i8,1x,i2/)') &
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',&
materialpoint_subStep(i,e),' at el ip',e,i
endif
#endif
!--------------------------------------------------------------------------------------------------
! restore...
2019-06-15 20:12:16 +05:30
if (materialpoint_subStep(i,e) < 1.0_pReal) then ! protect against fake cutback from \Delta t = 2 to 1. Maybe that "trick" is not necessary anymore at all? I.e. start with \Delta t = 1
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e)
crystallite_Li(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e)
endif ! maybe protecting everything from overwriting (not only L) makes even more sense
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e)
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e)
crystallite_S(1:3,1:3,1:myNgrains,i,e) = &
crystallite_partionedS0(1:3,1:3,1:myNgrains,i,e)
do g = 1, myNgrains
plasticState (material_phaseAt(g,e))%state( :,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%state( :,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e))
enddo
enddo
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) = &
homogState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e))
if(thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) = &
thermalState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e))
if(damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%State( :,mappingHomogenization(1,i,e)) = &
damageState(material_homogenizationAt(e))%subState0(:,mappingHomogenization(1,i,e))
endif
endif converged
if (materialpoint_subStep(i,e) > subStepMinHomog) then
materialpoint_requested(i,e) = .true.
materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) &
+ materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) &
- materialpoint_F0(1:3,1:3,i,e))
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.]
endif
enddo IpLooping1
enddo elementLooping1
!$OMP END PARALLEL DO
NiterationMPstate = 0
convergenceLooping: do while (.not. terminallyIll .and. &
any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
) .and. &
NiterationMPstate < nMPstate)
NiterationMPstate = NiterationMPstate + 1
!--------------------------------------------------------------------------------------------------
! deformation partitioning
! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state,
! results in crystallite_partionedF
2019-06-15 20:12:16 +05:30
!$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
IpLooping2: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if ( materialpoint_requested(i,e) .and. & ! process requested but...
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
call partitionDeformation(i,e) ! partition deformation onto constituents
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
else
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
endif
enddo IpLooping2
enddo elementLooping2
!$OMP END PARALLEL DO
!--------------------------------------------------------------------------------------------------
! crystallite integration
! based on crystallite_partionedF0,.._partionedF
! incrementing by crystallite_dt
2019-02-02 15:23:55 +05:30
2019-06-15 20:12:16 +05:30
materialpoint_converged = crystallite_stress() !ToDo: MD not sure if that is the best logic
!--------------------------------------------------------------------------------------------------
! state update
!$OMP PARALLEL DO
2019-06-15 20:12:16 +05:30
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping3: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if ( materialpoint_requested(i,e) .and. &
.not. materialpoint_doneAndHappy(1,i,e)) then
if (.not. materialpoint_converged(i,e)) then
materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.]
else
materialpoint_doneAndHappy(1:2,i,e) = updateState(i,e)
materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(1:2,i,e)) ! converged if done and happy
endif
endif
enddo IpLooping3
enddo elementLooping3
!$OMP END PARALLEL DO
enddo convergenceLooping
2019-06-15 20:12:16 +05:30
NiterationHomog = NiterationHomog + 1
enddo cutBackLooping
if(updateJaco) call crystallite_stressTangent
if (.not. terminallyIll ) then
call crystallite_orientations() ! calculate crystal orientations
!$OMP PARALLEL DO
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
call averageStressAndItsTangent(i,e)
enddo IpLooping4
enddo elementLooping4
!$OMP END PARALLEL DO
else
write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill'
endif
2012-08-10 21:28:17 +05:30
end subroutine materialpoint_stressAndItsTangent
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of result array at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_postResults
2019-06-15 20:12:16 +05:30
integer :: &
thePos, &
theSize, &
myNgrains, &
myCrystallite, &
g, & !< grain number
i, & !< integration point number
e !< element number
!$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize)
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
myCrystallite = microstructure_crystallite(discretization_microstructureAt(e))
IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
thePos = 0
theSize = thermalState (material_homogenizationAt(e))%sizePostResults &
+ damageState (material_homogenizationAt(e))%sizePostResults
materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of homogenization results
thePos = thePos + 1
if (theSize > 0) then ! any homogenization results to mention?
