2011-04-07 12:50:28 +05:30
|
|
|
! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
|
2011-04-04 19:39:54 +05:30
|
|
|
!
|
|
|
|
! This file is part of DAMASK,
|
2011-04-07 12:50:28 +05:30
|
|
|
! the Düsseldorf Advanced MAterial Simulation Kit.
|
2011-04-04 19:39:54 +05:30
|
|
|
!
|
|
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
|
|
! it under the terms of the GNU General Public License as published by
|
|
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
|
|
! (at your option) any later version.
|
|
|
|
!
|
|
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
! GNU General Public License for more details.
|
|
|
|
!
|
|
|
|
! You should have received a copy of the GNU General Public License
|
|
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
!
|
|
|
|
!##############################################################
|
2009-08-31 20:39:15 +05:30
|
|
|
!* $Id$
|
2007-03-21 15:50:25 +05:30
|
|
|
!##############################################################
|
|
|
|
MODULE math
|
|
|
|
!##############################################################
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
use, intrinsic :: iso_c_binding
|
2011-12-01 17:31:13 +05:30
|
|
|
use prec, only: pReal,pInt
|
2012-01-13 21:48:16 +05:30
|
|
|
use IO, only: IO_error
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
|
|
|
|
2007-03-26 18:20:04 +05:30
|
|
|
real(pReal), parameter :: pi = 3.14159265358979323846264338327950288419716939937510_pReal
|
2007-03-21 15:50:25 +05:30
|
|
|
real(pReal), parameter :: inDeg = 180.0_pReal/pi
|
|
|
|
real(pReal), parameter :: inRad = pi/180.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-03-28 13:50:50 +05:30
|
|
|
! *** 3x3 Identity ***
|
2007-03-22 20:18:16 +05:30
|
|
|
real(pReal), dimension(3,3), parameter :: math_I3 = &
|
|
|
|
reshape( (/ &
|
|
|
|
1.0_pReal,0.0_pReal,0.0_pReal, &
|
|
|
|
0.0_pReal,1.0_pReal,0.0_pReal, &
|
|
|
|
0.0_pReal,0.0_pReal,1.0_pReal /),(/3,3/))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! *** Mandel notation ***
|
|
|
|
integer(pInt), dimension (2,6), parameter :: mapMandel = &
|
|
|
|
reshape((/&
|
2011-12-01 17:31:13 +05:30
|
|
|
1_pInt,1_pInt, &
|
|
|
|
2_pInt,2_pInt, &
|
|
|
|
3_pInt,3_pInt, &
|
|
|
|
1_pInt,2_pInt, &
|
|
|
|
2_pInt,3_pInt, &
|
|
|
|
1_pInt,3_pInt &
|
2008-02-15 18:12:27 +05:30
|
|
|
/),(/2,6/))
|
|
|
|
|
|
|
|
real(pReal), dimension(6), parameter :: nrmMandel = &
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal/)
|
|
|
|
real(pReal), dimension(6), parameter :: invnrmMandel = &
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal/)
|
|
|
|
|
|
|
|
! *** Voigt notation ***
|
|
|
|
integer(pInt), dimension (2,6), parameter :: mapVoigt = &
|
|
|
|
reshape((/&
|
2011-12-01 17:31:13 +05:30
|
|
|
1_pInt,1_pInt, &
|
|
|
|
2_pInt,2_pInt, &
|
|
|
|
3_pInt,3_pInt, &
|
|
|
|
2_pInt,3_pInt, &
|
|
|
|
1_pInt,3_pInt, &
|
|
|
|
1_pInt,2_pInt &
|
2008-02-15 18:12:27 +05:30
|
|
|
/),(/2,6/))
|
|
|
|
|
|
|
|
real(pReal), dimension(6), parameter :: nrmVoigt = &
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal/)
|
|
|
|
real(pReal), dimension(6), parameter :: invnrmVoigt = &
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal/)
|
|
|
|
|
|
|
|
! *** Plain notation ***
|
|
|
|
integer(pInt), dimension (2,9), parameter :: mapPlain = &
|
|
|
|
reshape((/&
|
2011-12-01 17:31:13 +05:30
|
|
|
1_pInt,1_pInt, &
|
|
|
|
1_pInt,2_pInt, &
|
|
|
|
1_pInt,3_pInt, &
|
|
|
|
2_pInt,1_pInt, &
|
|
|
|
2_pInt,2_pInt, &
|
|
|
|
2_pInt,3_pInt, &
|
|
|
|
3_pInt,1_pInt, &
|
|
|
|
3_pInt,2_pInt, &
|
|
|
|
3_pInt,3_pInt &
|
2008-02-15 18:12:27 +05:30
|
|
|
/),(/2,9/))
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
! Symmetry operations as quaternions
|
|
|
|
! 24 for cubic, 12 for hexagonal = 36
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), dimension(2), parameter :: math_NsymOperations = (/24_pInt,12_pInt/)
|
2010-04-28 22:49:58 +05:30
|
|
|
real(pReal), dimension(4,36), parameter :: math_symOperations = &
|
2009-12-14 16:32:10 +05:30
|
|
|
reshape((/&
|
2010-03-18 17:53:17 +05:30
|
|
|
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! cubic symmetry operations
|
|
|
|
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, & ! 2-fold symmetry
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, &
|
|
|
|
0.0_pReal, -0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, & ! 3-fold symmetry
|
|
|
|
-0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
-0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
|
|
|
-0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
|
|
|
0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
|
|
|
-0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
|
|
|
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, & ! 4-fold symmetry
|
|
|
|
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, &
|
|
|
|
-0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, &
|
|
|
|
0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
|
|
|
-0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal, &
|
|
|
|
-0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! hexagonal symmetry operations
|
|
|
|
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, & ! 2-fold symmetry
|
|
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
2010-04-12 13:34:26 +05:30
|
|
|
0.0_pReal, 0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, -0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, 0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, -0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
|
2010-03-18 17:53:17 +05:30
|
|
|
0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, & ! 6-fold symmetry
|
|
|
|
-0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, &
|
|
|
|
0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
|
|
|
|
-0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
|
|
|
|
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal &
|
|
|
|
/),(/4,36/))
|
2009-01-26 18:28:58 +05:30
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
include 'fftw3.f03'
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
CONTAINS
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! initialization of module
|
|
|
|
!**************************************************************************
|
2007-03-28 12:51:47 +05:30
|
|
|
SUBROUTINE math_init ()
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
use prec, only: tol_math_check
|
2009-08-27 21:00:40 +05:30
|
|
|
use numerics, only: fixedSeed
|
2010-05-06 19:37:21 +05:30
|
|
|
use IO, only: IO_error
|
2011-03-21 16:01:17 +05:30
|
|
|
use debug, only: debug_verbosity
|
2007-03-28 12:51:47 +05:30
|
|
|
implicit none
|
|
|
|
|
2011-11-04 15:59:35 +05:30
|
|
|
integer(pInt) :: i
|
2010-05-06 19:37:21 +05:30
|
|
|
real(pReal), dimension(3,3) :: R,R2
|
2010-05-04 18:33:35 +05:30
|
|
|
real(pReal), dimension(3) :: Eulers
|
2011-11-04 15:59:35 +05:30
|
|
|
real(pReal), dimension(4) :: q,q2,axisangle,randTest
|
2011-12-01 17:31:13 +05:30
|
|
|
! the following variables are system dependend and shound NOT be pInt
|
2011-11-04 15:59:35 +05:30
|
|
|
integer :: randSize ! gfortran requires a variable length to compile
|
|
|
|
integer, dimension(:), allocatable :: randInit ! if recalculations of former randomness (with given seed) is necessary
|
|
|
|
! comment the first random_seed call out, set randSize to 1, and use ifort
|
2012-01-20 02:08:52 +05:30
|
|
|
character(len=64) :: error_msg
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
!$OMP CRITICAL (write2out)
|
2009-08-31 20:39:15 +05:30
|
|
|
write(6,*)
|
|
|
|
write(6,*) '<<<+- math init -+>>>'
|
|
|
|
write(6,*) '$Id$'
|
2012-01-31 20:24:49 +05:30
|
|
|
#include "compilation_info.f90"
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
!$OMP END CRITICAL (write2out)
|
2011-08-01 15:41:32 +05:30
|
|
|
|
2011-11-04 15:59:35 +05:30
|
|
|
call random_seed(size=randSize)
|
|
|
|
allocate(randInit(randSize))
|
2009-08-27 21:00:40 +05:30
|
|
|
if (fixedSeed > 0_pInt) then
|
2011-11-04 15:59:35 +05:30
|
|
|
randInit(1:randSize) = int(fixedSeed) ! fixedSeed is of type pInt, randInit not
|
2009-08-27 21:00:40 +05:30
|
|
|
call random_seed(put=randInit)
|
|
|
|
else
|
|
|
|
call random_seed()
|
|
|
|
endif
|
|
|
|
|
2011-01-21 00:55:45 +05:30
|
|
|
call random_seed(get=randInit)
|
2011-11-04 15:59:35 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do i = 1_pInt, 4_pInt
|
2011-11-04 15:59:35 +05:30
|
|
|
call random_number(randTest(i))
|
|
|
|
enddo
|
|
|
|
|
2011-06-14 19:38:13 +05:30
|
|
|
!$OMP CRITICAL (write2out)
|
|
|
|
! this critical block did cause trouble at IWM
|
2011-11-04 15:59:35 +05:30
|
|
|
write(6,*) 'value of random seed: ', randInit(1)
|
|
|
|
write(6,*) 'size of random seed: ', randSize
|
|
|
|
write(6,'(a,4(/,26x,f16.14))') ' start of random sequence: ', randTest
|
|
|
|
write(6,*) ''
|
2011-06-14 19:38:13 +05:30
|
|
|
!$OMP END CRITICAL (write2out)
|
2011-03-21 16:01:17 +05:30
|
|
|
|
2011-11-04 15:59:35 +05:30
|
|
|
call random_seed(put=randInit)
|
|
|
|
call random_seed(get=randInit)
|
|
|
|
|
2011-01-21 00:55:45 +05:30
|
|
|
call halton_seed_set(randInit(1))
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton_ndim_set(3_pInt)
|
2010-05-04 18:33:35 +05:30
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
! --- check rotation dictionary ---
|
|
|
|
|
|
|
|
! +++ q -> a -> q +++
|
|
|
|
q = math_qRnd();
|
|
|
|
axisangle = math_QuaternionToAxisAngle(q);
|
|
|
|
q2 = math_AxisAngleToQuaternion(axisangle(1:3),axisangle(4))
|
2011-12-01 17:31:13 +05:30
|
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
2012-01-20 02:08:52 +05:30
|
|
|
any(abs(-q-q2) > tol_math_check) ) then
|
|
|
|
write (error_msg, '(a,e14.6)' ) 'maximum deviation',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
|
|
|
call IO_error(670_pInt,ext_msg=error_msg)
|
|
|
|
endif
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
! +++ q -> R -> q +++
|
|
|
|
R = math_QuaternionToR(q);
|
|
|
|
q2 = math_RToQuaternion(R)
|
2011-12-01 17:31:13 +05:30
|
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
2012-01-20 02:08:52 +05:30
|
|
|
any(abs(-q-q2) > tol_math_check) ) then
|
|
|
|
write (error_msg, '(a,e14.6)' ) 'maximum deviation',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
|
|
|
call IO_error(671_pInt,ext_msg=error_msg)
|
|
|
|
endif
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
! +++ q -> euler -> q +++
|
|
|
|
Eulers = math_QuaternionToEuler(q);
|
|
|
|
q2 = math_EulerToQuaternion(Eulers)
|
2011-12-01 17:31:13 +05:30
|
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
2012-01-20 02:08:52 +05:30
|
|
|
any(abs(-q-q2) > tol_math_check) ) then
|
|
|
|
write (error_msg, '(a,e14.6)' ) 'maximum deviation',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
|
|
|
call IO_error(672_pInt,ext_msg=error_msg)
|
|
|
|
endif
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
! +++ R -> euler -> R +++
|
|
|
|
Eulers = math_RToEuler(R);
|
|
|
|
R2 = math_EulerToR(Eulers)
|
2012-01-20 02:08:52 +05:30
|
|
|
if ( any(abs( R-R2) > tol_math_check) ) then
|
|
|
|
write (error_msg, '(a,e14.6)' ) 'maximum deviation',maxval(abs( R-R2))
|
|
|
|
call IO_error(673_pInt,ext_msg=error_msg)
|
|
|
|
endif
|
2010-05-04 18:24:13 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE math_init
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2009-01-26 18:28:58 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! Quicksort algorithm for two-dimensional integer arrays
|
|
|
|
!
|
|
|
|
! Sorting is done with respect to array(1,:)
|
|
|
|
! and keeps array(2:N,:) linked to it.
|
|
|
|
!**************************************************************************
|
|
|
|
RECURSIVE SUBROUTINE qsort(a, istart, iend)
|
|
|
|
|
|
|
|
implicit none
|
2007-04-04 14:19:48 +05:30
|
|
|
integer(pInt), dimension(:,:) :: a
|
2007-04-03 13:47:58 +05:30
|
|
|
integer(pInt) :: istart,iend,ipivot
|
|
|
|
|
|
|
|
if (istart < iend) then
|
|
|
|
ipivot = math_partition(a,istart, iend)
|
2011-12-01 17:31:13 +05:30
|
|
|
call qsort(a, istart, ipivot-1_pInt)
|
|
|
|
call qsort(a, ipivot+1_pInt, iend)
|
2007-04-03 13:47:58 +05:30
|
|
|
endif
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE qsort
|
2007-04-03 13:47:58 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! Partitioning required for quicksort
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
integer(pInt) function math_partition(a, istart, iend)
|
2007-04-03 13:47:58 +05:30
|
|
|
|
|
|
|
implicit none
|
2007-04-04 14:19:48 +05:30
|
|
|
integer(pInt), dimension(:,:) :: a
|
2007-04-03 13:47:58 +05:30
|
|
|
integer(pInt) :: istart,iend,d,i,j,k,x,tmp
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
d = size(a,1_pInt) ! number of linked data
|
2008-02-15 18:12:27 +05:30
|
|
|
! set the starting and ending points, and the pivot point
|
|
|
|
|
|
|
|
i = istart
|
|
|
|
|
2007-04-04 14:19:48 +05:30
|
|
|
j = iend
|
2007-04-03 13:47:58 +05:30
|
|
|
x = a(1,istart)
|
|
|
|
do
|
|
|
|
! find the first element on the right side less than or equal to the pivot point
|
2011-12-01 17:31:13 +05:30
|
|
|
do j = j, istart, -1_pInt
|
2007-04-03 13:47:58 +05:30
|
|
|
if (a(1,j) <= x) exit
|
|
|
|
enddo
|
|
|
|
! find the first element on the left side greater than the pivot point
|
|
|
|
do i = i, iend
|
|
|
|
if (a(1,i) > x) exit
|
|
|
|
enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
if (i < j) then ! if the indexes do not cross, exchange values
|
|
|
|
do k = 1_pInt,d
|
2007-04-03 13:47:58 +05:30
|
|
|
tmp = a(k,i)
|
|
|
|
a(k,i) = a(k,j)
|
|
|
|
a(k,j) = tmp
|
|
|
|
enddo
|
2007-12-14 19:06:04 +05:30
|
|
|
else ! if they do cross, exchange left value with pivot and return with the partition index
|
2011-12-01 17:31:13 +05:30
|
|
|
do k = 1_pInt,d
|
2007-04-03 13:47:58 +05:30
|
|
|
tmp = a(k,istart)
|
|
|
|
a(k,istart) = a(k,j)
|
|
|
|
a(k,j) = tmp
|
|
|
|
enddo
|
2007-04-04 14:19:48 +05:30
|
|
|
math_partition = j
|
2007-04-03 13:47:58 +05:30
|
|
|
return
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_partition
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
|
2009-03-04 17:18:54 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! range of integers starting at one
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_range(N)
|
2009-03-04 17:18:54 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: N
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-03-04 17:18:54 +05:30
|
|
|
integer(pInt), dimension(N) :: math_range
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:N) math_range(i) = i
|
2009-03-04 17:18:54 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_range
|
2009-03-04 17:18:54 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
!**************************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
! second rank identity tensor of specified dimension
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_identity2nd(dimen)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
integer(pInt), intent(in) :: dimen
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2007-04-11 15:34:22 +05:30
|
|
|
real(pReal), dimension(dimen,dimen) :: math_identity2nd
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
math_identity2nd = 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:dimen) math_identity2nd(i,i) = 1.0_pReal
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_identity2nd
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2008-03-26 19:05:01 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! permutation tensor e_ijk used for computing cross product of two tensors
|
|
|
|
! e_ijk = 1 if even permutation of ijk
|
|
|
|
! e_ijk = -1 if odd permutation of ijk
|
|
|
|
! e_ijk = 0 otherwise
|
|
|
|
!**************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
pure function math_civita(i,j,k)
|
2008-03-26 19:05:01 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
integer(pInt), intent(in) :: i,j,k
|
2009-07-31 17:32:20 +05:30
|
|
|
real(pReal) math_civita
|
2008-03-26 19:05:01 +05:30
|
|
|
|
2009-07-31 17:32:20 +05:30
|
|
|
math_civita = 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
if (((i == 1_pInt).and.(j == 2_pInt).and.(k == 3_pInt)) .or. &
|
|
|
|
((i == 2_pInt).and.(j == 3_pInt).and.(k == 1_pInt)) .or. &
|
|
|
|
((i == 3_pInt).and.(j == 1_pInt).and.(k == 2_pInt))) math_civita = 1.0_pReal
|
|
|
|
if (((i == 1_pInt).and.(j == 3_pInt).and.(k == 2_pInt)) .or. &
|
|
|
|
((i == 2_pInt).and.(j == 1_pInt).and.(k == 3_pInt)) .or. &
|
|
|
|
((i == 3_pInt).and.(j == 2_pInt).and.(k == 1_pInt))) math_civita = -1.0_pReal
|
2008-03-27 17:24:34 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_civita
|
2008-03-27 17:24:34 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2008-03-27 17:24:34 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! kronecker delta function d_ij
|
|
|
|
! d_ij = 1 if i = j
|
|
|
|
! d_ij = 0 otherwise
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_delta(i,j)
|
2008-03-27 17:24:34 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
integer(pInt), intent (in) :: i,j
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_delta
|
2008-03-27 17:24:34 +05:30
|
|
|
|
|
|
|
math_delta = 0.0_pReal
|
|
|
|
if (i == j) math_delta = 1.0_pReal
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_delta
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! fourth rank identity tensor of specified dimension
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_identity4th(dimen)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
integer(pInt), intent(in) :: dimen
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j,k,l
|
2007-04-11 15:34:22 +05:30
|
|
|
real(pReal), dimension(dimen,dimen,dimen,dimen) :: math_identity4th
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:dimen,j=1_pInt:dimen,k=1_pInt:dimen,l=1_pInt:dimen) math_identity4th(i,j,k,l) = &
|
2010-09-22 17:34:43 +05:30
|
|
|
0.5_pReal*(math_I3(i,k)*math_I3(j,k)+math_I3(i,l)*math_I3(j,k))
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_identity4th
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! vector product a x b
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_vectorproduct(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(3) :: math_vectorproduct
|
|
|
|
|
|
|
|
math_vectorproduct(1) = A(2)*B(3)-A(3)*B(2)
|
|
|
|
math_vectorproduct(2) = A(3)*B(1)-A(1)*B(3)
|
|
|
|
math_vectorproduct(3) = A(1)*B(2)-A(2)*B(1)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_vectorproduct
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2009-03-05 20:07:59 +05:30
|
|
|
|
2009-03-17 20:43:17 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! tensor product a \otimes b
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_tensorproduct(A,B)
|
2009-03-17 20:43:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(3,3) :: math_tensorproduct
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-03-17 20:43:17 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_tensorproduct(i,j) = A(i)*B(j)
|
2009-03-17 20:43:17 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_tensorproduct
|
2009-03-17 20:43:17 +05:30
|
|
|
|
|
|
|
|
2009-03-05 20:07:59 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 3x3 = 1
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul3x3(A,B)
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-03-05 20:07:59 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
2010-09-30 15:02:49 +05:30
|
|
|
real(pReal), dimension(3) :: C
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_mul3x3
|
2009-03-05 20:07:59 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt) C(i) = A(i)*B(i)
|
2009-03-05 20:07:59 +05:30
|
|
|
math_mul3x3 = sum(C)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul3x3
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 6x6 = 1
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul6x6(A,B)
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-03-05 20:07:59 +05:30
|
|
|
real(pReal), dimension(6), intent(in) :: A,B
|
2010-09-30 15:02:49 +05:30
|
|
|
real(pReal), dimension(6) :: C
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_mul6x6
|
2009-03-05 20:07:59 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt) C(i) = A(i)*B(i)
|
2009-03-05 20:07:59 +05:30
|
|
|
math_mul6x6 = sum(C)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul6x6
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2010-09-30 15:02:49 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 33x33 = 1 (double contraction --> ij * ij)
|
|
|
|
!**************************************************************************
|
|
|
|
pure function math_mul33xx33(A,B)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2010-09-30 15:02:49 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(3,3) :: C
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_mul33xx33
|
2010-09-30 15:02:49 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) C(i,j) = A(i,j) * B(i,j)
|
2010-09-30 15:02:49 +05:30
|
|
|
math_mul33xx33 = sum(C)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul33xx33
|
2010-09-30 15:02:49 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2010-10-13 21:34:44 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 3333x33 = 33 (double contraction --> ijkl *kl = ij)
|
|
|
|
!**************************************************************************
|
|
|
|
pure function math_mul3333xx33(A,B)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2010-10-13 21:34:44 +05:30
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: A
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: B
|
2011-04-13 19:46:22 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_mul3333xx33
|
2010-10-13 21:34:44 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do i = 1_pInt,3_pInt
|
|
|
|
do j = 1_pInt,3_pInt
|
|
|
|
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
2010-10-13 21:34:44 +05:30
|
|
|
enddo; enddo
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul3333xx33
|
2010-10-13 21:34:44 +05:30
|
|
|
|
2010-09-30 15:02:49 +05:30
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! matrix multiplication 33x33 = 33
|
2010-09-30 14:16:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul33x33(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-01-20 00:40:58 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(3,3) :: math_mul33x33
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_mul33x33(i,j) = &
|
2009-01-20 00:40:58 +05:30
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul33x33
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! matrix multiplication 66x66 = 66
|
2008-07-09 01:08:22 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul66x66(A,B)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-01-20 00:40:58 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(6,6) :: math_mul66x66
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_mul66x66(i,j) = &
|
2008-07-09 01:08:22 +05:30
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
|
|
|
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul66x66
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! matrix multiplication 99x99 = 99
|
2009-08-11 22:01:57 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul99x99(A,B)
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
real(pReal), dimension(9,9), intent(in) :: A,B
|
|
|
|
|
|
|
|
real(pReal), dimension(9,9) :: math_mul99x99
|
|
|
|
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_mul99x99(i,j) = &
|
2009-08-11 22:01:57 +05:30
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
|
|
|
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) + &
|
|
|
|
A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul99x99
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 33x3 = 3
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul33x3(A,B)
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-08-11 22:01:57 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: A
|
|
|
|
real(pReal), dimension(3), intent(in) :: B
|
|
|
|
real(pReal), dimension(3) :: math_mul33x3
|
|
|
|
|
2012-01-25 20:01:21 +05:30
|
|
|
forall (i=1_pInt:3_pInt) math_mul33x3(i) = sum(A(i,1:3)*B)
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul33x3
|
2010-09-22 17:34:43 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication complex(33) x real(3) = complex(3)
|
|
|
|
!**************************************************************************
|
|
|
|
pure function math_mul33x3_complex(A,B)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2010-09-22 17:34:43 +05:30
|
|
|
complex(pReal), dimension(3,3), intent(in) :: A
|
|
|
|
real(pReal), dimension(3), intent(in) :: B
|
|
|
|
complex(pReal), dimension(3) :: math_mul33x3_complex
|
|
|
|
|
2012-01-25 20:01:21 +05:30
|
|
|
forall (i=1_pInt:3_pInt) math_mul33x3_complex(i) = sum(A(i,1:3)*B)
|
2010-09-22 17:34:43 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul33x3_complex
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
2009-03-05 20:07:59 +05:30
|
|
|
! matrix multiplication 66x6 = 6
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul66x6(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-01-20 00:40:58 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: A
|
|
|
|
real(pReal), dimension(6), intent(in) :: B
|
|
|
|
real(pReal), dimension(6) :: math_mul66x6
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt) math_mul66x6(i) = &
|
2009-01-20 00:40:58 +05:30
|
|
|
A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) + &
|
|
|
|
A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul66x6
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! random quaternion
|
|
|
|
!**************************************************************************
|
|
|
|
function math_qRnd()
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4) :: math_qRnd
|
|
|
|
real(pReal), dimension(3) :: rnd
|
|
|
|
|
|
|
|
call halton(3,rnd)
|
2011-02-25 14:55:53 +05:30
|
|
|
math_qRnd(1) = cos(2.0_pReal*pi*rnd(1))*sqrt(rnd(3))
|
|
|
|
math_qRnd(2) = sin(2.0_pReal*pi*rnd(2))*sqrt(1.0_pReal-rnd(3))
|
|
|
|
math_qRnd(3) = cos(2.0_pReal*pi*rnd(2))*sqrt(1.0_pReal-rnd(3))
|
|
|
|
math_qRnd(4) = sin(2.0_pReal*pi*rnd(1))*sqrt(rnd(3))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qRnd
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! quaternion multiplication q1xq2 = q12
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qMul(A,B)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: A, B
|
|
|
|
real(pReal), dimension(4) :: math_qMul
|
|
|
|
|
|
|
|
math_qMul(1) = A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4)
|
|
|
|
math_qMul(2) = A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3)
|
|
|
|
math_qMul(3) = A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2)
|
|
|
|
math_qMul(4) = A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qMul
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! quaternion dotproduct
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qDot(A,B)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: A, B
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_qDot
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
math_qDot = A(1)*B(1) + A(2)*B(2) + A(3)*B(3) + A(4)*B(4)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qDot
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! quaternion conjugation
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qConj(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(4) :: math_qConj
|
|
|
|
|
|
|
|
math_qConj(1) = Q(1)
|
|
|
|
math_qConj(2:4) = -Q(2:4)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qConj
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! quaternion norm
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qNorm(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_qNorm
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_qNorm = sqrt(max(0.0_pReal, Q(1)*Q(1) + Q(2)*Q(2) + Q(3)*Q(3) + Q(4)*Q(4)))
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qNorm
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! quaternion inversion
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qInv(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(4) :: math_qInv
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: squareNorm
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
math_qInv = 0.0_pReal
|
|
|
|
|
|
|
|
squareNorm = math_qDot(Q,Q)
|
|
|
|
if (squareNorm > tiny(squareNorm)) &
|
|
|
|
math_qInv = math_qConj(Q) / squareNorm
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qInv
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
2010-09-30 14:16:58 +05:30
|
|
|
! action of a quaternion on a vector (rotate vector v with Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qRot(Q,v)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(3), intent(in) :: v
|
|
|
|
real(pReal), dimension(3) :: math_qRot
|
|
|
|
real(pReal), dimension(4,4) :: T
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i, j
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do i = 1_pInt,4_pInt
|
|
|
|
do j = 1_pInt,i
|
2010-03-18 17:53:17 +05:30
|
|
|
T(i,j) = Q(i) * Q(j)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
math_qRot(1) = -v(1)*(T(3,3)+T(4,4)) + v(2)*(T(3,2)-T(4,1)) + v(3)*(T(4,2)+T(3,1))
|
|
|
|
math_qRot(2) = v(1)*(T(3,2)+T(4,1)) - v(2)*(T(2,2)+T(4,4)) + v(3)*(T(4,3)-T(2,1))
|
|
|
|
math_qRot(3) = v(1)*(T(4,2)-T(3,1)) + v(2)*(T(4,3)+T(2,1)) - v(3)*(T(2,2)+T(3,3))
|
|
|
|
|
|
|
|
math_qRot = 2.0_pReal * math_qRot + v
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qRot
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! transposition of a 33 matrix
|
2008-07-09 01:08:22 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
pure function math_transpose33(A)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal),dimension(3,3) :: math_transpose33
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
forall(i=1_pInt:3_pInt, j=1_pInt:3_pInt) math_transpose33(i,j) = A(j,i)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
endfunction math_transpose33
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! Cramer inversion of 33 matrix (function)
|
2009-03-31 13:01:38 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
pure function math_inv33(A)
|
2009-03-31 13:01:38 +05:30
|
|
|
|
|
|
|
! direct Cramer inversion of matrix A.
|
|
|
|
! returns all zeroes if not possible, i.e. if det close to zero
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: DetA
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal),dimension(3,3) :: math_inv33
|
2009-03-31 14:21:14 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
math_inv33 = 0.0_pReal
|
2009-03-31 13:01:38 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DetA = A(1,1) * (A(2,2) * A(3,3) - A(2,3) * A(3,2))&
|
|
|
|
- A(1,2) * (A(2,1) * A(3,3) - A(2,3) * A(3,1))&
|
|
|
|
+ A(1,3) * (A(2,1) * A(3,2) - A(2,2) * A(3,1))
|
2009-03-31 13:01:38 +05:30
|
|
|
|
2011-12-14 14:25:24 +05:30
|
|
|
if (abs(DetA) > tiny(abs(DetA))) then
|
2012-01-26 19:20:00 +05:30
|
|
|
math_inv33(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2)) / DetA
|
|
|
|
math_inv33(2,1) = (-A(2,1) * A(3,3) + A(2,3) * A(3,1)) / DetA
|
|
|
|
math_inv33(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1)) / DetA
|
2009-03-31 13:01:38 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
math_inv33(1,2) = (-A(1,2) * A(3,3) + A(1,3) * A(3,2)) / DetA
|
|
|
|
math_inv33(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1)) / DetA
|
|
|
|
math_inv33(3,2) = (-A(1,1) * A(3,2) + A(1,2) * A(3,1)) / DetA
|
2009-03-31 13:01:38 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
math_inv33(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2)) / DetA
|
|
|
|
math_inv33(2,3) = (-A(1,1) * A(2,3) + A(1,3) * A(2,1)) / DetA
|
|
|
|
math_inv33(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1)) / DetA
|
2009-03-31 13:01:38 +05:30
|
|
|
endif
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
endfunction math_inv33
|
2009-03-31 13:01:38 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! Cramer inversion of 33 matrix (subroutine)
|
2007-03-29 21:02:52 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
PURE SUBROUTINE math_invert33(A, InvA, DetA, error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
! Bestimmung der Determinanten und Inversen einer 33-Matrix
|
2008-02-15 18:12:27 +05:30
|
|
|
! A = Matrix A
|
|
|
|
! InvA = Inverse of A
|
|
|
|
! DetA = Determinant of A
|
2007-04-11 15:34:22 +05:30
|
|
|
! error = logical
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
logical, intent(out) :: error
|
2007-04-11 15:34:22 +05:30
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
|
|
real(pReal),dimension(3,3),intent(out) :: InvA
|
|
|
|
real(pReal), intent(out) :: DetA
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DetA = A(1,1) * (A(2,2) * A(3,3) - A(2,3) * A(3,2))&
|
|
|
|
- A(1,2) * (A(2,1) * A(3,3) - A(2,3) * A(3,1))&
|
|
|
|
+ A(1,3) * (A(2,1) * A(3,2) - A(2,2) * A(3,1))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-14 14:25:24 +05:30
|
|
|
if (abs(DetA) <= tiny(abs(DetA))) then
|
2008-02-15 18:12:27 +05:30
|
|
|
error = .true.
|
2007-04-11 15:34:22 +05:30
|
|
|
else
|
2011-12-01 17:31:13 +05:30
|
|
|
InvA(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2)) / DetA
|
|
|
|
InvA(2,1) = (-A(2,1) * A(3,3) + A(2,3) * A(3,1)) / DetA
|
|
|
|
InvA(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1)) / DetA
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
InvA(1,2) = (-A(1,2) * A(3,3) + A(1,3) * A(3,2)) / DetA
|
|
|
|
InvA(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1)) / DetA
|
|
|
|
InvA(3,2) = (-A(1,1) * A(3,2) + A(1,2) * A(3,1)) / DetA
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
InvA(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2)) / DetA
|
|
|
|
InvA(2,3) = (-A(1,1) * A(2,3) + A(1,3) * A(2,1)) / DetA
|
|
|
|
InvA(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1)) / DetA
|
2007-04-11 15:34:22 +05:30
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
error = .false.
|
2007-04-11 15:34:22 +05:30
|
|
|
endif
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
ENDSUBROUTINE math_invert33
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
2011-08-30 12:59:13 +05:30
|
|
|
! Gauss elimination to invert matrix of arbitrary dimension
|
2007-03-29 21:02:52 +05:30
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
PURE SUBROUTINE math_invert(dimen,A, InvA, AnzNegEW, error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Invertieren einer dimen x dimen - Matrix
|
|
|
|
! A = Matrix A
|
|
|
|
! InvA = Inverse von A
|
|
|
|
! AnzNegEW = Anzahl der negativen Eigenwerte von A
|
|
|
|
! error = logical
|
|
|
|
! = false: Inversion wurde durchgefuehrt.
|
|
|
|
! = true: Die Inversion in SymGauss wurde wegen eines verschwindenen
|
|
|
|
! Pivotelement abgebrochen.
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: dimen
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(dimen,dimen), intent(in) :: A
|
|
|
|
real(pReal), dimension(dimen,dimen), intent(out) :: InvA
|
2007-04-11 15:34:22 +05:30
|
|
|
integer(pInt), intent(out) :: AnzNegEW
|
2008-02-15 18:12:27 +05:30
|
|
|
logical, intent(out) :: error
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: LogAbsDetA
|
|
|
|
real(pReal), dimension(dimen,dimen) :: B
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
InvA = math_identity2nd(dimen)
|
|
|
|
B = A
|
|
|
|
CALL Gauss(dimen,B,InvA,LogAbsDetA,AnzNegEW,error)
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDSUBROUTINE math_invert
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
2009-12-14 16:32:10 +05:30
|
|
|
PURE SUBROUTINE Gauss (dimen,A,B,LogAbsDetA,NegHDK,error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Loesung eines linearen Gleichungsssystem A * X = B mit Hilfe des
|
|
|
|
! GAUSS-Algorithmus
|
|
|
|
! Zur numerischen Stabilisierung wird eine Zeilen- und Spaltenpivotsuche
|
|
|
|
! durchgefuehrt.
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Eingabeparameter:
|
2008-02-15 18:12:27 +05:30
|
|
|
! A(dimen,dimen) = Koeffizientenmatrix A
|
|
|
|
! B(dimen,dimen) = rechte Seiten B
|
|
|
|
!
|
|
|
|
! Ausgabeparameter:
|
|
|
|
! B(dimen,dimen) = Matrix der Unbekanntenvektoren X
|
|
|
|
! LogAbsDetA = 10-Logarithmus des Betrages der Determinanten von A
|
|
|
|
! NegHDK = Anzahl der negativen Hauptdiagonalkoeffizienten nach der
|
|
|
|
! Vorwaertszerlegung
|
|
|
|
! error = logical
|
|
|
|
! = false: Das Gleichungssystem wurde geloest.
|
|
|
|
! = true : Matrix A ist singulaer.
|
2011-12-01 17:31:13 +05:30
|
|
|
!
|
2008-02-15 18:12:27 +05:30
|
|
|
! A und B werden veraendert!
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
logical, intent(out) :: error
|
|
|
|
integer(pInt), intent(in) :: dimen
|
|
|
|
integer(pInt), intent(out) :: NegHDK
|
|
|
|
real(pReal), intent(out) :: LogAbsDetA
|
|
|
|
real(pReal), intent(inout), dimension(dimen,dimen) :: A, B
|
|
|
|
logical :: SortX
|
|
|
|
integer(pInt) :: PivotZeile, PivotSpalte, StoreI, I, IP1, J, K, L
|
|
|
|
integer(pInt), dimension(dimen) :: XNr
|
|
|
|
real(pReal) :: AbsA, PivotWert, EpsAbs, Quote
|
|
|
|
real(pReal), dimension(dimen) :: StoreA, StoreB
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
error = .true.; NegHDK = 1_pInt; SortX = .false.
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Unbekanntennumerierung
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
XNr(I) = I
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Genauigkeitsschranke und Bestimmung des groessten Pivotelementes
|
|
|
|
|
|
|
|
PivotWert = ABS(A(1,1))
|
2011-12-01 17:31:13 +05:30
|
|
|
PivotZeile = 1_pInt
|
|
|
|
PivotSpalte = 1_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do I = 1_pInt, dimen; do J = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
AbsA = ABS(A(I,J))
|
|
|
|
IF (AbsA .GT. PivotWert) THEN
|
|
|
|
PivotWert = AbsA
|
|
|
|
PivotZeile = I
|
|
|
|
PivotSpalte = J
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDIF
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
IF (PivotWert .LT. 0.0000001_pReal) RETURN ! Pivotelement = 0?
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
EpsAbs = PivotWert * 0.1_pReal ** PRECISION(1.0_pReal)
|
|
|
|
|
|
|
|
! V O R W A E R T S T R I A N G U L A T I O N
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = 1_pInt, dimen - 1_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
! Zeilentausch?
|
|
|
|
IF (PivotZeile .NE. I) THEN
|
|
|
|
StoreA(I:dimen) = A(I,I:dimen)
|
|
|
|
A(I,I:dimen) = A(PivotZeile,I:dimen)
|
|
|
|
A(PivotZeile,I:dimen) = StoreA(I:dimen)
|
|
|
|
StoreB(1:dimen) = B(I,1:dimen)
|
|
|
|
B(I,1:dimen) = B(PivotZeile,1:dimen)
|
|
|
|
B(PivotZeile,1:dimen) = StoreB(1:dimen)
|
|
|
|
SortX = .TRUE.
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
! Spaltentausch?
|
|
|
|
IF (PivotSpalte .NE. I) THEN
|
|
|
|
StoreA(1:dimen) = A(1:dimen,I)
|
|
|
|
A(1:dimen,I) = A(1:dimen,PivotSpalte)
|
|
|
|
A(1:dimen,PivotSpalte) = StoreA(1:dimen)
|
|
|
|
StoreI = XNr(I)
|
|
|
|
XNr(I) = XNr(PivotSpalte)
|
|
|
|
XNr(PivotSpalte) = StoreI
|
|
|
|
SortX = .TRUE.
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
! Triangulation
|
2011-12-01 17:31:13 +05:30
|
|
|
DO J = I + 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
Quote = A(J,I) / A(I,I)
|
2011-12-01 17:31:13 +05:30
|
|
|
DO K = I + 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
A(J,K) = A(J,K) - Quote * A(I,K)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2011-12-01 17:31:13 +05:30
|
|
|
DO K = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
B(J,K) = B(J,K) - Quote * B(I,K)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
! Bestimmung des groessten Pivotelementes
|
2011-12-01 17:31:13 +05:30
|
|
|
IP1 = I + 1_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
PivotWert = ABS(A(IP1,IP1))
|
|
|
|
PivotZeile = IP1
|
|
|
|
PivotSpalte = IP1
|
|
|
|
DO J = IP1, dimen
|
|
|
|
DO K = IP1, dimen
|
|
|
|
AbsA = ABS(A(J,K))
|
|
|
|
IF (AbsA .GT. PivotWert) THEN
|
|
|
|
PivotWert = AbsA
|
|
|
|
PivotZeile = J
|
|
|
|
PivotSpalte = K
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDIF
|
|
|
|
ENDDO
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
IF (PivotWert .LT. EpsAbs) RETURN ! Pivotelement = 0?
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! R U E C K W A E R T S A U F L O E S U N G
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = dimen, 1_pInt, -1_pInt
|
|
|
|
DO L = 1_pInt, dimen
|
|
|
|
DO J = I + 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
B(I,L) = B(I,L) - A(I,J) * B(J,L)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
B(I,L) = B(I,L) / A(I,I)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Sortieren der Unbekanntenvektoren?
|
|
|
|
|
|
|
|
IF (SortX) THEN
|
2011-12-01 17:31:13 +05:30
|
|
|
DO L = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
StoreA(1:dimen) = B(1:dimen,L)
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
J = XNr(I)
|
|
|
|
B(J,L) = StoreA(I)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
|
|
|
ENDDO
|
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Determinante
|
|
|
|
|
|
|
|
LogAbsDetA = 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
NegHDK = 0_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = 1_pInt, dimen
|
|
|
|
IF (A(I,I) .LT. 0.0_pReal) NegHDK = NegHDK + 1_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
AbsA = ABS(A(I,I))
|
|
|
|
LogAbsDetA = LogAbsDetA + LOG10(AbsA)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
error = .false.
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDSUBROUTINE Gauss
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! symmetrize a 33 matrix
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
function math_symmetric33(m)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_symmetric33
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetric33(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
endfunction math_symmetric33
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! symmetrize a 66 matrix
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
pure function math_symmetric66(m)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-01-20 00:40:58 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: m
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal), dimension(6,6) :: math_symmetric66
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_symmetric66(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
|
|
|
|
|
|
|
endfunction math_symmetric66
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! skew part of a 33 matrix
|
2012-01-25 16:00:39 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
function math_skew33(m)
|
2012-01-25 16:00:39 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_skew33
|
2012-01-25 16:00:39 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
|
|
integer(pInt) :: i,j
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_skew33(i,j) = m(i,j) - 0.5_pReal * (m(i,j) + m(j,i))
|
|
|
|
|
|
|
|
endfunction math_skew33
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
!********************************************************************
|
|
|
|
! deviatoric part of a 33 matrix
|
|
|
|
!********************************************************************
|
|
|
|
function math_deviatoric33(m)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3) :: math_deviatoric33
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
|
|
integer(pInt) :: i
|
|
|
|
real(pReal) :: hydrostatic
|
|
|
|
|
|
|
|
hydrostatic = (m(1,1) + m(2,2) + m(3,3)) / 3.0_pReal
|
|
|
|
math_deviatoric33 = m
|
|
|
|
forall (i=1_pInt:3_pInt) math_deviatoric33(i,i) = m(i,i) - hydrostatic
|
|
|
|
|
|
|
|
endfunction math_deviatoric33
|
|
|
|
|
|
|
|
|
2010-03-24 18:50:12 +05:30
|
|
|
!********************************************************************
|
|
|
|
! equivalent scalar quantity of a full strain tensor
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_equivStrain33(m)
|
2010-03-24 18:50:12 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_equivStrain33,e11,e22,e33,s12,s23,s31
|
2010-03-24 18:50:12 +05:30
|
|
|
|
|
|
|
e11 = (2.0_pReal*m(1,1)-m(2,2)-m(3,3))/3.0_pReal
|
|
|
|
e22 = (2.0_pReal*m(2,2)-m(3,3)-m(1,1))/3.0_pReal
|
|
|
|
e33 = (2.0_pReal*m(3,3)-m(1,1)-m(2,2))/3.0_pReal
|
|
|
|
s12 = 2.0_pReal*m(1,2)
|
|
|
|
s23 = 2.0_pReal*m(2,3)
|
|
|
|
s31 = 2.0_pReal*m(3,1)
|
|
|
|
|
|
|
|
math_equivStrain33 = 2.0_pReal*(1.50_pReal*(e11**2.0_pReal+e22**2.0_pReal+e33**2.0_pReal) + &
|
|
|
|
0.75_pReal*(s12**2.0_pReal+s23**2.0_pReal+s31**2.0_pReal))**(0.5_pReal)/3.0_pReal
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_equivStrain33
|
2010-03-24 18:50:12 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
!********************************************************************
|
|
|
|
subroutine math_equivStrain33_field(res,tensor,vm)
|
|
|
|
!********************************************************************
|
|
|
|
!calculate von Mises equivalent of tensor field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: tensor
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3)) :: vm
|
|
|
|
! other variables
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
real(pReal), dimension(3,3) :: deviator, delta = 0.0_pReal
|
|
|
|
real(pReal) :: J_2
|
|
|
|
|
|
|
|
delta(1,1) = 1.0_pReal
|
|
|
|
delta(2,2) = 1.0_pReal
|
|
|
|
delta(3,3) = 1.0_pReal
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
deviator = tensor(i,j,k,1:3,1:3) - 1.0_pReal/3.0_pReal*tensor(i,j,k,1,1)*tensor(i,j,k,2,2)*tensor(i,j,k,3,3)*delta
|
|
|
|
J_2 = deviator(1,1)*deviator(2,2)&
|
|
|
|
+ deviator(2,2)*deviator(3,3)&
|
|
|
|
+ deviator(1,1)*deviator(3,3)&
|
|
|
|
- (deviator(1,2))**2.0_pReal&
|
|
|
|
- (deviator(2,3))**2.0_pReal&
|
|
|
|
- (deviator(1,3))**2.0_pReal
|
|
|
|
vm(i,j,k) = sqrt(3.0_pReal*J_2)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine math_equivStrain33_field
|
|
|
|
|
2011-07-29 21:27:39 +05:30
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! determinant of a 33 matrix
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
pure function math_det33(m)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal) :: math_det33
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
math_det33 = m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
2007-03-21 15:50:25 +05:30
|
|
|
-m(1,2)*(m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
|
|
|
+m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
endfunction math_det33
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-07-29 21:27:39 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! norm of a 33 matrix
|
2011-07-29 21:27:39 +05:30
|
|
|
!********************************************************************
|
|
|
|
pure function math_norm33(m)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_norm33
|
2011-07-29 21:27:39 +05:30
|
|
|
|
|
|
|
math_norm33 = sqrt(sum(m**2.0_pReal))
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! euclidic norm of a 3 vector
|
2009-08-11 22:01:57 +05:30
|
|
|
!********************************************************************
|
2010-03-18 17:53:17 +05:30
|
|
|
pure function math_norm3(v)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
implicit none
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: v
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_norm3
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_norm3 = sqrt(v(1)*v(1) + v(2)*v(2) + v(3)*v(3))
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_norm3
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert 33 matrix into vector 9
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Plain33to9(m33)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: m33
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(9) :: math_Plain33to9
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt) math_Plain33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Plain33to9
|
2011-08-26 19:36:37 +05:30
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert Plain 9 back to 33 matrix
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Plain9to33(v9)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(9), intent(in) :: v9
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_Plain9to33
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt) math_Plain9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Plain9to33
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert symmetric 33 matrix into Mandel vector 6
|
2007-03-28 12:51:47 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Mandel33to6(m33)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: m33
|
2007-03-28 12:51:47 +05:30
|
|
|
real(pReal), dimension(6) :: math_Mandel33to6
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt) math_Mandel33to6(i) = nrmMandel(i)*m33(mapMandel(1,i),mapMandel(2,i))
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Mandel33to6
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert Mandel 6 back to symmetric 33 matrix
|
2007-03-28 12:51:47 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Mandel6to33(v6)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(6), intent(in) :: v6
|
2007-03-28 12:51:47 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_Mandel6to33
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt)
|
2007-03-28 13:50:50 +05:30
|
|
|
math_Mandel6to33(mapMandel(1,i),mapMandel(2,i)) = invnrmMandel(i)*v6(i)
|
|
|
|
math_Mandel6to33(mapMandel(2,i),mapMandel(1,i)) = invnrmMandel(i)*v6(i)
|
2007-03-28 12:51:47 +05:30
|
|
|
end forall
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Mandel6to33
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert 3333 tensor into plain matrix 99
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Plain3333to99(m3333)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(9,9) :: math_Plain3333to99
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain3333to99(i,j) = &
|
2008-02-15 18:12:27 +05:30
|
|
|
m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Plain3333to99
|
2010-09-22 17:34:43 +05:30
|
|
|
|
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! plain matrix 99 into 3333 tensor
|
2010-09-22 17:34:43 +05:30
|
|
|
!********************************************************************