materialpoint_results(thePos+1:thePos+theSize,i,e) = postResults(i,e)
thePos = thePos + theSize
endif
materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal) ! tell number of grains at materialpoint
thePos = thePos + 1
grainLooping :do g = 1,myNgrains
theSize = 1 + crystallite_sizePostResults(myCrystallite) + &
1 + plasticState (material_phaseAt(g,e))%sizePostResults + &
sum(sourceState(material_phaseAt(g,e))%p(:)%sizePostResults)
materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(g,i,e) ! tell crystallite results
thePos = thePos + theSize
enddo grainLooping
enddo IpLooping
enddo elementLooping
!$OMP END PARALLEL DO
2012-08-10 21:28:17 +05:30
end subroutine materialpoint_postResults
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief partition material point def grad onto constituents
!--------------------------------------------------------------------------------------------------
2019-01-13 14:18:47 +05:30
subroutine partitionDeformation(ip,el)
2019-04-06 00:15:56 +05:30
integer, intent(in) :: &
ip, & !< integration point
el !< element number
2019-06-07 00:44:37 +05:30
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
crystallite_partionedF(1:3,1:3,1,ip,el) = materialpoint_subF(1:3,1:3,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_partitionDeformation(&
2019-06-07 00:44:37 +05:30
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
materialpoint_subF(1:3,1:3,ip,el))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call mech_RGC_partitionDeformation(&
2019-06-07 00:44:37 +05:30
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
materialpoint_subF(1:3,1:3,ip,el),&
ip, &
el)
end select chosenHomogenization
2019-01-13 14:18:47 +05:30
end subroutine partitionDeformation
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
2012-08-10 21:28:17 +05:30
!> "happy" with result
!--------------------------------------------------------------------------------------------------
2019-01-13 14:18:47 +05:30
function updateState(ip,el)
2019-04-06 00:15:56 +05:30
integer, intent(in) :: &
ip, & !< integration point
el !< element number
2019-01-13 14:18:47 +05:30
logical, dimension(2) :: updateState
2019-01-13 14:18:47 +05:30
updateState = .true.
2019-06-07 00:44:37 +05:30
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
2019-01-13 14:18:47 +05:30
updateState = &
updateState .and. &
2019-06-07 00:44:37 +05:30
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el),&
materialpoint_subF(1:3,1:3,ip,el),&
materialpoint_subdt(ip,el), &
2019-06-07 00:44:37 +05:30
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
ip, &
el)
end select chosenHomogenization
2019-06-07 00:44:37 +05:30
chosenThermal: select case (thermal_type(material_homogenizationAt(el)))
case (THERMAL_adiabatic_ID) chosenThermal
2019-01-13 14:18:47 +05:30
updateState = &
updateState .and. &
thermal_adiabatic_updateState(materialpoint_subdt(ip,el), &
ip, &
el)
end select chosenThermal
2019-06-07 00:44:37 +05:30
chosenDamage: select case (damage_type(material_homogenizationAt(el)))
case (DAMAGE_local_ID) chosenDamage
2019-01-13 14:18:47 +05:30
updateState = &
updateState .and. &
damage_local_updateState(materialpoint_subdt(ip,el), &
ip, &
el)
end select chosenDamage
2019-01-13 14:18:47 +05:30
end function updateState
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
2019-01-13 14:18:47 +05:30
subroutine averageStressAndItsTangent(ip,el)
2019-04-06 00:15:56 +05:30
integer, intent(in) :: &
ip, & !< integration point
el !< element number
2019-06-07 00:44:37 +05:30
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
materialpoint_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_dPdF(1:3,1:3,1:3,1:3,1,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
2019-06-07 00:44:37 +05:30
crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
homogenization_typeInstance(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call mech_RGC_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
2019-06-07 00:44:37 +05:30
crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
homogenization_typeInstance(material_homogenizationAt(el)))
end select chosenHomogenization
2019-01-13 14:18:47 +05:30
end subroutine averageStressAndItsTangent
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion. call only,
!> if homogenization_sizePostResults(i,e) > 0 !!