|
|
|
|
pure function math_Plain99to3333(m99)
|
|
|
|
|
|
|
|
implicit none
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2010-09-22 17:34:43 +05:30
|
|
|
real(pReal), dimension(9,9), intent(in) :: m99
|
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Plain99to3333
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2010-09-22 17:34:43 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain99to3333(mapPlain(1,i),mapPlain(2,i),&
|
2010-09-22 17:34:43 +05:30
|
|
|
mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Plain99to3333
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-07-29 21:27:39 +05:30
|
|
|
|
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert Mandel matrix 66 into Plain matrix 66
|
2011-07-29 21:27:39 +05:30
|
|
|
!********************************************************************
|
|
|
|
pure function math_Mandel66toPlain66(m66)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
|
|
|
real(pReal), dimension(6,6) :: math_Mandel66toPlain66
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2011-07-29 21:27:39 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
2011-07-29 21:27:39 +05:30
|
|
|
math_Mandel66toPlain66(i,j) = invnrmMandel(i) * invnrmMandel(j) * m66(i,j)
|
|
|
|
return
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert Plain matrix 66 into Mandel matrix 66
|
2011-07-29 21:27:39 +05:30
|
|
|
!********************************************************************
|
|
|
|
pure function math_Plain66toMandel66(m66)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
|
|
|
real(pReal), dimension(6,6) :: math_Plain66toMandel66
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
2011-07-29 21:27:39 +05:30
|
|
|
math_Plain66toMandel66(i,j) = nrmMandel(i) * nrmMandel(j) * m66(i,j)
|
|
|
|
return
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert symmetric 3333 tensor into Mandel matrix 66
|
2007-03-28 12:51:47 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Mandel3333to66(m3333)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
2007-03-28 12:51:47 +05:30
|
|
|
real(pReal), dimension(6,6) :: math_Mandel3333to66
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_Mandel3333to66(i,j) = &
|
2007-03-28 13:50:50 +05:30
|
|
|
nrmMandel(i)*nrmMandel(j)*m3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j))
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Mandel3333to66
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert Mandel matrix 66 back to symmetric 3333 tensor
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Mandel66to3333(m66)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Mandel66to3333
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
|
2008-02-15 18:12:27 +05:30
|
|
|
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
end forall
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Mandel66to3333
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! convert Voigt matrix 66 back to symmetric 3333 tensor
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Voigt66to3333(m66)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
|
2008-02-15 18:12:27 +05:30
|
|
|
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
end forall
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Voigt66to3333
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! Euler angles (in radians) from rotation matrix
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_RtoEuler(R)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
implicit none
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension (3,3), intent(in) :: R
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3) :: math_RtoEuler
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: sqhkl, squvw, sqhk, val
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3))
|
|
|
|
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
|
|
|
|
sqhk=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
|
|
|
! calculate PHI
|
|
|
|
val=R(3,3)/sqhkl
|
|
|
|
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_RtoEuler(2) = acos(val)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
if(math_RtoEuler(2) < 1.0e-8_pReal) then
|
2007-03-29 21:02:52 +05:30
|
|
|
! calculate phi2
|
|
|
|
math_RtoEuler(3) = 0.0_pReal
|
|
|
|
! calculate phi1
|
|
|
|
val=R(1,1)/squvw
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_RtoEuler(1) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
|
|
|
else
|
|
|
|
! calculate phi2
|
|
|
|
val=R(2,3)/sqhk
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_RtoEuler(3) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
|
|
|
! calculate phi1
|
|
|
|
val=-R(3,2)/sin(math_RtoEuler(2))
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_RtoEuler(1) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
|
|
|
end if
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_RtoEuler
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! quaternion (w+ix+jy+kz) from orientation matrix
|
|
|
|
!********************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! math adopted from http://code.google.com/p/mtex/source/browse/trunk/geometry/geometry_tools/mat2quat.m
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_RtoQuaternion(R)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension (3,3), intent(in) :: R
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(4) :: absQ, math_RtoQuaternion
|
|
|
|
real(pReal) :: max_absQ
|
2010-05-26 21:22:54 +05:30
|
|
|
integer(pInt), dimension(1) :: largest
|
|
|
|
|
2011-03-03 16:17:07 +05:30
|
|
|
absQ(1) = 1.0_pReal+R(1,1)+R(2,2)+R(3,3)
|
|
|
|
absQ(2) = 1.0_pReal+R(1,1)-R(2,2)-R(3,3)
|
|
|
|
absQ(3) = 1.0_pReal-R(1,1)+R(2,2)-R(3,3)
|
|
|
|
absQ(4) = 1.0_pReal-R(1,1)-R(2,2)+R(3,3)
|
2011-12-01 17:31:13 +05:30
|
|
|
math_RtoQuaternion = 0.0_pReal
|
2011-03-03 16:17:07 +05:30
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
largest = maxloc(absQ)
|
2011-03-03 16:17:07 +05:30
|
|
|
|
|
|
|
max_absQ=0.5_pReal * sqrt(absQ(largest(1)))
|
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
select case(largest(1))
|
2011-12-01 17:31:13 +05:30
|
|
|
case (1_pInt)
|
|
|
|
!1----------------------------------
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(2) = R(2,3)-R(3,2)
|
|
|
|
math_RtoQuaternion(3) = R(3,1)-R(1,3)
|
|
|
|
math_RtoQuaternion(4) = R(1,2)-R(2,1)
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (2_pInt)
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(1) = R(2,3)-R(3,2)
|
2011-12-01 17:31:13 +05:30
|
|
|
!2----------------------------------
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(3) = R(1,2)+R(2,1)
|
|
|
|
math_RtoQuaternion(4) = R(3,1)+R(1,3)
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (3_pInt)
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(1) = R(3,1)-R(1,3)
|
|
|
|
math_RtoQuaternion(2) = R(1,2)+R(2,1)
|
2011-12-01 17:31:13 +05:30
|
|
|
!3----------------------------------
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(4) = R(2,3)+R(3,2)
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (4_pInt)
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion (1) = R(1,2)-R(2,1)
|
|
|
|
math_RtoQuaternion (2) = R(3,1)+R(1,3)
|
|
|
|
math_RtoQuaternion (3) = R(3,2)+R(2,3)
|
2011-12-01 17:31:13 +05:30
|
|
|
!4----------------------------------
|
2010-05-26 21:22:54 +05:30
|
|
|
end select
|
|
|
|
|
2011-03-03 16:17:07 +05:30
|
|
|
math_RtoQuaternion = math_RtoQuaternion*0.25_pReal/max_absQ
|
|
|
|
math_RtoQuaternion(largest(1)) = max_absQ
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_RtoQuaternion
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
!****************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! rotation matrix from Euler angles (in radians)
|
2010-03-18 17:53:17 +05:30
|
|
|
!****************************************************************
|
2011-08-01 15:41:32 +05:30
|
|
|
pure function math_EulerToR(Euler)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: Euler
|
|
|
|
real(pReal), dimension(3,3) :: math_EulerToR
|
|
|
|
real(pReal) c1, c, c2, s1, s, s2
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
C1 = cos(Euler(1))
|
|
|
|
C = cos(Euler(2))
|
|
|
|
C2 = cos(Euler(3))
|
|
|
|
S1 = sin(Euler(1))
|
|
|
|
S = sin(Euler(2))
|
|
|
|
S2 = sin(Euler(3))
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
math_EulerToR(1,1)=C1*C2-S1*S2*C
|
|
|
|
math_EulerToR(1,2)=S1*C2+C1*S2*C
|
|
|
|
math_EulerToR(1,3)=S2*S
|
|
|
|
math_EulerToR(2,1)=-C1*S2-S1*C2*C
|
|
|
|
math_EulerToR(2,2)=-S1*S2+C1*C2*C
|
|
|
|
math_EulerToR(2,3)=C2*S
|
|
|
|
math_EulerToR(3,1)=S1*S
|
|
|
|
math_EulerToR(3,2)=-C1*S
|
|
|
|
math_EulerToR(3,3)=C
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_EulerToR
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! quaternion (w+ix+jy+kz) from 3-1-3 Euler angles (in radians)
|
2010-03-18 17:53:17 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_EulerToQuaternion(eulerangles)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: eulerangles
|
|
|
|
real(pReal), dimension(4) :: math_EulerToQuaternion
|
|
|
|
real(pReal), dimension(3) :: halfangles
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: c, s
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
halfangles = 0.5_pReal * eulerangles
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
c = cos(halfangles(2))
|
|
|
|
s = sin(halfangles(2))
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_EulerToQuaternion(1) = cos(halfangles(1)+halfangles(3)) * c
|
|
|
|
math_EulerToQuaternion(2) = cos(halfangles(1)-halfangles(3)) * s
|
|
|
|
math_EulerToQuaternion(3) = sin(halfangles(1)-halfangles(3)) * s
|
|
|
|
math_EulerToQuaternion(4) = sin(halfangles(1)+halfangles(3)) * c
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_EulerToQuaternion
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
!****************************************************************
|
|
|
|
! rotation matrix from axis and angle (in radians)
|
|
|
|
!****************************************************************
|
|
|
|
pure function math_AxisAngleToR(axis,omega)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: axis
|
|
|
|
real(pReal), intent(in) :: omega
|
|
|
|
real(pReal), dimension(3) :: axisNrm
|
|
|
|
real(pReal), dimension(3,3) :: math_AxisAngleToR
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: norm,s,c,c1
|
|
|
|
integer(pInt) :: i
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
norm = sqrt(math_mul3x3(axis,axis))
|
2011-12-01 17:31:13 +05:30
|
|
|
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
|
|
|
forall (i=1_pInt:3_pInt) axisNrm(i) = axis(i)/norm ! normalize axis to be sure
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
s = sin(omega)
|
|
|
|
c = cos(omega)
|
2010-05-06 19:37:21 +05:30
|
|
|
c1 = 1.0_pReal - c
|
|
|
|
|
|
|
|
! formula for active rotation taken from http://mathworld.wolfram.com/RodriguesRotationFormula.html
|
|
|
|
! below is transposed form to get passive rotation
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
math_AxisAngleToR(1,1) = c + c1*axisNrm(1)**2.0_pReal
|
2010-05-06 19:37:21 +05:30
|
|
|
math_AxisAngleToR(2,1) = -s*axisNrm(3) + c1*axisNrm(1)*axisNrm(2)
|
|
|
|
math_AxisAngleToR(3,1) = s*axisNrm(2) + c1*axisNrm(1)*axisNrm(3)
|
|
|
|
|
|
|
|
math_AxisAngleToR(1,2) = s*axisNrm(3) + c1*axisNrm(2)*axisNrm(1)
|
2011-12-01 17:31:13 +05:30
|
|
|
math_AxisAngleToR(2,2) = c + c1*axisNrm(2)**2.0_pReal
|
2010-05-06 19:37:21 +05:30
|
|
|
math_AxisAngleToR(3,2) = -s*axisNrm(1) + c1*axisNrm(2)*axisNrm(3)
|
|
|
|
|
|
|
|
math_AxisAngleToR(1,3) = -s*axisNrm(2) + c1*axisNrm(3)*axisNrm(1)
|
|
|
|
math_AxisAngleToR(2,3) = s*axisNrm(1) + c1*axisNrm(3)*axisNrm(2)
|
2011-12-01 17:31:13 +05:30
|
|
|
math_AxisAngleToR(3,3) = c + c1*axisNrm(3)**2.0_pReal
|
2010-05-06 19:37:21 +05:30
|
|
|
else
|
|
|
|
math_AxisAngleToR = math_I3
|
|
|
|
endif
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_AxisAngleToR
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
|
|
!****************************************************************
|
|
|
|
! quaternion (w+ix+jy+kz) from axis and angle (in radians)
|
|
|
|
!****************************************************************
|
|
|
|
pure function math_AxisAngleToQuaternion(axis,omega)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: axis
|
|
|
|
real(pReal), intent(in) :: omega
|
|
|
|
real(pReal), dimension(3) :: axisNrm
|
|
|
|
real(pReal), dimension(4) :: math_AxisAngleToQuaternion
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: s,c,norm
|
|
|
|
integer(pInt) :: i
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
norm = sqrt(math_mul3x3(axis,axis))
|
2010-05-06 19:37:21 +05:30
|
|
|
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt) axisNrm(i) = axis(i)/norm ! normalize axis to be sure
|
2010-05-06 19:37:21 +05:30
|
|
|
! formula taken from http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
2011-02-25 14:55:53 +05:30
|
|
|
s = sin(omega/2.0_pReal)
|
|
|
|
c = cos(omega/2.0_pReal)
|
2010-05-06 19:37:21 +05:30
|
|
|
math_AxisAngleToQuaternion(1) = c
|
|
|
|
math_AxisAngleToQuaternion(2:4) = s * axisNrm(1:3)
|
|
|
|
else
|
|
|
|
math_AxisAngleToQuaternion = (/1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal/) ! no rotation
|
|
|
|
endif
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_AxisAngleToQuaternion
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! orientation matrix from quaternion (w+ix+jy+kz)
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_QuaternionToR(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(3,3) :: math_QuaternionToR, T,S
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i, j
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
|
|
|
|
T(i,j) = Q(i+1_pInt) * Q(j+1_pInt)
|
2010-05-06 19:37:21 +05:30
|
|
|
S = reshape( (/0.0_pReal, Q(4), -Q(3), &
|
|
|
|
-Q(4),0.0_pReal, +Q(2), &
|
|
|
|
Q(3), -Q(2),0.0_pReal/),(/3,3/)) ! notation is transposed!
|
|
|
|
|
|
|
|
math_QuaternionToR = (2.0_pReal * Q(1)*Q(1) - 1.0_pReal) * math_I3 + &
|
|
|
|
2.0_pReal * T - &
|
|
|
|
2.0_pReal * Q(1) * S
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionToR
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz)
|
2010-03-18 17:53:17 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_QuaternionToEuler(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(3) :: math_QuaternionToEuler
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: acos_arg
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_QuaternionToEuler(2) = acos(1.0_pReal-2.0_pReal*(Q(2)*Q(2)+Q(3)*Q(3)))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
if (abs(math_QuaternionToEuler(2)) < 1.0e-3_pReal) then
|
2011-03-03 19:53:39 +05:30
|
|
|
acos_arg=Q(1)
|
|
|
|
if(acos_arg > 1.0_pReal)acos_arg = 1.0_pReal
|
|
|
|
if(acos_arg < -1.0_pReal)acos_arg = -1.0_pReal
|
|
|
|
math_QuaternionToEuler(1) = 2.0_pReal*acos(acos_arg)
|
2010-05-26 21:22:54 +05:30
|
|
|
math_QuaternionToEuler(3) = 0.0_pReal
|
|
|
|
else
|
2011-02-25 14:55:53 +05:30
|
|
|
math_QuaternionToEuler(1) = atan2(Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)-Q(3)*Q(4))
|
2010-05-26 21:22:54 +05:30
|
|
|
if (math_QuaternionToEuler(1) < 0.0_pReal) &
|
|
|
|
math_QuaternionToEuler(1) = math_QuaternionToEuler(1) + 2.0_pReal * pi
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_QuaternionToEuler(3) = atan2(-Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)+Q(3)*Q(4))
|
2010-05-26 21:22:54 +05:30
|
|
|
if (math_QuaternionToEuler(3) < 0.0_pReal) &
|
|
|
|
math_QuaternionToEuler(3) = math_QuaternionToEuler(3) + 2.0_pReal * pi
|
|
|
|
endif
|
2010-03-19 21:41:53 +05:30
|
|
|
|
|
|
|
if (math_QuaternionToEuler(2) < 0.0_pReal) &
|
|
|
|
math_QuaternionToEuler(2) = math_QuaternionToEuler(2) + pi
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionToEuler
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
2010-04-12 16:37:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
2010-04-12 16:37:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_QuaternionToAxisAngle(Q)
|
2010-04-12 16:37:25 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: halfAngle, sinHalfAngle
|
2010-04-12 16:37:25 +05:30
|
|
|
real(pReal), dimension(4) :: math_QuaternionToAxisAngle
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
halfAngle = acos(max(-1.0_pReal, min(1.0_pReal, Q(1)))) ! limit to [-1,1] --> 0 to 180 deg
|
|
|
|
sinHalfAngle = sin(halfAngle)
|
2010-04-29 15:31:09 +05:30
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
if (sinHalfAngle <= 1.0e-4_pReal) then ! very small rotation angle?
|
2010-04-29 15:31:09 +05:30
|
|
|
math_QuaternionToAxisAngle = 0.0_pReal
|
|
|
|
else
|
|
|
|
math_QuaternionToAxisAngle(1:3) = Q(2:4)/sinHalfAngle
|
2010-05-06 19:37:21 +05:30
|
|
|
math_QuaternionToAxisAngle(4) = halfAngle*2.0_pReal
|
2010-04-29 15:31:09 +05:30
|
|
|
endif
|
2011-08-01 15:41:32 +05:30
|
|
|
|
|
|
|
endfunction math_QuaternionToAxisAngle
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2010-04-12 16:37:25 +05:30
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
2010-04-28 22:49:58 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_QuaternionToRodrig(Q)
|
2010-04-28 22:49:58 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
use prec, only: DAMASK_NaN
|
2010-04-28 22:49:58 +05:30
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(3) :: math_QuaternionToRodrig
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
if (Q(1) /= 0.0_pReal) then ! unless rotation by 180 deg
|
2010-04-28 22:49:58 +05:30
|
|
|
math_QuaternionToRodrig = Q(2:4)/Q(1)
|
|
|
|
else
|
2011-10-18 14:51:38 +05:30
|
|
|
math_QuaternionToRodrig = DAMASK_NaN ! NaN since Rodrig is unbound for 180 deg...
|
2010-04-28 22:49:58 +05:30
|
|
|
endif
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionToRodrig
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! misorientation angle between two sets of Euler angles
|
2007-03-29 21:02:52 +05:30
|
|
|
!**************************************************************************
|
2010-04-28 22:49:58 +05:30
|
|
|
pure function math_EulerMisorientation(EulerA,EulerB)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: EulerA,EulerB
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3,3) :: r
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_EulerMisorientation, tr
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2008-07-23 18:19:40 +05:30
|
|
|
r = math_mul33x33(math_EulerToR(EulerB),transpose(math_EulerToR(EulerA)))
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
tr = (r(1,1)+r(2,2)+r(3,3)-1.0_pReal)*0.4999999_pReal
|
2010-04-28 22:49:58 +05:30
|
|
|
math_EulerMisorientation = abs(0.5_pReal*pi-asin(tr))
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_EulerMisorientation
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! figures whether unit quat falls into stereographic standard triangle
|
2010-04-28 22:49:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
pure function math_QuaternionInSST(Q, symmetryType)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q ! orientation
|
|
|
|
integer(pInt), intent(in) :: symmetryType ! Type of crystal symmetry; 1:cubic, 2:hexagonal
|
|
|
|
|
|
|
|
!*** output variables
|
2011-12-01 17:31:13 +05:30
|
|
|
logical :: math_QuaternionInSST
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
real(pReal), dimension(3) :: Rodrig ! Rodrigues vector of Q
|
|
|
|
|
|
|
|
Rodrig = math_QuaternionToRodrig(Q)
|
|
|
|
select case (symmetryType)
|
2011-12-01 17:31:13 +05:30
|
|
|
case (1_pInt)
|
2010-04-28 22:49:58 +05:30
|
|
|
math_QuaternionInSST = Rodrig(1) > Rodrig(2) .and. &
|
|
|
|
Rodrig(2) > Rodrig(3) .and. &
|
|
|
|
Rodrig(3) > 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
case (2_pInt)
|
2011-02-25 14:55:53 +05:30
|
|
|
math_QuaternionInSST = Rodrig(1) > sqrt(3.0_pReal)*Rodrig(2) .and. &
|
2010-04-28 22:49:58 +05:30
|
|
|
Rodrig(2) > 0.0_pReal .and. &
|
|
|
|
Rodrig(3) > 0.0_pReal
|
|
|
|
case default
|
|
|
|
math_QuaternionInSST = .true.
|
|
|
|
end select
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionInSST
|
2010-04-28 22:49:58 +05:30
|
|
|
|
2010-05-04 18:24:13 +05:30
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! calculates the disorientation for 2 unit quaternions
|
2010-04-28 22:49:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-04 21:32:05 +05:30
|
|
|
function math_QuaternionDisorientation(Q1, Q2, symmetryType)
|
2010-04-28 22:49:58 +05:30
|
|
|
|
2010-05-04 21:32:05 +05:30
|
|
|
use IO, only: IO_error
|
2010-04-28 22:49:58 +05:30
|
|
|
implicit none
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q1, & ! 1st orientation
|
|
|
|
Q2 ! 2nd orientation
|
|
|
|
integer(pInt), intent(in) :: symmetryType ! Type of crystal symmetry; 1:cubic, 2:hexagonal
|
|
|
|
|
|
|
|
!*** output variables
|
|
|
|
real(pReal), dimension(4) :: math_QuaternionDisorientation ! disorientation
|
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
real(pReal), dimension(4) :: dQ,dQsymA,mis
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j,k,s
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
dQ = math_qMul(math_qConj(Q1),Q2)
|
|
|
|
math_QuaternionDisorientation = dQ
|
|
|
|
|
2010-05-04 18:24:13 +05:30
|
|
|
select case (symmetryType)
|
2011-12-01 17:31:13 +05:30
|
|
|
case (0_pInt)
|
2010-05-06 19:37:21 +05:30
|
|
|
if (math_QuaternionDisorientation(1) < 0.0_pReal) &
|
|
|
|
math_QuaternionDisorientation = -math_QuaternionDisorientation ! keep omega within 0 to 180 deg
|
2010-05-04 18:24:13 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (1_pInt,2_pInt)
|
|
|
|
s = sum(math_NsymOperations(1:symmetryType-1_pInt))
|
|
|
|
do i = 1_pInt,2_pInt
|
2010-05-06 19:37:21 +05:30
|
|
|
dQ = math_qConj(dQ) ! switch order of "from -- to"
|
2011-12-01 17:31:13 +05:30
|
|
|
do j = 1_pInt,math_NsymOperations(symmetryType) ! run through first crystal's symmetries
|
|
|
|
dQsymA = math_qMul(math_symOperations(1:4,s+j),dQ) ! apply sym
|
|
|
|
do k = 1_pInt,math_NsymOperations(symmetryType) ! run through 2nd crystal's symmetries
|
|
|
|
mis = math_qMul(dQsymA,math_symOperations(1:4,s+k)) ! apply sym
|
2010-05-06 19:37:21 +05:30
|
|
|
if (mis(1) < 0.0_pReal) & ! want positive angle
|
|
|
|
mis = -mis
|
|
|
|
if (mis(1)-math_QuaternionDisorientation(1) > -1e-8_pReal .and. &
|
|
|
|
math_QuaternionInSST(mis,symmetryType)) &
|
|
|
|
math_QuaternionDisorientation = mis ! found better one
|
|
|
|
enddo; enddo; enddo
|
2010-05-04 18:24:13 +05:30
|
|
|
|
|
|
|
case default
|
2011-12-01 17:31:13 +05:30
|
|
|
call IO_error(550_pInt,symmetryType) ! complain about unknown symmetry
|
2010-05-04 18:24:13 +05:30
|
|
|
end select
|
2010-04-28 22:49:58 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionDisorientation
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
! draw a random sample from Euler space
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
function math_sampleRandomOri()
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(3_pInt,rnd)
|
2007-03-29 21:02:52 +05:30
|
|
|
math_sampleRandomOri(1) = rnd(1)*2.0_pReal*pi
|
|
|
|
math_sampleRandomOri(2) = acos(2.0_pReal*rnd(2)-1.0_pReal)
|
|
|
|
math_sampleRandomOri(3) = rnd(3)*2.0_pReal*pi
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_sampleRandomOri
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
!********************************************************************
|
|
|
|
! draw a random sample from Gauss component
|
|
|
|
! with noise (in radians) half-width
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
function math_sampleGaussOri(center,noise)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3) :: math_sampleGaussOri, center, disturb
|
|
|
|
real(pReal), dimension(3), parameter :: origin = (/0.0_pReal,0.0_pReal,0.0_pReal/)
|
|
|
|
real(pReal), dimension(5) :: rnd
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: noise,scatter,cosScatter
|
2007-03-29 21:02:52 +05:30
|
|
|
integer(pInt) i
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (noise==0.0_pReal) then
|
2008-02-15 18:12:27 +05:30
|
|
|
math_sampleGaussOri = center
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
! Helming uses different distribution with Bessel functions
|
|
|
|
! therefore the gauss scatter width has to be scaled differently
|
|
|
|
scatter = 0.95_pReal * noise
|
|
|
|
cosScatter = cos(scatter)
|
|
|
|
|
|
|
|
do
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(5_pInt,rnd)
|
|
|
|
forall (i=1_pInt:3_pInt) rnd(i) = 2.0_pReal*rnd(i)-1.0_pReal ! expand 1:3 to range [-1,+1]
|
2007-03-29 21:02:52 +05:30
|
|
|
disturb(1) = scatter * rnd(1) ! phi1
|
|
|
|
disturb(2) = sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)) ! Phi
|
|
|
|
disturb(3) = scatter * rnd(2) ! phi2
|
2011-12-01 17:31:13 +05:30
|
|
|
if (rnd(5) <= exp(-1.0_pReal*(math_EulerMisorientation(origin,disturb)/scatter)**2_pReal)) exit
|
2008-07-09 01:08:22 +05:30
|
|
|
enddo
|
|
|
|
|
2008-07-23 18:19:40 +05:30
|
|
|
math_sampleGaussOri = math_RtoEuler(math_mul33x33(math_EulerToR(disturb),math_EulerToR(center)))
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_sampleGaussOri
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
!********************************************************************
|
|
|
|
! draw a random sample from Fiber component
|
|
|
|
! with noise (in radians)
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
function math_sampleFiberOri(alpha,beta,noise)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3) :: math_sampleFiberOri, fiberInC,fiberInS,axis
|
|
|
|
real(pReal), dimension(2) :: alpha,beta, rnd
|
|
|
|
real(pReal), dimension(3,3) :: oRot,fRot,pRot
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: noise, scatter, cos2Scatter, angle
|
|
|
|
integer(pInt), dimension(2,3), parameter :: rotMap = reshape((/2_pInt,3_pInt,&
|
|
|
|
3_pInt,1_pInt,&
|
|
|
|
1_pInt,2_pInt/),(/2,3/))
|
|
|
|
integer(pInt) :: i
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
! Helming uses different distribution with Bessel functions
|
|
|
|
! therefore the gauss scatter width has to be scaled differently
|
|
|
|
scatter = 0.95_pReal * noise
|
|
|
|
cos2Scatter = cos(2.0_pReal*scatter)
|
|
|
|
|
|
|
|
! fiber axis in crystal coordinate system
|
|
|
|
fiberInC(1)=sin(alpha(1))*cos(alpha(2))
|
|
|
|
fiberInC(2)=sin(alpha(1))*sin(alpha(2))
|
|
|
|
fiberInC(3)=cos(alpha(1))
|
|
|
|
! fiber axis in sample coordinate system
|
|
|
|
fiberInS(1)=sin(beta(1))*cos(beta(2))
|
|
|
|
fiberInS(2)=sin(beta(1))*sin(beta(2))
|
|
|
|
fiberInS(3)=cos(beta(1))
|
|
|
|
|
|
|
|
! ---# rotation matrix from sample to crystal system #---
|
2011-02-25 14:55:53 +05:30
|
|
|
angle = -acos(dot_product(fiberInC,fiberInS))
|
2007-03-29 21:02:52 +05:30
|
|
|
if(angle /= 0.0_pReal) then
|
|
|
|
! rotation axis between sample and crystal system (cross product)
|
|
|
|
forall(i=1:3) axis(i) = fiberInC(rotMap(1,i))*fiberInS(rotMap(2,i))-fiberInC(rotMap(2,i))*fiberInS(rotMap(1,i))
|
2010-05-06 19:37:21 +05:30
|
|
|
oRot = math_AxisAngleToR(math_vectorproduct(fiberInC,fiberInS),angle)
|
2007-03-29 21:02:52 +05:30
|
|
|
else
|
|
|
|
oRot = math_I3
|
|
|
|
end if
|
|
|
|
|
|
|
|
! ---# rotation matrix about fiber axis (random angle) #---
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(1_pInt,rnd)
|
2010-05-06 19:37:21 +05:30
|
|
|
fRot = math_AxisAngleToR(fiberInS,rnd(1)*2.0_pReal*pi)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
! ---# rotation about random axis perpend to fiber #---
|
2010-05-06 19:37:21 +05:30
|
|
|
! random axis pependicular to fiber axis
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(2_pInt,axis)
|
2007-03-29 21:02:52 +05:30
|
|
|
if (fiberInS(3) /= 0.0_pReal) then
|
|
|
|
axis(3)=-(axis(1)*fiberInS(1)+axis(2)*fiberInS(2))/fiberInS(3)
|
|
|
|
else if(fiberInS(2) /= 0.0_pReal) then
|
|
|
|
axis(3)=axis(2)
|
|
|
|
axis(2)=-(axis(1)*fiberInS(1)+axis(3)*fiberInS(3))/fiberInS(2)
|
|
|
|
else if(fiberInS(1) /= 0.0_pReal) then
|
|
|
|
axis(3)=axis(1)
|
|
|
|
axis(1)=-(axis(2)*fiberInS(2)+axis(3)*fiberInS(3))/fiberInS(1)
|
|
|
|
end if
|
|
|
|
|
|
|
|
! scattered rotation angle
|
|
|
|
do
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(2_pInt,rnd)
|
2007-03-29 21:02:52 +05:30
|
|
|
angle = acos(cos2Scatter+(1.0_pReal-cos2Scatter)*rnd(1))
|
2011-12-01 17:31:13 +05:30
|
|
|
if (rnd(2) <= exp(-1.0_pReal*(angle/scatter)**2.0_pReal)) exit
|
2007-03-29 21:02:52 +05:30
|
|
|
enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(1_pInt,rnd)
|
2007-03-29 21:02:52 +05:30
|
|
|
if (rnd(1) <= 0.5) angle = -angle
|
2010-05-06 19:37:21 +05:30
|
|
|
pRot = math_AxisAngleToR(axis,angle)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
! ---# apply the three rotations #---
|
2010-05-06 19:37:21 +05:30
|
|
|
math_sampleFiberOri = math_RtoEuler(math_mul33x33(pRot,math_mul33x33(fRot,oRot)))
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_sampleFiberOri
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! symmetric Euler angles for given symmetry string
|
|
|
|
! 'triclinic' or '', 'monoclinic', 'orthotropic'
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_symmetricEulers(sym,Euler)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-03-04 17:18:54 +05:30
|
|
|
integer(pInt), intent(in) :: sym
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: Euler
|
|
|
|
real(pReal), dimension(3,3) :: math_symmetricEulers
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
math_symmetricEulers(1,1) = pi+Euler(1)
|
|
|
|
math_symmetricEulers(2,1) = Euler(2)
|
|
|
|
math_symmetricEulers(3,1) = Euler(3)
|
|
|
|
|
|
|
|
math_symmetricEulers(1,2) = pi-Euler(1)
|
|
|
|
math_symmetricEulers(2,2) = pi-Euler(2)
|
|
|
|
math_symmetricEulers(3,2) = pi+Euler(3)
|
|
|
|
|
|
|
|
math_symmetricEulers(1,3) = 2.0_pReal*pi-Euler(1)
|
|
|
|
math_symmetricEulers(2,3) = pi-Euler(2)
|
|
|
|
math_symmetricEulers(3,3) = pi+Euler(3)
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetricEulers(j,i) = modulo(math_symmetricEulers(j,i),2.0_pReal*pi)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
select case (sym)
|
2011-12-01 17:31:13 +05:30
|
|
|
case (4_pInt) ! all done
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (2_pInt) ! return only first
|
|
|
|
math_symmetricEulers(1:3,2:3) = 0.0_pReal
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
case default ! return blank
|
|
|
|
math_symmetricEulers = 0.0_pReal
|
|
|
|
end select
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_symmetricEulers
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2011-02-04 21:11:32 +05:30
|
|
|
!********************************************************************
|
|
|
|
! draw a random sample from Gauss variable
|
|
|
|
!********************************************************************
|
|
|
|
function math_sampleGaussVar(meanvalue, stddev, width)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
|
|
|
|
stddev ! standard deviation of gauss distribution
|
|
|
|
real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation
|
|
|
|
|
|
|
|
!*** output variables
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_sampleGaussVar
|
2011-02-04 21:11:32 +05:30
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
real(pReal), dimension(2) :: rnd ! random numbers
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: scatter, & ! normalized scatter around meanvalue
|
2011-02-04 21:11:32 +05:30
|
|
|
myWidth
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (stddev == 0.0_pReal) then
|
2011-02-04 21:11:32 +05:30
|
|
|
math_sampleGaussVar = meanvalue
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (present(width)) then
|
|
|
|
myWidth = width
|
|
|
|
else
|
|
|
|
myWidth = 3.0_pReal ! use +-3*sigma as default value for scatter
|
|
|
|
endif
|
|
|
|
|
|
|
|
do
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(2_pInt, rnd)
|
2011-02-04 21:11:32 +05:30
|
|
|
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
|
|
|
|
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) & ! test if scattered value is drawn
|
|
|
|
exit
|
|
|
|
enddo
|
|
|
|
|
|
|
|
math_sampleGaussVar = scatter * stddev
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_sampleGaussVar
|
2011-09-14 18:56:00 +05:30
|
|
|
|
|
|
|
|
|
|
|
!****************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
subroutine math_spectralDecompositionSym33(M,values,vectors,error)
|
2011-09-14 18:56:00 +05:30
|
|
|
!****************************************************************
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: M
|
|
|
|
real(pReal), dimension(3), intent(out) :: values
|
|
|
|
real(pReal), dimension(3,3), intent(out) :: vectors
|
|
|
|
logical, intent(out) :: error
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: info
|
2011-09-14 18:56:00 +05:30
|
|
|
real(pReal), dimension((64+2)*3) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
2011-02-04 21:11:32 +05:30
|
|
|
|
2011-09-14 18:56:00 +05:30
|
|
|
vectors = M ! copy matrix to input (doubles as output) array
|
|
|
|
call DSYEV('V','U',3,vectors,3,values,work,(64+2)*3,info)
|
|
|
|
error = (info == 0_pInt)
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine
|
2011-02-04 21:11:32 +05:30
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!****************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
pure subroutine math_pDecomposition(FE,U,R,error)
|
2010-05-06 19:37:21 +05:30
|
|
|
!-----FE = R.U
|
2007-03-21 15:50:25 +05:30
|
|
|
!****************************************************************
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), intent(in), dimension(3,3) :: FE
|
|
|
|
real(pReal), intent(out), dimension(3,3) :: R, U
|
2009-12-14 16:32:10 +05:30
|
|
|
logical, intent(out) :: error
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(3,3) :: CE, EB1, EB2, EB3, UI
|
|
|
|
real(pReal) :: EW1, EW2, EW3, det
|
2007-04-11 15:34:22 +05:30
|
|
|
|
|
|
|
error = .false.
|
2012-01-26 19:20:00 +05:30
|
|
|
ce = math_mul33x33(math_transpose33(FE),FE)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
CALL math_spectral1(CE,EW1,EW2,EW3,EB1,EB2,EB3)
|
2011-02-25 14:55:53 +05:30
|
|
|
U=sqrt(EW1)*EB1+sqrt(EW2)*EB2+sqrt(EW3)*EB3
|
2012-01-26 19:20:00 +05:30
|
|
|
call math_invert33(U,UI,det,error)
|
2009-05-07 21:57:36 +05:30
|
|
|
if (.not. error) R = math_mul33x33(FE,UI)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE math_pDecomposition
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**********************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
pure subroutine math_spectral1(M,EW1,EW2,EW3,EB1,EB2,EB3)
|
2007-03-21 15:50:25 +05:30
|
|
|
!**** EIGENWERTE UND EIGENWERTBASIS DER SYMMETRISCHEN 3X3 MATRIX M
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: M
|
|
|
|
real(pReal), dimension(3,3), intent(out) :: EB1, EB2, EB3
|
|
|
|
real(pReal), intent(out) :: EW1,EW2,EW3
|
|
|
|
real(pReal) HI1M, HI2M, HI3M, R, S, T, P, Q, RHO, PHI, Y1, Y2, Y3, D1, D2, D3
|
|
|
|
real(pReal), parameter :: TOL=1.e-14_pReal
|
|
|
|
real(pReal), dimension(3,3) :: M1, M2, M3
|
|
|
|
real(pReal) C1,C2,C3,arg
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
CALL math_hi(M,HI1M,HI2M,HI3M)
|
|
|
|
R=-HI1M
|
|
|
|
S= HI2M
|
|
|
|
T=-HI3M
|
|
|
|
P=S-R**2.0_pReal/3.0_pReal
|
|
|
|
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
|
|
|
EB1=0.0_pReal
|
|
|
|
EB2=0.0_pReal
|
|
|
|
EB3=0.0_pReal
|
|
|
|
IF((ABS(P).LT.TOL).AND.(ABS(Q).LT.TOL))THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
! DREI GLEICHE EIGENWERTE
|
2007-03-20 19:25:22 +05:30
|
|
|
EW1=HI1M/3.0_pReal
|
|
|
|
EW2=EW1
|
|
|
|
EW3=EW1
|
2007-03-21 15:50:25 +05:30
|
|
|
! this is not really correct, but this way U is calculated
|
|
|
|
! correctly in PDECOMPOSITION (correct is EB?=I)
|
2007-03-20 19:25:22 +05:30
|
|
|
EB1(1,1)=1.0_pReal
|
|
|
|
EB2(2,2)=1.0_pReal
|
|
|
|
EB3(3,3)=1.0_pReal
|
|
|
|
ELSE
|
2011-02-25 14:55:53 +05:30
|
|
|
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
2007-03-20 19:25:22 +05:30
|
|
|
arg=-Q/RHO/2.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
if(arg.GT.1.0_pReal) arg=1.0_pReal
|
|
|
|
if(arg.LT.-1.0_pReal) arg=-1.0_pReal
|
2011-02-25 14:55:53 +05:30
|
|
|
PHI=acos(arg)
|
2011-12-01 17:31:13 +05:30
|
|
|
Y1=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
|
|
Y2=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
|
|
Y3=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
2007-03-20 19:25:22 +05:30
|
|
|
EW1=Y1-R/3.0_pReal
|
|
|
|
EW2=Y2-R/3.0_pReal
|
|
|
|
EW3=Y3-R/3.0_pReal
|
|
|
|
C1=ABS(EW1-EW2)
|
|
|
|
C2=ABS(EW2-EW3)
|
|
|
|
C3=ABS(EW3-EW1)
|
|
|
|
|
|
|
|
IF(C1.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
! EW1 is equal to EW2
|
2007-03-20 19:25:22 +05:30
|
|
|
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
2007-03-27 20:43:08 +05:30
|
|
|
M1=M-EW1*math_I3
|
|
|
|
M2=M-EW2*math_I3
|
2008-07-23 18:19:40 +05:30
|
|
|
EB3=math_mul33x33(M1,M2)*D3
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-27 20:43:08 +05:30
|
|
|
EB1=math_I3-EB3
|
2007-03-21 15:50:25 +05:30
|
|
|
! both EB2 and EW2 are set to zero so that they do not
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
EW2=0.0_pReal
|
|
|
|
ELSE IF(C2.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
! EW2 is equal to EW3
|
2007-03-20 19:25:22 +05:30
|
|
|
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
2007-03-27 20:43:08 +05:30
|
|
|
M2=M-math_I3*EW2
|
|
|
|
M3=M-math_I3*EW3
|
2008-07-23 18:19:40 +05:30
|
|
|
EB1=math_mul33x33(M2,M3)*D1
|
2007-03-27 20:43:08 +05:30
|
|
|
EB2=math_I3-EB1
|
2007-03-21 15:50:25 +05:30
|
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
EW3=0.0_pReal
|
|
|
|
ELSE IF(C3.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
! EW1 is equal to EW3
|
2007-03-20 19:25:22 +05:30
|
|
|
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
2007-03-27 20:43:08 +05:30
|
|
|
M1=M-math_I3*EW1
|
|
|
|
M3=M-math_I3*EW3
|
2008-07-23 18:19:40 +05:30
|
|
|
EB2=math_mul33x33(M1,M3)*D2
|
2007-03-27 20:43:08 +05:30
|
|
|
EB1=math_I3-EB2
|
2007-03-21 15:50:25 +05:30
|
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
EW3=0.0_pReal
|
|
|
|
ELSE
|
2007-03-21 15:50:25 +05:30
|
|
|
! all three eigenvectors are different
|
2007-03-20 19:25:22 +05:30
|
|
|
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
|
|
|
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
|
|
|
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
2007-03-27 20:43:08 +05:30
|
|
|
M1=M-EW1*math_I3
|
|
|
|
M2=M-EW2*math_I3
|
|
|
|
M3=M-EW3*math_I3
|
2008-07-23 18:19:40 +05:30
|
|
|
EB1=math_mul33x33(M2,M3)*D1
|
|
|
|
EB2=math_mul33x33(M1,M3)*D2
|
|
|
|
EB3=math_mul33x33(M1,M2)*D3
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
END IF
|
|
|
|
END IF
|
2011-08-01 15:41:32 +05:30
|
|
|
|
|
|
|
ENDSUBROUTINE math_spectral1
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-08-26 19:36:37 +05:30
|
|
|
!**********************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
function math_eigenvalues33(M)
|
2011-08-26 19:36:37 +05:30
|
|
|
!**** Eigenvalues of symmetric 3X3 matrix M
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), intent(in), dimension(3,3) :: M
|
|
|
|
real(pReal), dimension(3,3) :: EB1 = 0.0_pReal, EB2 = 0.0_pReal, EB3 = 0.0_pReal
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal), dimension(3) :: math_eigenvalues33
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: HI1M, HI2M, HI3M, R, S, T, P, Q, RHO, PHI, Y1, Y2, Y3, arg
|
|
|
|
real(pReal), parameter :: TOL=1.e-14_pReal
|
|
|
|
|
2011-08-26 19:36:37 +05:30
|
|
|
CALL math_hi(M,HI1M,HI2M,HI3M)
|
|
|
|
R=-HI1M
|
|
|
|
S= HI2M
|
|
|
|
T=-HI3M
|
|
|
|
P=S-R**2.0_pReal/3.0_pReal
|
|
|
|
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-08-26 19:36:37 +05:30
|
|
|
if((abs(P) < TOL) .and. (abs(Q) < TOL)) THEN
|
|
|
|
! three equivalent eigenvalues
|
2012-01-26 19:20:00 +05:30
|
|
|
math_eigenvalues33(1) = HI1M/3.0_pReal
|
|
|
|
math_eigenvalues33(2)=math_eigenvalues33(1)
|
|
|
|
math_eigenvalues33(3)=math_eigenvalues33(1)
|
2011-08-26 19:36:37 +05:30
|
|
|
! this is not really correct, but this way U is calculated
|
|
|
|
! correctly in PDECOMPOSITION (correct is EB?=I)
|
|
|
|
EB1(1,1)=1.0_pReal
|
|
|
|
EB2(2,2)=1.0_pReal
|
|
|
|
EB3(3,3)=1.0_pReal
|
|
|
|
else
|
|
|
|
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
|
|
|
arg=-Q/RHO/2.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
if(arg.GT.1.0_pReal) arg=1.0_pReal
|
|
|
|
if(arg.LT.-1.0_pReal) arg=-1.0_pReal
|
2011-08-26 19:36:37 +05:30
|
|
|
PHI=acos(arg)
|
|
|
|
Y1=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
|
|
Y2=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
|
|
Y3=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
2012-01-26 19:20:00 +05:30
|
|
|
math_eigenvalues33(1) = Y1-R/3.0_pReal
|
|
|
|
math_eigenvalues33(2) = Y2-R/3.0_pReal
|
|
|
|
math_eigenvalues33(3) = Y3-R/3.0_pReal
|
2011-08-26 19:36:37 +05:30
|
|
|
endif
|
2012-01-26 19:20:00 +05:30
|
|
|
endfunction math_eigenvalues33
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!**********************************************************************
|
|
|
|
!**** HAUPTINVARIANTEN HI1M, HI2M, HI3M DER 3X3 MATRIX M
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
PURE SUBROUTINE math_hi(M,HI1M,HI2M,HI3M)
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
real(pReal), intent(in) :: M(3,3)
|
|
|
|
real(pReal), intent(out) :: HI1M, HI2M, HI3M
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
HI1M=M(1,1)+M(2,2)+M(3,3)
|
2011-12-01 17:31:13 +05:30
|
|
|
HI2M=HI1M**2.0_pReal/2.0_pReal- (M(1,1)**2.0_pReal+M(2,2)**2.0_pReal+M(3,3)**2.0_pReal)&
|
|
|
|
/2.0_pReal-M(1,2)*M(2,1)-M(1,3)*M(3,1)-M(2,3)*M(3,2)
|
2012-01-26 19:20:00 +05:30
|
|
|
HI3M=math_det33(M)
|
2007-03-22 20:18:16 +05:30
|
|
|
! QUESTION: is 3rd equiv det(M) ?? if yes, use function math_det !agreed on YES
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE math_hi
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! GET_SEED returns a seed for the random number generator.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! The seed depends on the current time, and ought to be (slightly)
|
|
|
|
! different every millisecond. Once the seed is obtained, a random
|
|
|
|
! number generator should be called a few times to further process
|
|
|
|
! the seed.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Output, integer SEED, a pseudorandom seed value.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 27 June 2000
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
SUBROUTINE get_seed(seed)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: seed
|
|
|
|
real(pReal) :: temp = 0.0_pReal
|
|
|
|
character(len = 10) :: time
|
|
|
|
character(len = 8) :: today
|
|
|
|
integer(pInt) :: values(8)
|
|
|
|
character(len = 5) :: zone
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call date_and_time (today, time, zone, values)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
temp = temp + real(values(2)- 1_pInt, pReal) / 11.0_pReal
|
|
|
|
temp = temp + real(values(3)- 1_pInt, pReal) / 30.0_pReal
|
|
|
|
temp = temp + real(values(5), pReal) / 23.0_pReal
|
|
|
|
temp = temp + real(values(6), pReal) / 59.0_pReal
|
|
|
|
temp = temp + real(values(7), pReal) / 59.0_pReal
|
|
|
|
temp = temp + real(values(8), pReal) / 999.0_pReal
|
|
|
|
temp = temp / 6.0_pReal
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (temp <= 0.0_pReal) then
|
|
|
|
temp = 1.0_pReal / 3.0_pReal
|
|
|
|
else if (1.0_pReal <= temp) then
|
|
|
|
temp = 2.0_pReal / 3.0_pReal
|
2007-03-20 19:25:22 +05:30
|
|
|
end if
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
seed = int(real(huge(1_pInt),pReal)*temp, pInt)
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Never use a seed of 0 or maximum integer.
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
if (seed == 0_pInt) then
|
|
|
|
seed = 1_pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
end if
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (seed == huge(1_pInt)) then
|
|
|
|
seed = seed -1_pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
end if
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE get_seed
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! HALTON computes the next element in the Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer NDIM, the dimension of the element.
|
|
|
|
! Output, real R(NDIM), the next element of the current Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 09 March 2003
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
subroutine halton(ndim, r)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), intent(in) :: ndim
|
|
|
|
real(pReal), intent(out), dimension(ndim) :: r
|
|
|
|
integer(pInt), dimension(ndim) :: base
|
|
|
|
integer(pInt) :: seed
|
|
|
|
integer(pInt), dimension(1) :: value_halton
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton_memory ('GET', 'SEED', 1_pInt, value_halton)
|
|
|
|
seed = value_halton(1)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton_memory ('GET', 'BASE', ndim, base)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call i_to_halton (seed, base, ndim, r)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
value_halton(1) = 1_pInt
|
|
|
|
call halton_memory ('INC', 'SEED', 1_pInt, value_halton)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE halton
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! HALTON_MEMORY sets or returns quantities associated with the Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, character (len = *) action_halton, the desired action.
|
|
|
|
! 'GET' means get the value of a particular quantity.
|
|
|
|
! 'SET' means set the value of a particular quantity.
|
|
|
|
! 'INC' means increment the value of a particular quantity.
|
|
|
|
! (Only the SEED can be incremented.)
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, character (len = *) name_halton, the name of the quantity.
|
|
|
|
! 'BASE' means the Halton base or bases.
|
|
|
|
! 'NDIM' means the spatial dimension.
|
|
|
|
! 'SEED' means the current Halton seed.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input/output, integer NDIM, the dimension of the quantity.
|
|
|
|
! If action_halton is 'SET' and action_halton is 'BASE', then NDIM is input, and
|
|
|
|
! is the number of entries in value_halton to be put into BASE.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input/output, integer value_halton(NDIM), contains a value.
|
|
|
|
! If action_halton is 'SET', then on input, value_halton contains values to be assigned
|
|
|
|
! to the internal variable.
|
|
|
|
! If action_halton is 'GET', then on output, value_halton contains the values of
|
|
|
|
! the specified internal variable.
|
|
|
|
! If action_halton is 'INC', then on input, value_halton contains the increment to
|
|
|
|
! be added to the specified internal variable.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 09 March 2003
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
|
|
|
|
|
|
|
subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
character(len = *), intent(in) :: action_halton, name_halton
|
|
|
|
integer(pInt), dimension(*), intent(inout) :: value_halton
|
|
|
|
integer(pInt), allocatable, save, dimension(:) :: base
|
2007-03-20 19:25:22 +05:30
|
|
|
logical, save :: first_call = .true.