2012-08-10 21:28:17 +05:30
!--------------------------------------------------------------------------------------------------
2019-01-13 14:18:47 +05:30
function postResults(ip,el)
2019-04-06 00:15:56 +05:30
integer, intent(in) :: &
ip, & !< integration point
el !< element number
2019-06-15 20:12:16 +05:30
real(pReal), dimension( thermalState (material_homogenizationAt(el))%sizePostResults &
2019-03-10 15:53:39 +05:30
+ damageState (material_homogenizationAt(el))%sizePostResults) :: &
2019-01-13 14:18:47 +05:30
postResults
2019-04-06 00:15:56 +05:30
integer :: &
2019-01-13 03:37:35 +05:30
startPos, endPos ,&
homog
2019-01-13 14:18:47 +05:30
postResults = 0.0_pReal
startPos = 1
endPos = thermalState(material_homogenizationAt(el))%sizePostResults
2019-06-07 00:44:37 +05:30
chosenThermal: select case (thermal_type(material_homogenizationAt(el)))
case (THERMAL_adiabatic_ID) chosenThermal
2019-03-10 15:53:39 +05:30
homog = material_homogenizationAt(el)
postResults(startPos:endPos) = &
2018-12-31 02:24:50 +05:30
thermal_adiabatic_postResults(homog,thermal_typeInstance(homog),thermalMapping(homog)%p(ip,el))
case (THERMAL_conduction_ID) chosenThermal
2019-03-10 15:53:39 +05:30
homog = material_homogenizationAt(el)
postResults(startPos:endPos) = &
2018-12-31 02:24:50 +05:30
thermal_conduction_postResults(homog,thermal_typeInstance(homog),thermalMapping(homog)%p(ip,el))
end select chosenThermal
2019-04-06 00:15:56 +05:30
startPos = endPos + 1
2019-03-10 15:53:39 +05:30
endPos = endPos + damageState(material_homogenizationAt(el))%sizePostResults
2019-06-07 00:44:37 +05:30
chosenDamage: select case (damage_type(material_homogenizationAt(el)))
case (DAMAGE_local_ID) chosenDamage
2019-01-13 14:18:47 +05:30
postResults(startPos:endPos) = damage_local_postResults(ip, el)
case (DAMAGE_nonlocal_ID) chosenDamage
2019-01-13 14:18:47 +05:30
postResults(startPos:endPos) = damage_nonlocal_postResults(ip, el)
2019-01-13 03:37:35 +05:30
end select chosenDamage
2019-01-13 14:18:47 +05:30
end function postResults
2014-09-26 16:04:36 +05:30
2019-04-30 22:15:16 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief writes homogenization results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_results
#if defined(PETSc) || defined(DAMASK_HDF5)
use material, only: &
material_homogenization_type => homogenization_type
integer :: p
character(len=256) :: group
do p=1,size(config_name_homogenization)
group = trim('current/materialpoint')//'/'//trim(config_name_homogenization(p))
call HDF5_closeGroup(results_addGroup(group))
group = trim(group)//'/mech'
call HDF5_closeGroup(results_addGroup(group))
select case(material_homogenization_type(p))
2019-05-01 02:35:21 +05:30
case(HOMOGENIZATION_rgc_ID)
call mech_RGC_results(homogenization_typeInstance(p),group)
2019-04-30 22:15:16 +05:30
end select
enddo
#endif
end subroutine homogenization_results
2012-08-10 21:28:17 +05:30
end module homogenization