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), intent(in) :: ndim
|
|
|
|
integer(pInt):: i
|
|
|
|
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
|
|
|
|
|
|
|
|
|
|
|
|
if (first_call) then
|
|
|
|
ndim_save = 1_pInt
|
|
|
|
allocate(base(ndim_save))
|
|
|
|
base(1) = 2_pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
first_call = .false.
|
2011-12-01 17:31:13 +05:30
|
|
|
endif
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Set
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
if(action_halton(1:1) == 'S' .or. action_halton(1:1) == 's') then
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if(ndim_save /= ndim) then
|
|
|
|
deallocate(base)
|
2010-05-06 19:37:21 +05:30
|
|
|
ndim_save = ndim
|
2011-12-01 17:31:13 +05:30
|
|
|
allocate(base(ndim_save))
|
|
|
|
endif
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
base(1:ndim) = value_halton(1:ndim)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if(ndim_save /= value_halton(1)) then
|
|
|
|
deallocate(base)
|
|
|
|
ndim_save = value_halton(1)
|
|
|
|
allocate(base(ndim_save))
|
|
|
|
do i = 1_pInt, ndim_save
|
|
|
|
base(i) = prime (i)
|
2010-05-06 19:37:21 +05:30
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
else
|
2011-12-01 17:31:13 +05:30
|
|
|
ndim_save = value_halton(1)
|
|
|
|
endif
|
|
|
|
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
|
|
seed = value_halton(1)
|
|
|
|
endif
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Get
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
elseif(action_halton(1:1) == 'G' .or. action_halton(1:1) == 'g') then
|
|
|
|
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
|
|
|
if(ndim /= ndim_save) then
|
|
|
|
deallocate(base)
|
2007-03-20 19:25:22 +05:30
|
|
|
ndim_save = ndim
|
2011-12-01 17:31:13 +05:30
|
|
|
allocate(base(ndim_save))
|
|
|
|
do i = 1_pInt, ndim_save
|
2007-03-20 19:25:22 +05:30
|
|
|
base(i) = prime(i)
|
2009-06-29 20:59:07 +05:30
|
|
|
enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
endif
|
|
|
|
value_halton(1:ndim_save) = base(1:ndim_save)
|
|
|
|
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
|
|
|
value_halton(1) = ndim_save
|
|
|
|
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
|
|
value_halton(1) = seed
|
|
|
|
endif
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Increment
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
elseif(action_halton(1:1) == 'I' .or. action_halton(1:1) == 'i') then
|
|
|
|
if(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
|
|
seed = seed + value_halton(1)
|
2007-03-20 19:25:22 +05:30
|
|
|
end if
|
2011-12-01 17:31:13 +05:30
|
|
|
endif
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE halton_memory
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! HALTON_NDIM_SET sets the dimension for a Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer NDIM, the dimension of the Halton vectors.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 26 February 2001
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
subroutine halton_ndim_set (ndim)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), intent(in) :: ndim
|
|
|
|
integer(pInt) :: value_halton(1)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
value_halton(1) = ndim
|
|
|
|
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE halton_ndim_set
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! HALTON_SEED_SET sets the "seed" for the Halton sequence.
|
|
|
|
!
|
|
|
|
! Calling HALTON repeatedly returns the elements of the
|
|
|
|
! Halton sequence in order, starting with element number 1.
|
|
|
|
! An internal counter, called SEED, keeps track of the next element
|
|
|
|
! to return. Each time the routine is called, the SEED-th element
|
|
|
|
! is computed, and then SEED is incremented by 1.
|
|
|
|
!
|
|
|
|
! To restart the Halton sequence, it is only necessary to reset
|
|
|
|
! SEED to 1. It might also be desirable to reset SEED to some other value.
|
|
|
|
! This routine allows the user to specify any value of SEED.
|
|
|
|
!
|
|
|
|
! The default value of SEED is 1, which restarts the Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer SEED, the seed for the Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 26 February 2001
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
subroutine halton_seed_set (seed)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), parameter :: ndim = 1_pInt
|
|
|
|
integer(pInt), intent(in) :: seed
|
|
|
|
integer(pInt) :: value_halton(ndim)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
value_halton(1) = seed
|
|
|
|
call halton_memory ('SET', 'SEED', ndim, value_halton)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE halton_seed_set
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! I_TO_HALTON computes an element of a Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Reference:
|
2011-12-01 17:31:13 +05:30
|
|
|
! J H Halton: On the efficiency of certain quasi-random sequences of points
|
|
|
|
! in evaluating multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
|
|
|
!
|
2007-03-21 15:50:25 +05:30
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer SEED, the index of the desired element.
|
|
|
|
! Only the absolute value of SEED is considered. SEED = 0 is allowed,
|
|
|
|
! and returns R = 0.
|
|
|
|
!
|
|
|
|
! Input, integer BASE(NDIM), the Halton bases, which should be
|
|
|
|
! distinct prime numbers. This routine only checks that each base
|
|
|
|
! is greater than 1.
|
|
|
|
!
|
|
|
|
! Input, integer NDIM, the dimension of the sequence.
|
|
|
|
!
|
|
|
|
! Output, real R(NDIM), the SEED-th element of the Halton sequence
|
|
|
|
! for the given bases.
|
|
|
|
!
|
|
|
|
! Modified: 26 February 2001
|
|
|
|
! Author: John Burkardt
|
|
|
|
!
|
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz RotersA
|
|
|
|
|
|
|
|
subroutine i_to_halton (seed, base, ndim, r)
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: ndim
|
|
|
|
integer(pInt), intent(in), dimension(ndim) :: base
|
|
|
|
real(pReal), dimension(ndim) :: base_inv
|
|
|
|
integer(pInt), dimension(ndim) :: digit
|
|
|
|
integer(pInt) :: i
|
|
|
|
real(pReal), dimension(ndim), intent(out) ::r
|
|
|
|
integer(pInt) :: seed
|
|
|
|
integer(pInt), dimension(ndim) :: seed2
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
seed2(1:ndim) = abs(seed)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
r(1:ndim) = 0.0_pReal
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (any (base(1:ndim) <= 1_pInt)) then
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
!$OMP CRITICAL (write2out)
|
2011-12-01 17:31:13 +05:30
|
|
|
write (*, '(a)') ' '
|
|
|
|
write (*, '(a)') 'I_TO_HALTON - Fatal error!'
|
|
|
|
write (*, '(a)') ' An input base BASE is <= 1!'
|
2007-03-20 19:25:22 +05:30
|
|
|
do i = 1, ndim
|
2011-12-01 17:31:13 +05:30
|
|
|
write (*, '(i6,i6)') i, base(i)
|
2009-06-29 20:59:07 +05:30
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
call flush(6)
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
!$OMP END CRITICAL (write2out)
|
2007-03-20 19:25:22 +05:30
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do while ( any ( seed2(1:ndim) /= 0_pInt) )
|
|
|
|
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
|
|
|
|
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
|
|
|
|
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
|
2007-03-20 19:25:22 +05:30
|
|
|
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
|
2009-06-29 20:59:07 +05:30
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE i_to_halton
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! PRIME returns any of the first PRIME_MAX prime numbers.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Note:
|
2011-12-01 17:31:13 +05:30
|
|
|
! PRIME_MAX is 1500, and the largest prime stored is 12553.
|
2007-03-21 15:50:25 +05:30
|
|
|
! Reference:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
|
|
|
|
! US Department of Commerce, 1964, pages 870-873.
|
|
|
|
!
|
|
|
|
! Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
|
|
|
|
! 30th Edition, CRC Press, 1996, pages 95-98.
|
|
|
|
!
|
2007-03-21 15:50:25 +05:30
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer N, the index of the desired prime number.
|
|
|
|
! N = -1 returns PRIME_MAX, the index of the largest prime available.
|
|
|
|
! N = 0 is legal, returning PRIME = 1.
|
|
|
|
! It should generally be true that 0 <= N <= PRIME_MAX.
|
|
|
|
!
|
|
|
|
! Output, integer PRIME, the N-th prime. If N is out of range, PRIME
|
|
|
|
! is returned as 0.
|
|
|
|
!
|
|
|
|
! Modified: 21 June 2002
|
|
|
|
! Author: John Burkardt
|
|
|
|
!
|
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
|
|
|
!
|
|
|
|
function prime(n)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
integer(pInt), parameter :: prime_max = 1500
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), save :: icall = 0_pInt
|
|
|
|
integer(pInt), intent(in) :: n
|
|
|
|
integer(pInt), save, dimension(prime_max) :: npvec
|
|
|
|
integer(pInt) prime
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (icall == 0_pInt) then
|
|
|
|
icall = 1_pInt
|
|
|
|
|
|
|
|
npvec(1:100) = (/&
|
|
|
|
2_pInt, 3_pInt, 5_pInt, 7_pInt, 11_pInt, 13_pInt, 17_pInt, 19_pInt, 23_pInt, 29_pInt, &
|
|
|
|
31_pInt, 37_pInt, 41_pInt, 43_pInt, 47_pInt, 53_pInt, 59_pInt, 61_pInt, 67_pInt, 71_pInt, &
|
|
|
|
73_pInt, 79_pInt, 83_pInt, 89_pInt, 97_pInt, 101_pInt, 103_pInt, 107_pInt, 109_pInt, 113_pInt, &
|
|
|
|
127_pInt, 131_pInt, 137_pInt, 139_pInt, 149_pInt, 151_pInt, 157_pInt, 163_pInt, 167_pInt, 173_pInt, &
|
|
|
|
179_pInt, 181_pInt, 191_pInt, 193_pInt, 197_pInt, 199_pInt, 211_pInt, 223_pInt, 227_pInt, 229_pInt, &
|
|
|
|
233_pInt, 239_pInt, 241_pInt, 251_pInt, 257_pInt, 263_pInt, 269_pInt, 271_pInt, 277_pInt, 281_pInt, &
|
|
|
|
283_pInt, 293_pInt, 307_pInt, 311_pInt, 313_pInt, 317_pInt, 331_pInt, 337_pInt, 347_pInt, 349_pInt, &
|
|
|
|
353_pInt, 359_pInt, 367_pInt, 373_pInt, 379_pInt, 383_pInt, 389_pInt, 397_pInt, 401_pInt, 409_pInt, &
|
|
|
|
419_pInt, 421_pInt, 431_pInt, 433_pInt, 439_pInt, 443_pInt, 449_pInt, 457_pInt, 461_pInt, 463_pInt, &
|
|
|
|
467_pInt, 479_pInt, 487_pInt, 491_pInt, 499_pInt, 503_pInt, 509_pInt, 521_pInt, 523_pInt, 541_pInt/)
|
|
|
|
|
|
|
|
npvec(101:200) = (/ &
|
|
|
|
547_pInt, 557_pInt, 563_pInt, 569_pInt, 571_pInt, 577_pInt, 587_pInt, 593_pInt, 599_pInt, 601_pInt, &
|
|
|
|
607_pInt, 613_pInt, 617_pInt, 619_pInt, 631_pInt, 641_pInt, 643_pInt, 647_pInt, 653_pInt, 659_pInt, &
|
|
|
|
661_pInt, 673_pInt, 677_pInt, 683_pInt, 691_pInt, 701_pInt, 709_pInt, 719_pInt, 727_pInt, 733_pInt, &
|
|
|
|
739_pInt, 743_pInt, 751_pInt, 757_pInt, 761_pInt, 769_pInt, 773_pInt, 787_pInt, 797_pInt, 809_pInt, &
|
|
|
|
811_pInt, 821_pInt, 823_pInt, 827_pInt, 829_pInt, 839_pInt, 853_pInt, 857_pInt, 859_pInt, 863_pInt, &
|
|
|
|
877_pInt, 881_pInt, 883_pInt, 887_pInt, 907_pInt, 911_pInt, 919_pInt, 929_pInt, 937_pInt, 941_pInt, &
|
|
|
|
947_pInt, 953_pInt, 967_pInt, 971_pInt, 977_pInt, 983_pInt, 991_pInt, 997_pInt, 1009_pInt, 1013_pInt, &
|
|
|
|
1019_pInt, 1021_pInt, 1031_pInt, 1033_pInt, 1039_pInt, 1049_pInt, 1051_pInt, 1061_pInt, 1063_pInt, 1069_pInt, &
|
|
|
|
1087_pInt, 1091_pInt, 1093_pInt, 1097_pInt, 1103_pInt, 1109_pInt, 1117_pInt, 1123_pInt, 1129_pInt, 1151_pInt, &
|
|
|
|
1153_pInt, 1163_pInt, 1171_pInt, 1181_pInt, 1187_pInt, 1193_pInt, 1201_pInt, 1213_pInt, 1217_pInt, 1223_pInt/)
|
|
|
|
|
|
|
|
npvec(201:300) = (/ &
|
|
|
|
1229_pInt, 1231_pInt, 1237_pInt, 1249_pInt, 1259_pInt, 1277_pInt, 1279_pInt, 1283_pInt, 1289_pInt, 1291_pInt, &
|
|
|
|
1297_pInt, 1301_pInt, 1303_pInt, 1307_pInt, 1319_pInt, 1321_pInt, 1327_pInt, 1361_pInt, 1367_pInt, 1373_pInt, &
|
|
|
|
1381_pInt, 1399_pInt, 1409_pInt, 1423_pInt, 1427_pInt, 1429_pInt, 1433_pInt, 1439_pInt, 1447_pInt, 1451_pInt, &
|
|
|
|
1453_pInt, 1459_pInt, 1471_pInt, 1481_pInt, 1483_pInt, 1487_pInt, 1489_pInt, 1493_pInt, 1499_pInt, 1511_pInt, &
|
|
|
|
1523_pInt, 1531_pInt, 1543_pInt, 1549_pInt, 1553_pInt, 1559_pInt, 1567_pInt, 1571_pInt, 1579_pInt, 1583_pInt, &
|
|
|
|
1597_pInt, 1601_pInt, 1607_pInt, 1609_pInt, 1613_pInt, 1619_pInt, 1621_pInt, 1627_pInt, 1637_pInt, 1657_pInt, &
|
|
|
|
1663_pInt, 1667_pInt, 1669_pInt, 1693_pInt, 1697_pInt, 1699_pInt, 1709_pInt, 1721_pInt, 1723_pInt, 1733_pInt, &
|
|
|
|
1741_pInt, 1747_pInt, 1753_pInt, 1759_pInt, 1777_pInt, 1783_pInt, 1787_pInt, 1789_pInt, 1801_pInt, 1811_pInt, &
|
|
|
|
1823_pInt, 1831_pInt, 1847_pInt, 1861_pInt, 1867_pInt, 1871_pInt, 1873_pInt, 1877_pInt, 1879_pInt, 1889_pInt, &
|
|
|
|
1901_pInt, 1907_pInt, 1913_pInt, 1931_pInt, 1933_pInt, 1949_pInt, 1951_pInt, 1973_pInt, 1979_pInt, 1987_pInt/)
|
|
|
|
|
|
|
|
npvec(301:400) = (/ &
|
|
|
|
1993_pInt, 1997_pInt, 1999_pInt, 2003_pInt, 2011_pInt, 2017_pInt, 2027_pInt, 2029_pInt, 2039_pInt, 2053_pInt, &
|
|
|
|
2063_pInt, 2069_pInt, 2081_pInt, 2083_pInt, 2087_pInt, 2089_pInt, 2099_pInt, 2111_pInt, 2113_pInt, 2129_pInt, &
|
|
|
|
2131_pInt, 2137_pInt, 2141_pInt, 2143_pInt, 2153_pInt, 2161_pInt, 2179_pInt, 2203_pInt, 2207_pInt, 2213_pInt, &
|
|
|
|
2221_pInt, 2237_pInt, 2239_pInt, 2243_pInt, 2251_pInt, 2267_pInt, 2269_pInt, 2273_pInt, 2281_pInt, 2287_pInt, &
|
|
|
|
2293_pInt, 2297_pInt, 2309_pInt, 2311_pInt, 2333_pInt, 2339_pInt, 2341_pInt, 2347_pInt, 2351_pInt, 2357_pInt, &
|
|
|
|
2371_pInt, 2377_pInt, 2381_pInt, 2383_pInt, 2389_pInt, 2393_pInt, 2399_pInt, 2411_pInt, 2417_pInt, 2423_pInt, &
|
|
|
|
2437_pInt, 2441_pInt, 2447_pInt, 2459_pInt, 2467_pInt, 2473_pInt, 2477_pInt, 2503_pInt, 2521_pInt, 2531_pInt, &
|
|
|
|
2539_pInt, 2543_pInt, 2549_pInt, 2551_pInt, 2557_pInt, 2579_pInt, 2591_pInt, 2593_pInt, 2609_pInt, 2617_pInt, &
|
|
|
|
2621_pInt, 2633_pInt, 2647_pInt, 2657_pInt, 2659_pInt, 2663_pInt, 2671_pInt, 2677_pInt, 2683_pInt, 2687_pInt, &
|
|
|
|
2689_pInt, 2693_pInt, 2699_pInt, 2707_pInt, 2711_pInt, 2713_pInt, 2719_pInt, 2729_pInt, 2731_pInt, 2741_pInt/)
|
|
|
|
|
|
|
|
npvec(401:500) = (/ &
|
|
|
|
2749_pInt, 2753_pInt, 2767_pInt, 2777_pInt, 2789_pInt, 2791_pInt, 2797_pInt, 2801_pInt, 2803_pInt, 2819_pInt, &
|
|
|
|
2833_pInt, 2837_pInt, 2843_pInt, 2851_pInt, 2857_pInt, 2861_pInt, 2879_pInt, 2887_pInt, 2897_pInt, 2903_pInt, &
|
|
|
|
2909_pInt, 2917_pInt, 2927_pInt, 2939_pInt, 2953_pInt, 2957_pInt, 2963_pInt, 2969_pInt, 2971_pInt, 2999_pInt, &
|
|
|
|
3001_pInt, 3011_pInt, 3019_pInt, 3023_pInt, 3037_pInt, 3041_pInt, 3049_pInt, 3061_pInt, 3067_pInt, 3079_pInt, &
|
|
|
|
3083_pInt, 3089_pInt, 3109_pInt, 3119_pInt, 3121_pInt, 3137_pInt, 3163_pInt, 3167_pInt, 3169_pInt, 3181_pInt, &
|
|
|
|
3187_pInt, 3191_pInt, 3203_pInt, 3209_pInt, 3217_pInt, 3221_pInt, 3229_pInt, 3251_pInt, 3253_pInt, 3257_pInt, &
|
|
|
|
3259_pInt, 3271_pInt, 3299_pInt, 3301_pInt, 3307_pInt, 3313_pInt, 3319_pInt, 3323_pInt, 3329_pInt, 3331_pInt, &
|
|
|
|
3343_pInt, 3347_pInt, 3359_pInt, 3361_pInt, 3371_pInt, 3373_pInt, 3389_pInt, 3391_pInt, 3407_pInt, 3413_pInt, &
|
|
|
|
3433_pInt, 3449_pInt, 3457_pInt, 3461_pInt, 3463_pInt, 3467_pInt, 3469_pInt, 3491_pInt, 3499_pInt, 3511_pInt, &
|
|
|
|
3517_pInt, 3527_pInt, 3529_pInt, 3533_pInt, 3539_pInt, 3541_pInt, 3547_pInt, 3557_pInt, 3559_pInt, 3571_pInt/)
|
|
|
|
|
|
|
|
npvec(501:600) = (/ &
|
|
|
|
3581_pInt, 3583_pInt, 3593_pInt, 3607_pInt, 3613_pInt, 3617_pInt, 3623_pInt, 3631_pInt, 3637_pInt, 3643_pInt, &
|
|
|
|
3659_pInt, 3671_pInt, 3673_pInt, 3677_pInt, 3691_pInt, 3697_pInt, 3701_pInt, 3709_pInt, 3719_pInt, 3727_pInt, &
|
|
|
|
3733_pInt, 3739_pInt, 3761_pInt, 3767_pInt, 3769_pInt, 3779_pInt, 3793_pInt, 3797_pInt, 3803_pInt, 3821_pInt, &
|
|
|
|
3823_pInt, 3833_pInt, 3847_pInt, 3851_pInt, 3853_pInt, 3863_pInt, 3877_pInt, 3881_pInt, 3889_pInt, 3907_pInt, &
|
|
|
|
3911_pInt, 3917_pInt, 3919_pInt, 3923_pInt, 3929_pInt, 3931_pInt, 3943_pInt, 3947_pInt, 3967_pInt, 3989_pInt, &
|
|
|
|
4001_pInt, 4003_pInt, 4007_pInt, 4013_pInt, 4019_pInt, 4021_pInt, 4027_pInt, 4049_pInt, 4051_pInt, 4057_pInt, &
|
|
|
|
4073_pInt, 4079_pInt, 4091_pInt, 4093_pInt, 4099_pInt, 4111_pInt, 4127_pInt, 4129_pInt, 4133_pInt, 4139_pInt, &
|
|
|
|
4153_pInt, 4157_pInt, 4159_pInt, 4177_pInt, 4201_pInt, 4211_pInt, 4217_pInt, 4219_pInt, 4229_pInt, 4231_pInt, &
|
|
|
|
4241_pInt, 4243_pInt, 4253_pInt, 4259_pInt, 4261_pInt, 4271_pInt, 4273_pInt, 4283_pInt, 4289_pInt, 4297_pInt, &
|
|
|
|
4327_pInt, 4337_pInt, 4339_pInt, 4349_pInt, 4357_pInt, 4363_pInt, 4373_pInt, 4391_pInt, 4397_pInt, 4409_pInt/)
|
|
|
|
|
|
|
|
npvec(601:700) = (/ &
|
|
|
|
4421_pInt, 4423_pInt, 4441_pInt, 4447_pInt, 4451_pInt, 4457_pInt, 4463_pInt, 4481_pInt, 4483_pInt, 4493_pInt, &
|
|
|
|
4507_pInt, 4513_pInt, 4517_pInt, 4519_pInt, 4523_pInt, 4547_pInt, 4549_pInt, 4561_pInt, 4567_pInt, 4583_pInt, &
|
|
|
|
4591_pInt, 4597_pInt, 4603_pInt, 4621_pInt, 4637_pInt, 4639_pInt, 4643_pInt, 4649_pInt, 4651_pInt, 4657_pInt, &
|
|
|
|
4663_pInt, 4673_pInt, 4679_pInt, 4691_pInt, 4703_pInt, 4721_pInt, 4723_pInt, 4729_pInt, 4733_pInt, 4751_pInt, &
|
|
|
|
4759_pInt, 4783_pInt, 4787_pInt, 4789_pInt, 4793_pInt, 4799_pInt, 4801_pInt, 4813_pInt, 4817_pInt, 4831_pInt, &
|
|
|
|
4861_pInt, 4871_pInt, 4877_pInt, 4889_pInt, 4903_pInt, 4909_pInt, 4919_pInt, 4931_pInt, 4933_pInt, 4937_pInt, &
|
|
|
|
4943_pInt, 4951_pInt, 4957_pInt, 4967_pInt, 4969_pInt, 4973_pInt, 4987_pInt, 4993_pInt, 4999_pInt, 5003_pInt, &
|
|
|
|
5009_pInt, 5011_pInt, 5021_pInt, 5023_pInt, 5039_pInt, 5051_pInt, 5059_pInt, 5077_pInt, 5081_pInt, 5087_pInt, &
|
|
|
|
5099_pInt, 5101_pInt, 5107_pInt, 5113_pInt, 5119_pInt, 5147_pInt, 5153_pInt, 5167_pInt, 5171_pInt, 5179_pInt, &
|
|
|
|
5189_pInt, 5197_pInt, 5209_pInt, 5227_pInt, 5231_pInt, 5233_pInt, 5237_pInt, 5261_pInt, 5273_pInt, 5279_pInt/)
|
|
|
|
|
|
|
|
npvec(701:800) = (/ &
|
|
|
|
5281_pInt, 5297_pInt, 5303_pInt, 5309_pInt, 5323_pInt, 5333_pInt, 5347_pInt, 5351_pInt, 5381_pInt, 5387_pInt, &
|
|
|
|
5393_pInt, 5399_pInt, 5407_pInt, 5413_pInt, 5417_pInt, 5419_pInt, 5431_pInt, 5437_pInt, 5441_pInt, 5443_pInt, &
|
|
|
|
5449_pInt, 5471_pInt, 5477_pInt, 5479_pInt, 5483_pInt, 5501_pInt, 5503_pInt, 5507_pInt, 5519_pInt, 5521_pInt, &
|
|
|
|
5527_pInt, 5531_pInt, 5557_pInt, 5563_pInt, 5569_pInt, 5573_pInt, 5581_pInt, 5591_pInt, 5623_pInt, 5639_pInt, &
|
|
|
|
5641_pInt, 5647_pInt, 5651_pInt, 5653_pInt, 5657_pInt, 5659_pInt, 5669_pInt, 5683_pInt, 5689_pInt, 5693_pInt, &
|
|
|
|
5701_pInt, 5711_pInt, 5717_pInt, 5737_pInt, 5741_pInt, 5743_pInt, 5749_pInt, 5779_pInt, 5783_pInt, 5791_pInt, &
|
|
|
|
5801_pInt, 5807_pInt, 5813_pInt, 5821_pInt, 5827_pInt, 5839_pInt, 5843_pInt, 5849_pInt, 5851_pInt, 5857_pInt, &
|
|
|
|
5861_pInt, 5867_pInt, 5869_pInt, 5879_pInt, 5881_pInt, 5897_pInt, 5903_pInt, 5923_pInt, 5927_pInt, 5939_pInt, &
|
|
|
|
5953_pInt, 5981_pInt, 5987_pInt, 6007_pInt, 6011_pInt, 6029_pInt, 6037_pInt, 6043_pInt, 6047_pInt, 6053_pInt, &
|
|
|
|
6067_pInt, 6073_pInt, 6079_pInt, 6089_pInt, 6091_pInt, 6101_pInt, 6113_pInt, 6121_pInt, 6131_pInt, 6133_pInt/)
|
|
|
|
|
|
|
|
npvec(801:900) = (/ &
|
|
|
|
6143_pInt, 6151_pInt, 6163_pInt, 6173_pInt, 6197_pInt, 6199_pInt, 6203_pInt, 6211_pInt, 6217_pInt, 6221_pInt, &
|
|
|
|
6229_pInt, 6247_pInt, 6257_pInt, 6263_pInt, 6269_pInt, 6271_pInt, 6277_pInt, 6287_pInt, 6299_pInt, 6301_pInt, &
|
|
|
|
6311_pInt, 6317_pInt, 6323_pInt, 6329_pInt, 6337_pInt, 6343_pInt, 6353_pInt, 6359_pInt, 6361_pInt, 6367_pInt, &
|
|
|
|
6373_pInt, 6379_pInt, 6389_pInt, 6397_pInt, 6421_pInt, 6427_pInt, 6449_pInt, 6451_pInt, 6469_pInt, 6473_pInt, &
|
|
|
|
6481_pInt, 6491_pInt, 6521_pInt, 6529_pInt, 6547_pInt, 6551_pInt, 6553_pInt, 6563_pInt, 6569_pInt, 6571_pInt, &
|
|
|
|
6577_pInt, 6581_pInt, 6599_pInt, 6607_pInt, 6619_pInt, 6637_pInt, 6653_pInt, 6659_pInt, 6661_pInt, 6673_pInt, &
|
|
|
|
6679_pInt, 6689_pInt, 6691_pInt, 6701_pInt, 6703_pInt, 6709_pInt, 6719_pInt, 6733_pInt, 6737_pInt, 6761_pInt, &
|
|
|
|
6763_pInt, 6779_pInt, 6781_pInt, 6791_pInt, 6793_pInt, 6803_pInt, 6823_pInt, 6827_pInt, 6829_pInt, 6833_pInt, &
|
|
|
|
6841_pInt, 6857_pInt, 6863_pInt, 6869_pInt, 6871_pInt, 6883_pInt, 6899_pInt, 6907_pInt, 6911_pInt, 6917_pInt, &
|
|
|
|
6947_pInt, 6949_pInt, 6959_pInt, 6961_pInt, 6967_pInt, 6971_pInt, 6977_pInt, 6983_pInt, 6991_pInt, 6997_pInt/)
|
|
|
|
|
|
|
|
npvec(901:1000) = (/ &
|
|
|
|
7001_pInt, 7013_pInt, 7019_pInt, 7027_pInt, 7039_pInt, 7043_pInt, 7057_pInt, 7069_pInt, 7079_pInt, 7103_pInt, &
|
|
|
|
7109_pInt, 7121_pInt, 7127_pInt, 7129_pInt, 7151_pInt, 7159_pInt, 7177_pInt, 7187_pInt, 7193_pInt, 7207_pInt, &
|
|
|
|
7211_pInt, 7213_pInt, 7219_pInt, 7229_pInt, 7237_pInt, 7243_pInt, 7247_pInt, 7253_pInt, 7283_pInt, 7297_pInt, &
|
|
|
|
7307_pInt, 7309_pInt, 7321_pInt, 7331_pInt, 7333_pInt, 7349_pInt, 7351_pInt, 7369_pInt, 7393_pInt, 7411_pInt, &
|
|
|
|
7417_pInt, 7433_pInt, 7451_pInt, 7457_pInt, 7459_pInt, 7477_pInt, 7481_pInt, 7487_pInt, 7489_pInt, 7499_pInt, &
|
|
|
|
7507_pInt, 7517_pInt, 7523_pInt, 7529_pInt, 7537_pInt, 7541_pInt, 7547_pInt, 7549_pInt, 7559_pInt, 7561_pInt, &
|
|
|
|
7573_pInt, 7577_pInt, 7583_pInt, 7589_pInt, 7591_pInt, 7603_pInt, 7607_pInt, 7621_pInt, 7639_pInt, 7643_pInt, &
|
|
|
|
7649_pInt, 7669_pInt, 7673_pInt, 7681_pInt, 7687_pInt, 7691_pInt, 7699_pInt, 7703_pInt, 7717_pInt, 7723_pInt, &
|
|
|
|
7727_pInt, 7741_pInt, 7753_pInt, 7757_pInt, 7759_pInt, 7789_pInt, 7793_pInt, 7817_pInt, 7823_pInt, 7829_pInt, &
|
|
|
|
7841_pInt, 7853_pInt, 7867_pInt, 7873_pInt, 7877_pInt, 7879_pInt, 7883_pInt, 7901_pInt, 7907_pInt, 7919_pInt/)
|
|
|
|
|
|
|
|
npvec(1001:1100) = (/ &
|
|
|
|
7927_pInt, 7933_pInt, 7937_pInt, 7949_pInt, 7951_pInt, 7963_pInt, 7993_pInt, 8009_pInt, 8011_pInt, 8017_pInt, &
|
|
|
|
8039_pInt, 8053_pInt, 8059_pInt, 8069_pInt, 8081_pInt, 8087_pInt, 8089_pInt, 8093_pInt, 8101_pInt, 8111_pInt, &
|
|
|
|
8117_pInt, 8123_pInt, 8147_pInt, 8161_pInt, 8167_pInt, 8171_pInt, 8179_pInt, 8191_pInt, 8209_pInt, 8219_pInt, &
|
|
|
|
8221_pInt, 8231_pInt, 8233_pInt, 8237_pInt, 8243_pInt, 8263_pInt, 8269_pInt, 8273_pInt, 8287_pInt, 8291_pInt, &
|
|
|
|
8293_pInt, 8297_pInt, 8311_pInt, 8317_pInt, 8329_pInt, 8353_pInt, 8363_pInt, 8369_pInt, 8377_pInt, 8387_pInt, &
|
|
|
|
8389_pInt, 8419_pInt, 8423_pInt, 8429_pInt, 8431_pInt, 8443_pInt, 8447_pInt, 8461_pInt, 8467_pInt, 8501_pInt, &
|
|
|
|
8513_pInt, 8521_pInt, 8527_pInt, 8537_pInt, 8539_pInt, 8543_pInt, 8563_pInt, 8573_pInt, 8581_pInt, 8597_pInt, &
|
|
|
|
8599_pInt, 8609_pInt, 8623_pInt, 8627_pInt, 8629_pInt, 8641_pInt, 8647_pInt, 8663_pInt, 8669_pInt, 8677_pInt, &
|
|
|
|
8681_pInt, 8689_pInt, 8693_pInt, 8699_pInt, 8707_pInt, 8713_pInt, 8719_pInt, 8731_pInt, 8737_pInt, 8741_pInt, &
|
|
|
|
8747_pInt, 8753_pInt, 8761_pInt, 8779_pInt, 8783_pInt, 8803_pInt, 8807_pInt, 8819_pInt, 8821_pInt, 8831_pInt/)
|
|
|
|
|
|
|
|
npvec(1101:1200) = (/ &
|
|
|
|
8837_pInt, 8839_pInt, 8849_pInt, 8861_pInt, 8863_pInt, 8867_pInt, 8887_pInt, 8893_pInt, 8923_pInt, 8929_pInt, &
|
|
|
|
8933_pInt, 8941_pInt, 8951_pInt, 8963_pInt, 8969_pInt, 8971_pInt, 8999_pInt, 9001_pInt, 9007_pInt, 9011_pInt, &
|
|
|
|
9013_pInt, 9029_pInt, 9041_pInt, 9043_pInt, 9049_pInt, 9059_pInt, 9067_pInt, 9091_pInt, 9103_pInt, 9109_pInt, &
|
|
|
|
9127_pInt, 9133_pInt, 9137_pInt, 9151_pInt, 9157_pInt, 9161_pInt, 9173_pInt, 9181_pInt, 9187_pInt, 9199_pInt, &
|
|
|
|
9203_pInt, 9209_pInt, 9221_pInt, 9227_pInt, 9239_pInt, 9241_pInt, 9257_pInt, 9277_pInt, 9281_pInt, 9283_pInt, &
|
|
|
|
9293_pInt, 9311_pInt, 9319_pInt, 9323_pInt, 9337_pInt, 9341_pInt, 9343_pInt, 9349_pInt, 9371_pInt, 9377_pInt, &
|
|
|
|
9391_pInt, 9397_pInt, 9403_pInt, 9413_pInt, 9419_pInt, 9421_pInt, 9431_pInt, 9433_pInt, 9437_pInt, 9439_pInt, &
|
|
|
|
9461_pInt, 9463_pInt, 9467_pInt, 9473_pInt, 9479_pInt, 9491_pInt, 9497_pInt, 9511_pInt, 9521_pInt, 9533_pInt, &
|
|
|
|
9539_pInt, 9547_pInt, 9551_pInt, 9587_pInt, 9601_pInt, 9613_pInt, 9619_pInt, 9623_pInt, 9629_pInt, 9631_pInt, &
|
|
|
|
9643_pInt, 9649_pInt, 9661_pInt, 9677_pInt, 9679_pInt, 9689_pInt, 9697_pInt, 9719_pInt, 9721_pInt, 9733_pInt/)
|
|
|
|
|
|
|
|
npvec(1201:1300) = (/ &
|
|
|
|
9739_pInt, 9743_pInt, 9749_pInt, 9767_pInt, 9769_pInt, 9781_pInt, 9787_pInt, 9791_pInt, 9803_pInt, 9811_pInt, &
|
|
|
|
9817_pInt, 9829_pInt, 9833_pInt, 9839_pInt, 9851_pInt, 9857_pInt, 9859_pInt, 9871_pInt, 9883_pInt, 9887_pInt, &
|
|
|
|
9901_pInt, 9907_pInt, 9923_pInt, 9929_pInt, 9931_pInt, 9941_pInt, 9949_pInt, 9967_pInt, 9973_pInt,10007_pInt, &
|
|
|
|
10009_pInt,10037_pInt,10039_pInt,10061_pInt,10067_pInt,10069_pInt,10079_pInt,10091_pInt,10093_pInt,10099_pInt, &
|
|
|
|
10103_pInt,10111_pInt,10133_pInt,10139_pInt,10141_pInt,10151_pInt,10159_pInt,10163_pInt,10169_pInt,10177_pInt, &
|
|
|
|
10181_pInt,10193_pInt,10211_pInt,10223_pInt,10243_pInt,10247_pInt,10253_pInt,10259_pInt,10267_pInt,10271_pInt, &
|
|
|
|
10273_pInt,10289_pInt,10301_pInt,10303_pInt,10313_pInt,10321_pInt,10331_pInt,10333_pInt,10337_pInt,10343_pInt, &
|
|
|
|
10357_pInt,10369_pInt,10391_pInt,10399_pInt,10427_pInt,10429_pInt,10433_pInt,10453_pInt,10457_pInt,10459_pInt, &
|
|
|
|
10463_pInt,10477_pInt,10487_pInt,10499_pInt,10501_pInt,10513_pInt,10529_pInt,10531_pInt,10559_pInt,10567_pInt, &
|
|
|
|
10589_pInt,10597_pInt,10601_pInt,10607_pInt,10613_pInt,10627_pInt,10631_pInt,10639_pInt,10651_pInt,10657_pInt/)
|
|
|
|
|
|
|
|
npvec(1301:1400) = (/ &
|
|
|
|
10663_pInt,10667_pInt,10687_pInt,10691_pInt,10709_pInt,10711_pInt,10723_pInt,10729_pInt,10733_pInt,10739_pInt, &
|
|
|
|
10753_pInt,10771_pInt,10781_pInt,10789_pInt,10799_pInt,10831_pInt,10837_pInt,10847_pInt,10853_pInt,10859_pInt, &
|
|
|
|
10861_pInt,10867_pInt,10883_pInt,10889_pInt,10891_pInt,10903_pInt,10909_pInt,19037_pInt,10939_pInt,10949_pInt, &
|
|
|
|
10957_pInt,10973_pInt,10979_pInt,10987_pInt,10993_pInt,11003_pInt,11027_pInt,11047_pInt,11057_pInt,11059_pInt, &
|
|
|
|
11069_pInt,11071_pInt,11083_pInt,11087_pInt,11093_pInt,11113_pInt,11117_pInt,11119_pInt,11131_pInt,11149_pInt, &
|
|
|
|
11159_pInt,11161_pInt,11171_pInt,11173_pInt,11177_pInt,11197_pInt,11213_pInt,11239_pInt,11243_pInt,11251_pInt, &
|
|
|
|
11257_pInt,11261_pInt,11273_pInt,11279_pInt,11287_pInt,11299_pInt,11311_pInt,11317_pInt,11321_pInt,11329_pInt, &
|
|
|
|
11351_pInt,11353_pInt,11369_pInt,11383_pInt,11393_pInt,11399_pInt,11411_pInt,11423_pInt,11437_pInt,11443_pInt, &
|
|
|
|
11447_pInt,11467_pInt,11471_pInt,11483_pInt,11489_pInt,11491_pInt,11497_pInt,11503_pInt,11519_pInt,11527_pInt, &
|
|
|
|
11549_pInt,11551_pInt,11579_pInt,11587_pInt,11593_pInt,11597_pInt,11617_pInt,11621_pInt,11633_pInt,11657_pInt/)
|
|
|
|
|
|
|
|
npvec(1401:1500) = (/ &
|
|
|
|
11677_pInt,11681_pInt,11689_pInt,11699_pInt,11701_pInt,11717_pInt,11719_pInt,11731_pInt,11743_pInt,11777_pInt, &
|
|
|
|
11779_pInt,11783_pInt,11789_pInt,11801_pInt,11807_pInt,11813_pInt,11821_pInt,11827_pInt,11831_pInt,11833_pInt, &
|
|
|
|
11839_pInt,11863_pInt,11867_pInt,11887_pInt,11897_pInt,11903_pInt,11909_pInt,11923_pInt,11927_pInt,11933_pInt, &
|
|
|
|
11939_pInt,11941_pInt,11953_pInt,11959_pInt,11969_pInt,11971_pInt,11981_pInt,11987_pInt,12007_pInt,12011_pInt, &
|
|
|
|
12037_pInt,12041_pInt,12043_pInt,12049_pInt,12071_pInt,12073_pInt,12097_pInt,12101_pInt,12107_pInt,12109_pInt, &
|
|
|
|
12113_pInt,12119_pInt,12143_pInt,12149_pInt,12157_pInt,12161_pInt,12163_pInt,12197_pInt,12203_pInt,12211_pInt, &
|
|
|
|
12227_pInt,12239_pInt,12241_pInt,12251_pInt,12253_pInt,12263_pInt,12269_pInt,12277_pInt,12281_pInt,12289_pInt, &
|
|
|
|
12301_pInt,12323_pInt,12329_pInt,12343_pInt,12347_pInt,12373_pInt,12377_pInt,12379_pInt,12391_pInt,12401_pInt, &
|
|
|
|
12409_pInt,12413_pInt,12421_pInt,12433_pInt,12437_pInt,12451_pInt,12457_pInt,12473_pInt,12479_pInt,12487_pInt, &
|
|
|
|
12491_pInt,12497_pInt,12503_pInt,12511_pInt,12517_pInt,12527_pInt,12539_pInt,12541_pInt,12547_pInt,12553_pInt/)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
endif
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if(n == -1_pInt) then
|
2007-03-20 19:25:22 +05:30
|
|
|
prime = prime_max
|
2011-12-01 17:31:13 +05:30
|
|
|
else if (n == 0_pInt) then
|
|
|
|
prime = 1_pInt
|
|
|
|
else if (n <= prime_max) then
|
2007-03-20 19:25:22 +05:30
|
|
|
prime = npvec(n)
|
2011-12-01 17:31:13 +05:30
|
|
|
else ! why not use io_error here?
|
|
|
|
prime = 0_pInt
|
2008-07-09 01:08:22 +05:30
|
|
|
!$OMP CRITICAL (write2out)
|
2011-12-01 17:31:13 +05:30
|
|
|
write (6, '(a)') ' '
|
|
|
|
write (6, '(a)') 'PRIME - Fatal error!'
|
|
|
|
write (6, '(a,i6)') ' Illegal prime index N = ', n
|
|
|
|
write (6, '(a,i6)') ' N must be between 0 and PRIME_MAX = ', prime_max
|
2007-03-20 19:25:22 +05:30
|
|
|
call flush(6)
|
2008-07-09 01:08:22 +05:30
|
|
|
!$OMP END CRITICAL (write2out)
|
2007-03-20 19:25:22 +05:30
|
|
|
stop
|
|
|
|
end if
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction prime
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! volume of tetrahedron given by four vertices
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_volTetrahedron(v1,v2,v3,v4)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal) math_volTetrahedron
|
|
|
|
real(pReal), dimension (3), intent(in) :: v1,v2,v3,v4
|
|
|
|
real(pReal), dimension (3,3) :: m
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
m(1:3,1) = v1-v2
|
|
|
|
m(1:3,2) = v2-v3
|
|
|
|
m(1:3,3) = v3-v4
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
math_volTetrahedron = math_det33(m)/6.0_pReal
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_volTetrahedron
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! rotate 33 tensor forward
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
pure function math_rotate_forward33(tensor,rot_tensor)
|
2011-10-24 23:56:34 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_rotate_forward33
|
2011-10-24 23:56:34 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
math_rotate_forward33 = math_mul33x33(rot_tensor,&
|
|
|
|
math_mul33x33(tensor,math_transpose33(rot_tensor)))
|
2011-10-24 23:56:34 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
endfunction math_rotate_forward33
|
2011-10-24 23:56:34 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! rotate 33 tensor backward
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
pure function math_rotate_backward33(tensor,rot_tensor)
|
2011-10-24 23:56:34 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_rotate_backward33
|
2011-10-24 23:56:34 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
math_rotate_backward33 = math_mul33x33(math_transpose33(rot_tensor),&
|
2011-10-24 23:56:34 +05:30
|
|
|
math_mul33x33(tensor,rot_tensor))
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
endfunction math_rotate_backward33
|
2011-10-24 23:56:34 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
! rotate 3333 tensor
|
2011-10-25 19:08:24 +05:30
|
|
|
! C'_ijkl=g_im*g_jn*g_ko*g_lp*C_mnop
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
2012-01-26 19:20:00 +05:30
|
|
|
pure function math_rotate_forward3333(tensor,rot_tensor)
|
2011-10-24 23:56:34 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
real(pReal), dimension(3,3,3,3) :: math_rotate_forward3333
|
2011-10-24 23:56:34 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: rot_tensor
|
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: tensor
|
2011-10-25 19:08:24 +05:30
|
|
|
integer(pInt) :: i,j,k,l,m,n,o,p
|
2011-10-24 23:56:34 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
math_rotate_forward3333= 0.0_pReal
|
2011-10-25 19:08:24 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do i = 1_pInt,3_pInt; do j = 1_pInt,3_pInt; do k = 1_pInt,3_pInt; do l = 1_pInt,3_pInt
|
|
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt; do p = 1_pInt,3_pInt
|
2012-01-26 19:20:00 +05:30
|
|
|
math_rotate_forward3333(i,j,k,l) = tensor(i,j,k,l)+rot_tensor(m,i)*rot_tensor(n,j)*&
|
2011-10-25 19:08:24 +05:30
|
|
|
rot_tensor(o,k)*rot_tensor(p,l)*tensor(m,n,o,p)
|
|
|
|
enddo; enddo; enddo; enddo; enddo; enddo; enddo; enddo
|
2011-10-24 23:56:34 +05:30
|
|
|
|
2012-01-26 19:20:00 +05:30
|
|
|
endfunction math_rotate_forward3333
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Functions below are taken from the old postprocessingMath.f90
|
|
|
|
! mostly they are used in combination with f2py to build fortran
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
|
|
|
|
! put the next two funtions into mesh?
|
|
|
|
function mesh_location(idx,resolution)
|
|
|
|
! small helper functions for indexing
|
|
|
|
! CAREFULL, index and location runs from 0 to N-1 (python style)
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: idx
|
|
|
|
integer(pInt), intent(in), dimension(3) :: resolution
|
|
|
|
integer(pInt), dimension(3) :: mesh_location
|
|
|
|
mesh_location = (/modulo(idx/ resolution(3) / resolution(2),resolution(1)), &
|
|
|
|
modulo(idx/ resolution(3), resolution(2)), &
|
|
|
|
modulo(idx, resolution(3))/)
|
|
|
|
|
|
|
|
end function mesh_location
|
|
|
|
|
|
|
|
|
|
|
|
function mesh_index(location,resolution)
|
|
|
|
! small helper functions for indexing
|
|
|
|
! CAREFULL, index and location runs from 0 to N-1 (python style)
|
|
|
|
integer(pInt), intent(in), dimension(3) :: resolution, location
|
|
|
|
integer(pInt) :: mesh_index
|
|
|
|
|
|
|
|
mesh_index = modulo(location(3), resolution(3)) +&
|
|
|
|
(modulo(location(2), resolution(2)))*resolution(3) +&
|
|
|
|
(modulo(location(1), resolution(1)))*resolution(3)*resolution(2)
|
|
|
|
|
|
|
|
end function mesh_index
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine volume_compare(res,geomdim,defgrad,nodes,volume_mismatch)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to calculate the mismatch between volume of reconstructed (compatible
|
|
|
|
! cube and determinant of defgrad at the FP
|
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
use debug, only: debug_verbosity
|
2011-12-01 17:31:13 +05:30
|
|
|
implicit none
|
|
|
|
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3,3) :: defgrad
|
|
|
|
real(pReal), intent(in), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1), res(2), res(3)) :: volume_mismatch
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(8,3) :: coords
|
|
|
|
integer(pInt) i,j,k
|
|
|
|
real(pReal) vol_initial
|
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
if (debug_verbosity > 0_pInt) then
|
2012-01-13 21:48:16 +05:30
|
|
|
print*, 'Calculating volume mismatch'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
endif
|
2011-12-01 17:31:13 +05:30
|
|
|
|
|
|
|
vol_initial = geomdim(1)*geomdim(2)*geomdim(3)/(real(res(1)*res(2)*res(3), pReal))
|
|
|
|
do k = 1_pInt,res(3)
|
|
|
|
do j = 1_pInt,res(2)
|
|
|
|
do i = 1_pInt,res(1)
|
|
|
|
coords(1,1:3) = nodes(i, j, k ,1:3)
|
|
|
|
coords(2,1:3) = nodes(i+1_pInt,j, k ,1:3)
|
|
|
|
coords(3,1:3) = nodes(i+1_pInt,j+1_pInt,k ,1:3)
|
|
|
|
coords(4,1:3) = nodes(i, j+1_pInt,k ,1:3)
|
|
|
|
coords(5,1:3) = nodes(i, j, k+1_pInt,1:3)
|
|
|
|
coords(6,1:3) = nodes(i+1_pInt,j, k+1_pInt,1:3)
|
|
|
|
coords(7,1:3) = nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3)
|
|
|
|
coords(8,1:3) = nodes(i, j+1_pInt,k+1_pInt,1:3)
|
|
|
|
volume_mismatch(i,j,k) = abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(8,1:3),coords(4,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(8,1:3),coords(5,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(3,1:3),coords(4,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(3,1:3),coords(2,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(5,1:3),coords(2,1:3),coords(6,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(5,1:3),coords(2,1:3),coords(1,1:3)))
|
2012-01-26 19:20:00 +05:30
|
|
|
volume_mismatch(i,j,k) = volume_mismatch(i,j,k)/math_det33(defgrad(i,j,k,1:3,1:3))
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo; enddo
|
|
|
|
volume_mismatch = volume_mismatch/vol_initial
|
|
|
|
|
|
|
|
end subroutine volume_compare
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine shape_compare(res,geomdim,defgrad,nodes,centroids,shape_mismatch)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to calculate the mismatch between the vectors from the central point to
|
|
|
|
! the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
|
|
|
|
! the initial volume element with the current deformation gradient
|
2012-01-13 21:48:16 +05:30
|
|
|
|
|
|
|
use debug, only: debug_verbosity
|
2011-12-01 17:31:13 +05:30
|
|
|
implicit none
|
|
|
|
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3,3) :: defgrad
|
|
|
|
real(pReal), intent(in), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3) :: centroids
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1), res(2), res(3)) :: shape_mismatch
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(8,3) :: coords_initial
|
|
|
|
integer(pInt) i,j,k
|
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
if (debug_verbosity > 0_pInt) then
|
2012-01-13 21:48:16 +05:30
|
|
|
print*, 'Calculating shape mismatch'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
endif
|
2011-12-01 17:31:13 +05:30
|
|
|
|
|
|
|
coords_initial(1,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(2,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(3,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(4,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(5,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(6,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(7,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(8,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
do i=1_pInt,8_pInt
|
|
|
|
enddo
|
|
|
|
do k = 1_pInt,res(3)
|
|
|
|
do j = 1_pInt,res(2)
|
|
|
|
do i = 1_pInt,res(1)
|
|
|
|
shape_mismatch(i,j,k) = &
|
|
|
|
sqrt(sum((nodes(i, j, k, 1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(1,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i+1_pInt,j, k, 1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(2,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i+1_pInt,j+1_pInt,k, 1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(3,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i, j+1_pInt,k, 1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(4,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i, j, k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(5,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i+1_pInt,j, k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(6,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(7,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i, j+1_pInt,k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(8,1:3)))**2.0_pReal))
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine shape_compare
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine mesh_regular_grid(res,geomdim,defgrad_av,centroids,nodes)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to build mesh of (distoreted) cubes for given coordinates (= center of the cubes)
|
|
|
|
!
|
2012-01-13 21:48:16 +05:30
|
|
|
use debug, only: debug_verbosity
|
2011-12-01 17:31:13 +05:30
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3) :: centroids
|
|
|
|
! output variables
|
|
|
|
real(pReal),intent(out), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
|
|
! variables with dimension depending on input
|
|
|
|
real(pReal), dimension(res(1)+2_pInt,res(2)+2_pInt,res(3)+2_pInt,3) :: wrappedCentroids
|
|
|
|
! other variables
|
|
|
|
integer(pInt) :: i,j,k,n
|
2011-12-06 23:16:33 +05:30
|
|
|
integer(pInt), dimension(3), parameter :: diag = 1_pInt
|
|
|
|
integer(pInt), dimension(3) :: shift = 0_pInt, lookup = 0_pInt, me = 0_pInt
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), dimension(3,8) :: neighbor = reshape((/ &
|
|
|
|
0_pInt, 0_pInt, 0_pInt, &
|
|
|
|
1_pInt, 0_pInt, 0_pInt, &
|
|
|
|
1_pInt, 1_pInt, 0_pInt, &
|
|
|
|
0_pInt, 1_pInt, 0_pInt, &
|
|
|
|
0_pInt, 0_pInt, 1_pInt, &
|
|
|
|
1_pInt, 0_pInt, 1_pInt, &
|
|
|
|
1_pInt, 1_pInt, 1_pInt, &
|
|
|
|
0_pInt, 1_pInt, 1_pInt &
|
|
|
|
/), &
|
|
|
|
(/3,8/))
|
2012-01-25 16:00:39 +05:30
|
|
|
|
|
|
|
if (debug_verbosity > 0_pInt) then
|
2012-01-13 21:48:16 +05:30
|
|
|
print*, 'Meshing cubes around centroids'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
endif
|
2011-12-01 17:31:13 +05:30
|
|
|
|
|
|
|
nodes = 0.0_pReal
|
|
|
|
wrappedCentroids = 0.0_pReal
|
|
|
|
wrappedCentroids(2_pInt:res(1)+1_pInt,2_pInt:res(2)+1_pInt,2_pInt:res(3)+1_pInt,1:3) = centroids
|
|
|
|
|
|
|
|
do k = 0_pInt,res(3)+1_pInt
|
|
|
|
do j = 0_pInt,res(2)+1_pInt
|
|
|
|
do i = 0_pInt,res(1)+1_pInt
|
|
|
|
if (k==0_pInt .or. k==res(3)+1_pInt .or. & ! z skin
|
|
|
|
j==0_pInt .or. j==res(2)+1_pInt .or. & ! y skin
|
|
|
|
i==0_pInt .or. i==res(1)+1_pInt ) then ! x skin
|
|
|
|
me = (/i,j,k/) ! me on skin
|
|
|
|
shift = sign(abs(res+diag-2_pInt*me)/(res+diag),res+diag-2_pInt*me)
|
|
|
|
lookup = me-diag+shift*res
|
2011-12-06 22:28:17 +05:30
|
|
|
wrappedCentroids(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = &
|
|
|
|
centroids(lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt,1:3) - &
|
2011-12-01 17:31:13 +05:30
|
|
|
matmul(defgrad_av, shift*geomdim)
|
|
|
|
endif
|
|
|
|
enddo; enddo; enddo
|
|
|
|
do k = 0_pInt,res(3)
|
|
|
|
do j = 0_pInt,res(2)
|
|
|
|
do i = 0_pInt,res(1)
|
|
|
|
do n = 1_pInt,8_pInt
|
2011-12-06 22:28:17 +05:30
|
|
|
nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = &
|
2011-12-06 23:16:33 +05:30
|
|
|
nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) + wrappedCentroids(i+1_pInt+neighbor(1_pInt,n), &
|
|
|
|
j+1_pInt+neighbor(2,n), &
|
|
|
|
k+1_pInt+neighbor(3,n),1:3)
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo; enddo; enddo
|
|
|
|
nodes = nodes/8.0_pReal
|
|
|
|
|
|
|
|
end subroutine mesh_regular_grid
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine deformed_linear(res,geomdim,defgrad_av,defgrad,coord_avgCorner)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to calculate coordinates in current configuration for given defgrad
|
|
|
|
! using linear interpolation (blurres out high frequency defomation)
|
|
|
|
!
|
2012-01-13 21:48:16 +05:30
|
|
|
use debug, only: debug_verbosity
|
2011-12-01 17:31:13 +05:30
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
|
|
real(pReal), intent(in), dimension( res(1),res(2),res(3),3,3) :: defgrad
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension( res(1),res(2),res(3),3) :: coord_avgCorner
|
|
|
|
! variables with dimension depending on input
|
|
|
|
real(pReal), dimension(8,6,res(1),res(2),res(3),3) :: coord
|
|
|
|
real(pReal), dimension( 8,res(1),res(2),res(3),3) :: coord_avgOrder
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(3) :: myStep, fones = 1.0_pReal, parameter_coords, negative, positive
|
|
|
|
integer(pInt), dimension(3) :: rear, init, ones = 1_pInt, oppo, me
|
|
|
|
integer(pInt) i, j, k, s, o
|
|
|
|
integer(pInt), dimension(3,8) :: corner = reshape((/ &
|
|
|
|
0_pInt, 0_pInt, 0_pInt,&
|
|
|
|
1_pInt, 0_pInt, 0_pInt,&
|
|
|
|
1_pInt, 1_pInt, 0_pInt,&
|
|
|
|
0_pInt, 1_pInt, 0_pInt,&
|
|
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
|
|
0_pInt, 1_pInt, 1_pInt,&
|
|
|
|
0_pInt, 0_pInt, 1_pInt,&
|
|
|
|
1_pInt, 0_pInt, 1_pInt &
|
|
|
|
/), &
|
|
|
|
(/3,8/))
|
|
|
|
integer(pInt), dimension(3,8) :: step = reshape((/ &
|
|
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
|
|
-1_pInt, 1_pInt, 1_pInt,&
|
|
|
|
-1_pInt,-1_pInt, 1_pInt,&
|
|
|
|
1_pInt,-1_pInt, 1_pInt,&
|
|
|
|
-1_pInt,-1_pInt,-1_pInt,&
|
|
|
|
1_pInt,-1_pInt,-1_pInt,&
|
|
|
|
1_pInt, 1_pInt,-1_pInt,&
|
|
|
|
-1_pInt, 1_pInt,-1_pInt &
|
|
|
|
/), &
|
|
|
|
(/3,8/))
|
|
|
|
integer(pInt), dimension(3,6) :: order = reshape((/ &
|
|
|
|
1_pInt, 2_pInt, 3_pInt,&
|
|
|
|
1_pInt, 3_pInt, 2_pInt,&
|
|
|
|
2_pInt, 1_pInt, 3_pInt,&
|
|
|
|
2_pInt, 3_pInt, 1_pInt,&
|
|
|
|
3_pInt, 1_pInt, 2_pInt,&
|
|
|
|
3_pInt, 2_pInt, 1_pInt &
|
|
|
|
/), &
|
|
|
|
(/3,6/))
|
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
if (debug_verbosity > 0_pInt) then
|
2012-01-13 21:48:16 +05:30
|
|
|
print*, 'Restore geometry using linear integration'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
endif
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
coord_avgOrder = 0.0_pReal
|
|
|
|
|
|
|
|
do s = 0_pInt, 7_pInt ! corners (from 0 to 7)
|
|
|
|
init = corner(:,s+1_pInt)*(res-ones) +ones
|
|
|
|
oppo = corner(:,mod((s+4_pInt),8_pInt)+1_pInt)*(res-ones) +ones
|
|
|
|
do o=1_pInt,6_pInt ! orders (from 1 to 6)
|
|
|
|
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s+1_pInt)
|
|
|
|
rear(order(2,o)) = init(order(2,o))
|
|
|
|
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s+1_pInt)
|
|
|
|
rear(order(1,o)) = init(order(1,o))
|
|
|
|
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s+1_pInt)
|
|
|
|
me(order(1,o)) = i
|
|
|
|
me(order(2,o)) = j
|
|
|
|
me(order(3,o)) = k
|
|
|
|
if ( (me(1)==init(1)).and.(me(2)==init(2)).and. (me(3)==init(3)) ) then
|
|
|
|
coord(s+1_pInt,o,me(1),me(2),me(3),1:3) = geomdim * (matmul(defgrad_av,corner(1:3,s+1)) + &
|
|
|
|
matmul(defgrad(me(1),me(2),me(3),1:3,1:3),0.5*step(1:3,s+1_pInt)/res))
|
|
|
|
|
|
|
|
else
|
|
|
|
myStep = (me-rear)*geomdim/res
|
|
|
|
coord(s+1_pInt,o,me(1),me(2),me(3),1:3) = coord(s+1_pInt,o,rear(1),rear(2),rear(3),1:3) + &
|
|
|
|
0.5*matmul(defgrad(me(1),me(2),me(3),1:3,1:3) + &
|
|
|
|
defgrad(rear(1),rear(2),rear(3),1:3,1:3),myStep)
|
|
|
|
endif
|
|
|
|
rear = me
|
|
|
|
enddo; enddo; enddo; enddo
|
|
|
|
do i = 1_pInt,6_pInt
|
|
|
|
coord_avgOrder(s+1_pInt,1:res(1),1:res(2),1:res(3),1:3) = coord_avgOrder(s+1_pInt, 1:res(1),1:res(2),1:res(3),1:3)&
|
|
|
|
+ coord(s+1_pInt,i,1:res(1),1:res(2),1:res(3),1:3)/6.0
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
do k = 0_pInt, res(3)-1_pInt
|
|
|
|
do j = 0_pInt, res(2)-1_pInt
|
|
|
|
do i = 0_pInt, res(1)-1_pInt
|
|
|
|
parameter_coords = (2.0_pReal*(/real(i,pReal)+0.0_pReal,real(j,pReal)+0.0_pReal,real(k,pReal)+0.0_pReal/)&
|
|
|
|
-real(res,pReal)+fones)/(real(res,pReal)-fones)
|
|
|
|
positive = fones + parameter_coords
|
|
|
|
negative = fones - parameter_coords
|
|
|
|
coord_avgCorner(i+1_pInt,j+1_pInt,k+1_pInt,1:3)&
|
|
|
|
=(coord_avgOrder(1,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*negative(2)*negative(3)&
|
|
|
|
+ coord_avgOrder(2,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*negative(2)*negative(3)&
|
|
|
|
+ coord_avgOrder(3,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*positive(2)*negative(3)&
|
|
|
|
+ coord_avgOrder(4,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*positive(2)*negative(3)&
|
|
|
|
+ coord_avgOrder(5,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*positive(2)*positive(3)&
|
|
|
|
+ coord_avgOrder(6,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*positive(2)*positive(3)&
|
|
|
|
+ coord_avgOrder(7,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*negative(2)*positive(3)&
|
|
|
|
+ coord_avgOrder(8,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*negative(2)*positive(3))*0.125
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine deformed_linear
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine deformed_fft(res,geomdim,defgrad_av,scaling,defgrad,coords)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to calculate coordinates in current configuration for given defgrad
|
|
|
|
! using integration in Fourier space (more accurate than deformed(...))
|
|
|
|
!
|
|
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
2012-01-13 21:48:16 +05:30
|
|
|
use debug, only: debug_verbosity
|
2011-12-01 17:31:13 +05:30
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
|
|
real(pReal), intent(in) :: scaling
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),3,3) :: defgrad
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),3) :: coords
|
2012-01-13 21:48:16 +05:30
|
|
|
! allocatable arrays for fftw c routines
|
|
|
|
type(C_PTR) :: fftw_forth, fftw_back
|
|
|
|
type(C_PTR) :: coords_fftw, defgrad_fftw
|
|
|
|
real(pReal), dimension(:,:,:,:,:), pointer :: defgrad_real
|
|
|
|
complex(pReal), dimension(:,:,:,:,:), pointer :: defgrad_complex
|
|
|
|
real(pReal), dimension(:,:,:,:), pointer :: coords_real
|
|
|
|
complex(pReal), dimension(:,:,:,:), pointer :: coords_complex
|
2011-12-01 17:31:13 +05:30
|
|
|
! other variables
|
2012-01-13 21:48:16 +05:30
|
|
|
integer(pInt) :: i, j, k, res1_red
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), dimension(3) :: k_s
|
2012-01-30 19:22:41 +05:30
|
|
|
complex(pReal), parameter :: integration_factor = cmplx(0.0_pReal,1.0_pReal)*pi*2.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(3) :: step, offset_coords
|
2012-01-13 21:48:16 +05:30
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
if (debug_verbosity > 0_pInt) then
|
2012-01-13 21:48:16 +05:30
|
|
|
print*, 'Restore geometry using FFT-based integration'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
endif
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
2011-12-01 17:31:13 +05:30
|
|
|
step = geomdim/real(res, pReal)
|
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=102)
|
|
|
|
call fftw_set_timelimit(fftw_timelimit)
|
|
|
|
defgrad_fftw = fftw_alloc_complex(int(res1_red *res(2)*res(3)*9_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
|
|
|
call c_f_pointer(defgrad_fftw, defgrad_real, [res(1)+2_pInt,res(2),res(3),3,3])
|
|
|
|
call c_f_pointer(defgrad_fftw, defgrad_complex,[res1_red ,res(2),res(3),3,3])
|
|
|
|
coords_fftw = fftw_alloc_complex(int(res1_red *res(2)*res(3)*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
|
|
|
call c_f_pointer(coords_fftw, coords_real, [res(1)+2_pInt,res(2),res(3),3])
|
|
|
|
call c_f_pointer(coords_fftw, coords_complex, [res1_red ,res(2),res(3),3])
|
|
|
|
|
|
|
|
fftw_forth = fftw_plan_many_dft_r2c(3,(/res(3),res(2) ,res(1)/),9_pInt,& ! dimensions , length in each dimension in reversed order
|
|
|
|
defgrad_real,(/res(3),res(2) ,res(1)+2_pInt/),& ! input data , physical length in each dimension in reversed order
|
|
|
|
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
|
|
|
defgrad_complex,(/res(3),res(2) ,res1_red/),&
|
|
|
|
1, res(3)*res(2)* res1_red,fftw_planner_flag)
|
|
|
|
|
|
|
|
fftw_back = fftw_plan_many_dft_c2r(3,(/res(3),res(2) ,res(1)/),3_pInt,&
|
|
|
|
coords_complex,(/res(3),res(2) ,res1_red/),&
|
|
|
|
1, res(3)*res(2)* res1_red,&
|
|
|
|
coords_real,(/res(3),res(2) ,res(1)+2_pInt/),&
|
|
|
|
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
|
|
|
|
|
|
|
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
defgrad_real(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) ! ensure that data is aligned properly (fftw_alloc)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
call fftw_execute_dft_r2c(fftw_forth, defgrad_real, defgrad_complex)
|
|
|
|
|
|
|
|
coords_complex = 0.0
|
2011-12-01 17:31:13 +05:30
|
|
|
do k = 1_pInt, res(3)
|
|
|
|
k_s(3) = k-1_pInt
|
|
|
|
if(k > res(3)/2_pInt+1_pInt) k_s(3) = k_s(3)-res(3)
|
|
|
|
do j = 1_pInt, res(2)
|
|
|
|
k_s(2) = j-1_pInt
|
|
|
|
if(j > res(2)/2_pInt+1_pInt) k_s(2) = k_s(2)-res(2)
|
2012-01-13 21:48:16 +05:30
|
|
|
do i = 1_pInt, res1_red
|
2011-12-01 17:31:13 +05:30
|
|
|
k_s(1) = i-1_pInt
|
2012-01-13 21:48:16 +05:30
|
|
|
if(i/=1_pInt) coords_complex(i,j,k,1:3) = coords_complex(i,j,k,1:3)&
|
|
|
|
+ defgrad_complex(i,j,k,1:3,1)*geomdim(1)/(real(k_s(1),pReal)*integration_factor)
|
|
|
|
if(j/=1_pInt) coords_complex(i,j,k,1:3) = coords_complex(i,j,k,1:3)&
|
|
|
|
+ defgrad_complex(i,j,k,1:3,2)*geomdim(2)/(real(k_s(2),pReal)*integration_factor)
|
|
|
|
if(k/=1_pInt) coords_complex(i,j,k,1:3) = coords_complex(i,j,k,1:3)&
|
|
|
|
+ defgrad_complex(i,j,k,1:3,3)*geomdim(3)/(real(k_s(3),pReal)*integration_factor)
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo; enddo
|
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
call fftw_execute_dft_c2r(fftw_back,coords_complex,coords_real)
|
|
|
|
coords_real = coords_real/real(res(1)*res(2)*res(3))
|
|
|
|
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
coords(i,j,k,1:3) = coords_real(i,j,k,1:3) ! ensure that data is aligned properly (fftw_alloc)
|
|
|
|
enddo; enddo; enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
|
|
|
|
offset_coords = matmul(defgrad(1,1,1,1:3,1:3),step/2.0_pReal) - scaling*coords(1,1,1,1:3)
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
coords(i,j,k,1:3) = scaling*coords(i,j,k,1:3) + offset_coords + matmul(defgrad_av,&
|
|
|
|
(/step(1)*real(i-1_pInt,pReal),&
|
|
|
|
step(2)*real(j-1_pInt,pReal),&
|
|
|
|
step(3)*real(k-1_pInt,pReal)/))
|
|
|
|
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine deformed_fft
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
2012-01-13 21:48:16 +05:30
|
|
|
subroutine curl_fft(res,geomdim,vec_tens,field,curl)
|
2011-12-01 17:31:13 +05:30
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! calculates curl field using differentation in Fourier space
|
|
|
|
! use vec_tens to decide if tensor (3) or vector (1)
|
|
|
|
|
|
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
2012-01-13 21:48:16 +05:30
|
|
|
use debug, only: debug_verbosity
|
2011-12-01 17:31:13 +05:30
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
integer(pInt), intent(in) :: vec_tens
|
2012-01-20 02:08:52 +05:30
|
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),vec_tens,3) :: field
|
2011-12-01 17:31:13 +05:30
|
|
|
! output variables
|
2012-01-20 02:08:52 +05:30
|
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),vec_tens,3) :: curl
|
2011-12-01 17:31:13 +05:30
|
|
|
! variables with dimension depending on input
|
|
|
|
real(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3) :: xi
|
2012-01-13 21:48:16 +05:30
|
|
|
! allocatable arrays for fftw c routines
|
|
|
|
type(C_PTR) :: fftw_forth, fftw_back
|
|
|
|
type(C_PTR) :: field_fftw, curl_fftw
|
|
|
|
real(pReal), dimension(:,:,:,:,:), pointer :: field_real
|
|
|
|
complex(pReal), dimension(:,:,:,:,:), pointer :: field_complex
|
|
|
|
real(pReal), dimension(:,:,:,:,:), pointer :: curl_real
|
|
|
|
complex(pReal), dimension(:,:,:,:,:), pointer :: curl_complex
|
2011-12-01 17:31:13 +05:30
|
|
|
! other variables
|
2012-01-13 21:48:16 +05:30
|
|
|
integer(pInt) i, j, k, l, res1_red
|
2012-01-20 02:08:52 +05:30
|
|
|
integer(pInt), dimension(3) :: k_s,cutting_freq
|
|
|
|
real(pReal) :: wgt
|
2012-01-25 16:00:39 +05:30
|
|
|
complex(pReal), parameter :: differentation_factor = cmplx(0.0_pReal,1.0_pReal)*2.0_pReal*pi ! cmplx(0.0_pReal, 2.0_pReal*pi) gets huge rounding error (casting to single prec?)
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
if (debug_verbosity > 0_pInt) then
|
2012-01-13 21:48:16 +05:30
|
|
|
print*, 'Calculating curl of vector/tensor field'
|
2012-01-20 02:08:52 +05:30
|
|
|
print '(a,e12.5,e12.5,e12.5)', ' Dimension: ', geomdim
|
|
|
|
print '(a,i5,i5,i5)', ' Resolution:', res
|
2012-01-13 21:48:16 +05:30
|
|
|
endif
|
|
|
|
|
2012-01-20 02:08:52 +05:30
|
|
|
wgt = 1.0_pReal/real(res(1)*res(2)*res(3),pReal)
|
2012-01-13 21:48:16 +05:30
|
|
|
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
2012-01-25 16:00:39 +05:30
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=102)
|
|
|
|
call fftw_set_timelimit(fftw_timelimit)
|
|
|
|
field_fftw = fftw_alloc_complex(int(res1_red *res(2)*res(3)*vec_tens*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
2012-01-20 02:08:52 +05:30
|
|
|
call c_f_pointer(field_fftw, field_real, [res(1)+2_pInt,res(2),res(3),vec_tens,3])
|
|
|
|
call c_f_pointer(field_fftw, field_complex,[res1_red ,res(2),res(3),vec_tens,3])
|
2012-01-13 21:48:16 +05:30
|
|
|
curl_fftw = fftw_alloc_complex(int(res1_red *res(2)*res(3)*vec_tens*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
2012-01-20 02:08:52 +05:30
|
|
|
call c_f_pointer(curl_fftw, curl_real, [res(1)+2_pInt,res(2),res(3),vec_tens,3])
|
|
|
|
call c_f_pointer(curl_fftw, curl_complex, [res1_red ,res(2),res(3),vec_tens,3])
|
2012-01-13 21:48:16 +05:30
|
|
|
|
|
|
|
fftw_forth = fftw_plan_many_dft_r2c(3,(/res(3),res(2) ,res(1)/),vec_tens*3_pInt,& ! dimensions , length in each dimension in reversed order
|
|
|
|
field_real,(/res(3),res(2) ,res(1)+2_pInt/),& ! input data , physical length in each dimension in reversed order
|
|
|
|
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
|
|
|
field_complex,(/res(3),res(2) ,res1_red/),&
|
|
|
|
1, res(3)*res(2)* res1_red,fftw_planner_flag)
|
|
|
|
|
|
|
|
fftw_back = fftw_plan_many_dft_c2r(3,(/res(3),res(2) ,res(1)/),vec_tens*3_pInt,&
|
|
|
|
curl_complex,(/res(3),res(2) ,res1_red/),&
|
|
|
|
1, res(3)*res(2)* res1_red,&
|
|
|
|
curl_real,(/res(3),res(2) ,res(1)+2_pInt/),&
|
|
|
|
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
2011-12-01 17:31:13 +05:30
|
|
|
|
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
2012-01-20 02:08:52 +05:30
|
|
|
field_real(i,j,k,1:vec_tens,1:3) = field(i,j,k,1:vec_tens,1:3) ! ensure that data is aligned properly (fftw_alloc)
|
2012-01-13 21:48:16 +05:30
|
|
|
enddo; enddo; enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
call fftw_execute_dft_r2c(fftw_forth, field_real, field_complex)
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-20 02:08:52 +05:30
|
|
|
do k = 1_pInt, res(3) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
|
|
|
|
k_s(3) = k - 1_pInt
|
|
|
|
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
|
|
|
do j = 1_pInt, res(2)
|
|
|
|
k_s(2) = j - 1_pInt
|
|
|
|
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
|
|
|
do i = 1, res1_red
|
|
|
|
k_s(1) = i - 1_pInt
|
2012-01-25 16:00:39 +05:30
|
|
|
xi(i,j,k,1:3) = real(k_s, pReal)/geomdim
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo; enddo
|
2012-01-25 16:00:39 +05:30
|
|
|
!remove the given highest frequencies
|
2012-01-20 02:08:52 +05:30
|
|
|
cutting_freq = (/0_pInt,0_pInt,0_pInt/) ! for 0,0,0, just the highest freq. is removed
|
|
|
|
xi( res(1)/2_pInt+1_pInt-cutting_freq(1):res1_red , 1:res(2) , 1:res(3) , 1 ) = 0.0_pReal
|
|
|
|
xi(1:res1_red , res(2)/2_pInt+1_pInt-cutting_freq(2):res(2)/2_pInt+1_pInt+cutting_freq(2) , 1:res(3) , 2) = 0.0_pReal
|
|
|
|
xi(1:res1_red , 1:res(2) , res(3)/2_pInt+1_pInt-cutting_freq(3):res(3)/2_pInt+1_pInt+cutting_freq(3) , 3) = 0.0_pReal
|
2011-12-23 17:53:13 +05:30
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
do k = 1, res(3); do j = 1, res(2);do i = 1, res1_red
|
|
|
|
do l = 1, vec_tens
|
|
|
|
curl_complex(i,j,k,l,1) = ( field_complex(i,j,k,l,3)*xi(i,j,k,2)&
|
|
|
|
-field_complex(i,j,k,l,2)*xi(i,j,k,3) )*differentation_factor
|
|
|
|
curl_complex(i,j,k,l,2) = (-field_complex(i,j,k,l,3)*xi(i,j,k,1)&
|
|
|
|
+field_complex(i,j,k,l,1)*xi(i,j,k,3) )*differentation_factor
|
|
|
|
curl_complex(i,j,k,l,3) = ( field_complex(i,j,k,l,2)*xi(i,j,k,1)&
|
|
|
|
-field_complex(i,j,k,l,1)*xi(i,j,k,2) )*differentation_factor
|
|
|
|
enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo; enddo
|
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
call fftw_execute_dft_c2r(fftw_back, curl_complex, curl_real)
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
2012-01-20 02:08:52 +05:30
|
|
|
curl(i,j,k,1:vec_tens,1:3) = curl_real(i,j,k,1:vec_tens,1:3) ! ensure that data is aligned properly (fftw_alloc)
|
2012-01-13 21:48:16 +05:30
|
|
|
enddo; enddo; enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-20 02:08:52 +05:30
|
|
|
curl = curl * wgt
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
end subroutine curl_fft
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
2012-01-13 21:48:16 +05:30
|
|
|
subroutine divergence_fft(res,geomdim,vec_tens,field,divergence)
|
2011-12-01 17:31:13 +05:30
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! calculates divergence field using integration in Fourier space
|
|
|
|
! use vec_tens to decide if tensor (3) or vector (1)
|
|
|
|
|
|
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
2012-01-13 21:48:16 +05:30
|
|
|
use debug, only: debug_verbosity
|
2011-12-01 17:31:13 +05:30
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
integer(pInt), intent(in) :: vec_tens
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),vec_tens,3) :: field
|
|
|
|
! output variables
|
2012-01-13 21:48:16 +05:30
|
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),vec_tens) :: divergence
|
2011-12-01 17:31:13 +05:30
|
|
|
! variables with dimension depending on input
|
|
|
|
real(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3) :: xi
|
2012-01-13 21:48:16 +05:30
|
|
|
! allocatable arrays for fftw c routines
|
|
|
|
type(C_PTR) :: fftw_forth, fftw_back
|
|
|
|
type(C_PTR) :: field_fftw, divergence_fftw
|
|
|
|
real(pReal), dimension(:,:,:,:,:), pointer :: field_real
|
|
|
|
complex(pReal), dimension(:,:,:,:,:), pointer :: field_complex
|
|
|
|
real(pReal), dimension(:,:,:,:), pointer :: divergence_real
|
|
|
|
complex(pReal), dimension(:,:,:,:), pointer :: divergence_complex
|
2011-12-01 17:31:13 +05:30
|
|
|
! other variables
|
2012-01-25 16:00:39 +05:30
|
|
|
integer(pInt) :: i, j, k, l, res1_red
|
|
|
|
real(pReal) :: wgt
|
|
|
|
integer(pInt), dimension(3) :: k_s,cutting_freq
|
|
|
|
complex(pReal), parameter :: differentation_factor = cmplx(0.0_pReal,1.0_pReal)*2.0_pReal*pi ! cmplx(0.0_pReal, 2.0_pReal*pi) gets huge rounding error (casting to single prec?)
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
if (debug_verbosity > 0_pInt) then
|
2012-01-13 21:48:16 +05:30
|
|
|
print '(a)', 'Calculating divergence of tensor/vector field using FFT'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
2012-01-25 16:00:39 +05:30
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
2012-01-13 21:48:16 +05:30
|
|
|
endif
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
2012-01-25 16:00:39 +05:30
|
|
|
wgt = 1.0_pReal/real(res(1)*res(2)*res(3),pReal)
|
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=102)
|
|
|
|
call fftw_set_timelimit(fftw_timelimit)
|
2012-01-25 16:00:39 +05:30
|
|
|
field_fftw = fftw_alloc_complex(int(res1_red*res(2)*res(3)*vec_tens*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
|
|
|
call c_f_pointer(field_fftw, field_real, [res(1)+2_pInt,res(2),res(3),vec_tens,3])
|
|
|
|
call c_f_pointer(field_fftw, field_complex, [res1_red ,res(2),res(3),vec_tens,3])
|
|
|
|
divergence_fftw = fftw_alloc_complex(int(res1_red*res(2)*res(3)*vec_tens,C_SIZE_T))
|
2012-01-13 21:48:16 +05:30
|
|
|
call c_f_pointer(divergence_fftw, divergence_real, [res(1)+2_pInt,res(2),res(3),vec_tens])
|
|
|
|
call c_f_pointer(divergence_fftw, divergence_complex,[res1_red ,res(2),res(3),vec_tens])
|
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
fftw_forth = fftw_plan_many_dft_r2c(3,(/res(3),res(2) ,res(1)/),vec_tens*3_pInt,& ! dimensions , length in each dimension in reversed order
|
|
|
|
field_real,(/res(3),res(2) ,res(1)+2_pInt/),& ! input data , physical length in each dimension in reversed order
|
|
|
|
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
2012-01-13 21:48:16 +05:30
|
|
|
field_complex,(/res(3),res(2) ,res1_red/),&
|
|
|
|
1, res(3)*res(2)* res1_red,fftw_planner_flag)
|
|
|
|
|
|
|
|
fftw_back = fftw_plan_many_dft_c2r(3,(/res(3),res(2) ,res(1)/),vec_tens,&
|
|
|
|
divergence_complex,(/res(3),res(2) ,res1_red/),&
|
|
|
|
1, res(3)*res(2)* res1_red,&
|
|
|
|
divergence_real,(/res(3),res(2) ,res(1)+2_pInt/),&
|
|
|
|
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
2012-01-25 16:00:39 +05:30
|
|
|
field_real = 0.0_pReal ! padding
|
2012-01-13 21:48:16 +05:30
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
2012-01-25 16:00:39 +05:30
|
|
|
field_real(i,j,k,1:vec_tens,1:3) = field(i,j,k,1:vec_tens,1:3) ! ensure that data is aligned properly (fftw_alloc)
|
2012-01-13 21:48:16 +05:30
|
|
|
enddo; enddo; enddo
|
2012-01-25 16:00:39 +05:30
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
call fftw_execute_dft_r2c(fftw_forth, field_real, field_complex)
|
2012-01-25 16:00:39 +05:30
|
|
|
do k = 1_pInt, res(3) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
|
|
|
|
k_s(3) = k - 1_pInt
|
|
|
|
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
|
|
|
do j = 1_pInt, res(2)
|
|
|
|
k_s(2) = j - 1_pInt
|
|
|
|
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
|
|
|
do i = 1, res1_red
|
|
|
|
k_s(1) = i - 1_pInt
|
|
|
|
xi(i,j,k,1:3) = real(k_s, pReal)/geomdim
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo; enddo
|
2012-01-25 16:00:39 +05:30
|
|
|
|
|
|
|
!remove the given highest frequencies
|
|
|
|
cutting_freq = 0_pInt ! for 0,0,0, just the highest freq. is removed
|
|
|
|
xi( res(1)/2_pInt+1_pInt-cutting_freq(1):res1_red , 1:res(2) , 1:res(3) , 1 ) = 0.0_pReal
|
|
|
|
xi(1:res1_red , res(2)/2_pInt+1_pInt-cutting_freq(2):res(2)/2_pInt+1_pInt+cutting_freq(2) , 1:res(3) , 2) = 0.0_pReal
|
|
|
|
xi(1:res1_red , 1:res(2) , res(3)/2_pInt+1_pInt-cutting_freq(3):res(3)/2_pInt+1_pInt+cutting_freq(3) , 3) = 0.0_pReal
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
|
|
|
do l = 1_pInt, vec_tens
|
|
|
|
divergence_complex(i,j,k,l) = sum(field_complex(i,j,k,l,1:3)*xi(i,j,k,1:3))&
|
|
|
|
*differentation_factor
|
|
|
|
enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo; enddo
|
2012-01-13 21:48:16 +05:30
|
|
|
call fftw_execute_dft_c2r(fftw_back, divergence_complex, divergence_real)
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
divergence(i,j,k,1:vec_tens) = divergence_real(i,j,k,1:vec_tens) ! ensure that data is aligned properly (fftw_alloc)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
divergence = divergence * wgt
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
end subroutine divergence_fft
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
2012-01-13 21:48:16 +05:30
|
|
|
subroutine divergence_fdm(res,geomdim,vec_tens,order,field,divergence)
|
2011-12-01 17:31:13 +05:30
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! calculates divergence field using FDM with variable accuracy
|
|
|
|
! use vec_tes to decide if tensor (3) or vector (1)
|
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
use debug, only: debug_verbosity
|
2011-12-01 17:31:13 +05:30
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
integer(pInt), intent(in) :: vec_tens
|
|
|
|
integer(pInt), intent(inout) :: order
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),vec_tens,3) :: field
|
|
|
|
! output variables
|
2012-01-13 21:48:16 +05:30
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),vec_tens) :: divergence
|
2011-12-01 17:31:13 +05:30
|
|
|
! other variables
|
|
|
|
integer(pInt), dimension(6,3) :: coordinates
|
|
|
|
integer(pInt) i, j, k, m, l
|
|
|
|
real(pReal), dimension(4,4), parameter :: FDcoefficient = reshape((/ &
|
|
|
|
1.0_pReal/2.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal,& !from http://en.wikipedia.org/wiki/Finite_difference_coefficients
|
|
|
|
2.0_pReal/3.0_pReal,-1.0_pReal/12.0_pReal, 0.0_pReal, 0.0_pReal,&
|
|
|
|
3.0_pReal/4.0_pReal,-3.0_pReal/20.0_pReal,1.0_pReal/ 60.0_pReal, 0.0_pReal,&
|
|
|
|
4.0_pReal/5.0_pReal,-1.0_pReal/ 5.0_pReal,4.0_pReal/105.0_pReal,-1.0_pReal/280.0_pReal/),&
|
|
|
|
(/4,4/))
|
|
|
|
|
2012-01-25 16:00:39 +05:30
|
|
|
if (debug_verbosity > 0_pInt) then
|
2012-01-13 21:48:16 +05:30
|
|
|
print*, 'Calculating divergence of tensor/vector field using FDM'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
endif
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2012-01-13 21:48:16 +05:30
|
|
|
divergence = 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
order = order + 1_pInt
|
|
|
|
do k = 0_pInt, res(3)-1_pInt; do j = 0_pInt, res(2)-1_pInt; do i = 0_pInt, res(1)-1_pInt
|
|
|
|
do m = 1_pInt, order
|
2011-12-06 22:28:17 +05:30
|
|
|
coordinates(1,1:3) = mesh_location(mesh_index((/i+m,j,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(2,1:3) = mesh_location(mesh_index((/i-m,j,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(3,1:3) = mesh_location(mesh_index((/i,j+m,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(4,1:3) = mesh_location(mesh_index((/i,j-m,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(5,1:3) = mesh_location(mesh_index((/i,j,k+m/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(6,1:3) = mesh_location(mesh_index((/i,j,k-m/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/))&
|
|
|
|
+ (/1_pInt,1_pInt,1_pInt/)
|
2011-12-01 17:31:13 +05:30
|
|
|
do l = 1_pInt, vec_tens
|
2012-01-13 21:48:16 +05:30
|
|
|
divergence(i+1_pInt,j+1_pInt,k+1_pInt,l) = divergence(i+1_pInt,j+1_pInt,k+1_pInt,l) + FDcoefficient(m,order) * &
|
2011-12-01 17:31:13 +05:30
|
|
|
((field(coordinates(1,1),coordinates(1,2),coordinates(1,3),l,1)- &
|
|
|
|
field(coordinates(2,1),coordinates(2,2),coordinates(2,3),l,1))*real(res(1),pReal)/geomdim(1) +&
|
|
|
|
(field(coordinates(3,1),coordinates(3,2),coordinates(3,3),l,2)- &
|
|
|
|
field(coordinates(4,1),coordinates(4,2),coordinates(4,3),l,2))*real(res(2),pReal)/geomdim(2) +&
|
|
|
|
(field(coordinates(5,1),coordinates(5,2),coordinates(5,3),l,3)- &
|
|
|
|
field(coordinates(6,1),coordinates(6,2),coordinates(6,3),l,3))*real(res(3),pReal)/geomdim(3))
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine divergence_fdm
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine tensor_avg(res,tensor,avg)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!calculate average of tensor field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) ::tensor
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(3,3) :: avg
|
|
|
|
! other variables
|
|
|
|
real(pReal) wgt
|
|
|
|
integer(pInt) m,n
|
|
|
|
|
|
|
|
wgt = 1.0_pReal/real(res(1)*res(2)*res(3), pReal)
|
|
|
|
|
|
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
|
|
|
|
avg(m,n) = sum(tensor(1:res(1),1:res(2),1:res(3),m,n)) * wgt
|
|
|
|
enddo; enddo
|
|
|
|
|
|
|
|
end subroutine tensor_avg
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine logstrain_spat(res,defgrad,logstrain_field)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!calculate logarithmic strain in spatial configuration for given defgrad field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: logstrain_field
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(3,3) :: temp33_Real, temp33_Real2
|
|
|
|
real(pReal), dimension(3,3,3) :: eigenvectorbasis
|
|
|
|
real(pReal), dimension(3) :: eigenvalue
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
logical :: errmatinv
|
|
|
|
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
call math_pDecomposition(defgrad(i,j,k,1:3,1:3),temp33_Real2,temp33_Real,errmatinv) !store R in temp33_Real
|
2012-01-26 19:20:00 +05:30
|
|
|
temp33_Real2 = math_inv33(temp33_Real)
|
2011-12-01 17:31:13 +05:30
|
|
|
temp33_Real = math_mul33x33(defgrad(i,j,k,1:3,1:3),temp33_Real2) ! v = F o inv(R), store in temp33_Real2
|
|
|
|
call math_spectral1(temp33_Real,eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
|
|
|
eigenvectorbasis(1,1:3,1:3),eigenvectorbasis(2,1:3,1:3),eigenvectorbasis(3,1:3,1:3))
|
|
|
|
eigenvalue = log(sqrt(eigenvalue))
|
|
|
|
logstrain_field(i,j,k,1:3,1:3) = eigenvalue(1)*eigenvectorbasis(1,1:3,1:3)+&
|
|
|
|
eigenvalue(2)*eigenvectorbasis(2,1:3,1:3)+&
|
|
|
|
eigenvalue(3)*eigenvectorbasis(3,1:3,1:3)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine logstrain_spat
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine logstrain_mat(res,defgrad,logstrain_field)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!calculate logarithmic strain in material configuration for given defgrad field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: logstrain_field
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(3,3) :: temp33_Real, temp33_Real2
|
|
|
|
real(pReal), dimension(3,3,3) :: eigenvectorbasis
|
|
|
|
real(pReal), dimension(3) :: eigenvalue
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
logical :: errmatinv
|
|
|
|
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
call math_pDecomposition(defgrad(i,j,k,1:3,1:3),temp33_Real,temp33_Real2,errmatinv) !store U in temp33_Real
|
|
|
|
call math_spectral1(temp33_Real,eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
|
|
|
eigenvectorbasis(1,1:3,1:3),eigenvectorbasis(2,1:3,1:3),eigenvectorbasis(3,1:3,1:3))
|
|
|
|
eigenvalue = log(sqrt(eigenvalue))
|
|
|
|
logstrain_field(i,j,k,1:3,1:3) = eigenvalue(1)*eigenvectorbasis(1,1:3,1:3)+&
|
|
|
|
eigenvalue(2)*eigenvectorbasis(2,1:3,1:3)+&
|
|
|
|
eigenvalue(3)*eigenvectorbasis(3,1:3,1:3)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine logstrain_mat
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine calculate_cauchy(res,defgrad,p_stress,c_stress)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!calculate cauchy stress for given PK1 stress and defgrad field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: p_stress
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: c_stress
|
|
|
|
! other variables
|
|
|
|
real(pReal) :: jacobi
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
|
|
|
|
c_stress = 0.0_pInt
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
2012-01-26 19:20:00 +05:30
|
|
|
jacobi = math_det33(defgrad(i,j,k,1:3,1:3))
|
2011-12-01 17:31:13 +05:30
|
|
|
c_stress(i,j,k,1:3,1:3) = matmul(p_stress(i,j,k,1:3,1:3),transpose(defgrad(i,j,k,1:3,1:3)))/jacobi
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine calculate_cauchy
|
|
|
|
|
|
|
|
END MODULE math
|
2012-01-13 21:48:16 +05:30
|
|
|
|
|
|
|
!#############################################################################################################################
|
|
|
|
! BEGIN KDTREE2
|
|
|
|
!#############################################################################################################################
|
|
|
|
!(c) Matthew Kennel, Institute for Nonlinear Science (2004)
|
|
|
|
!
|
|
|
|
! Licensed under the Academic Free License version 1.1 found in file LICENSE
|
|
|
|
! with additional provisions found in that same file.
|
|
|
|
!
|
|
|
|
!#######################################################
|
|
|
|
! modifications: changed precision according to prec.f90
|
|
|
|
! k.komerla, m.diehl
|
|
|
|
!#######################################################
|
|
|
|
|
|
|
|
module kdtree2_priority_queue_module
|
|
|
|
use prec
|
|
|
|
!
|
|
|
|
! maintain a priority queue (PQ) of data, pairs of 'priority/payload',
|
|
|
|
! implemented with a binary heap. This is the type, and the 'dis' field
|
|
|
|
! is the priority.
|
|
|
|
!
|
|
|
|
type kdtree2_result
|
|
|
|
! a pair of distances, indexes
|
|
|
|
real(pReal) :: dis !=0.0
|
|
|
|
integer(pInt) :: idx !=-1 Initializers cause some bugs in compilers.
|
|
|
|
end type kdtree2_result
|
|
|
|
!
|
|
|
|
! A heap-based priority queue lets one efficiently implement the following
|
|
|
|
! operations, each in log(N) time, as opposed to linear time.
|
|
|
|
!
|
|
|
|
! 1) add a datum (push a datum onto the queue, increasing its length)
|
|
|
|
! 2) return the priority value of the maximum priority element
|
|
|
|
! 3) pop-off (and delete) the element with the maximum priority, decreasing
|
|
|
|
! the size of the queue.
|
|
|
|
! 4) replace the datum with the maximum priority with a supplied datum
|
|
|
|
! (of either higher or lower priority), maintaining the size of the
|
|
|
|
! queue.
|
|
|
|
!
|
|
|
|
!
|
|
|
|
! In the k-d tree case, the 'priority' is the square distance of a point in
|
|
|
|
! the data set to a reference point. The goal is to keep the smallest M
|
|
|
|
! distances to a reference point. The tree algorithm searches terminal
|
|
|
|
! nodes to decide whether to add points under consideration.
|
|
|
|
!
|
|
|
|
! A priority queue is useful here because it lets one quickly return the
|
|
|
|
! largest distance currently existing in the list. If a new candidate
|
|
|
|
! distance is smaller than this, then the new candidate ought to replace
|
|
|
|
! the old candidate. In priority queue terms, this means removing the
|
|
|
|
! highest priority element, and inserting the new one.
|
|
|
|
!
|
|
|
|
! Algorithms based on Cormen, Leiserson, Rivest, _Introduction
|
|
|
|
! to Algorithms_, 1990, with further optimization by the author.
|
|
|
|
!
|
|
|
|
! Originally informed by a C implementation by Sriranga Veeraraghavan.
|
|
|
|
!
|
|
|
|
! This module is not written in the most clear way, but is implemented such
|
|
|
|
! for speed, as it its operations will be called many times during searches
|
|
|
|
! of large numbers of neighbors.
|
|
|
|
!
|
|
|
|
type pq
|
|
|
|
!
|
|
|
|
! The priority queue consists of elements
|
|
|
|
! priority(1:heap_size), with associated payload(:).
|
|
|
|
!
|
|
|
|
! There are heap_size active elements.
|
|
|
|
! Assumes the allocation is always sufficient. Will NOT increase it
|
|
|
|
! to match.
|
|
|
|
integer(pInt) :: heap_size = 0
|
|
|
|
type(kdtree2_result), pointer :: elems(:)
|
|
|
|
end type pq
|
|
|
|
|
|
|
|
public :: kdtree2_result
|
|
|
|
|
|
|
|
public :: pq
|
|
|
|
public :: pq_create
|
|
|
|
public :: pq_delete, pq_insert
|
|
|
|
public :: pq_extract_max, pq_max, pq_replace_max, pq_maxpri
|
|
|
|
private
|
|
|
|
|
|
|
|
contains
|
|
|
|
|
|
|
|
|
|
|
|
function pq_create(results_in) result(res)
|
|
|
|
!
|
|
|
|
! Create a priority queue from ALREADY allocated
|
|
|
|
! array pointers for storage. NOTE! It will NOT
|
|
|
|
! add any alements to the heap, i.e. any existing
|
|
|
|
! data in the input arrays will NOT be used and may
|
|
|
|
! be overwritten.
|
|
|
|
!
|
|
|
|
! usage:
|
|
|
|
! real(pReal), pointer :: x(:)
|
|
|
|
! integer(pInt), pointer :: k(:)
|
|
|
|
! allocate(x(1000),k(1000))
|
|
|
|
! pq => pq_create(x,k)
|
|
|
|
!
|
|
|
|
type(kdtree2_result), target:: results_in(:)
|
|
|
|
type(pq) :: res
|
|
|
|
!
|
|
|
|
!
|
|
|
|
integer(pInt) :: nalloc
|
|
|
|
|
|
|
|
nalloc = size(results_in,1)
|
|
|
|
if (nalloc .lt. 1) then
|
|
|
|
write (*,*) 'PQ_CREATE: error, input arrays must be allocated.'
|
|
|
|
end if
|
|
|
|
res%elems => results_in
|
|
|
|
res%heap_size = 0
|
|
|
|
return
|
|
|
|
end function pq_create
|
|
|
|
|
|
|
|
!
|
|
|
|
! operations for getting parents and left + right children
|
|
|
|
! of elements in a binary heap.
|
|
|
|
!
|
|
|
|
|
|
|
|
!
|
|
|
|
! These are written inline for speed.
|
|
|
|
!
|
|
|
|
! integer(pInt) function parent(i)
|
|
|
|
! integer(pInt), intent(in) :: i
|
|
|
|
! parent = (i/2)
|
|
|
|
! return
|
|
|
|
! end function parent
|
|
|
|
|
|
|
|
! integer(pInt) function left(i)
|
|
|
|
! integer(pInt), intent(in) ::i
|
|
|
|
! left = (2*i)
|
|
|
|
! return
|
|
|
|
! end function left
|
|
|
|
|
|
|
|
! integer(pInt) function right(i)
|
|
|
|
! integer(pInt), intent(in) :: i
|
|
|
|
! right = (2*i)+1
|
|
|
|
! return
|
|
|
|
! end function right
|
|
|
|
|
|
|
|
! logical function compare_priority(p1,p2)
|
|
|
|
! real(pReal), intent(in) :: p1, p2
|
|
|
|
!
|
|
|
|
! compare_priority = (p1 .gt. p2)
|
|
|
|
! return
|
|
|
|
! end function compare_priority
|
|
|
|
|
|
|
|
subroutine heapify(a,i_in)
|
|
|
|
!
|
|
|
|
! take a heap rooted at 'i' and force it to be in the
|
|
|
|
! heap canonical form. This is performance critical
|
|
|
|
! and has been tweaked a little to reflect this.
|
|
|
|
!
|
|
|
|
type(pq),pointer :: a
|
|
|
|
integer(pInt), intent(in) :: i_in
|
|
|
|
!
|
|
|
|
integer(pInt) :: i, l, r, largest
|
|
|
|
|
|
|
|
real(pReal) :: pri_i, pri_l, pri_r, pri_largest
|
|
|
|
|
|
|
|
|
|
|
|
type(kdtree2_result) :: temp
|
|
|
|
|
|
|
|
i = i_in
|
|
|
|
|
|
|
|
bigloop: do
|
|
|
|
l = 2*i ! left(i)
|
|
|
|
r = l+1 ! right(i)
|
|
|
|
!
|
|
|
|
! set 'largest' to the index of either i, l, r
|
|
|
|
! depending on whose priority is largest.
|
|
|
|
!
|
|
|
|
! note that l or r can be larger than the heap size
|
|
|
|
! in which case they do not count.
|
|
|
|
|
|
|
|
|
|
|
|
! does left child have higher priority?
|
|
|
|
if (l .gt. a%heap_size) then
|
|
|
|
! we know that i is the largest as both l and r are invalid.
|
|
|
|
exit
|
|
|
|
else
|
|
|
|
pri_i = a%elems(i)%dis
|
|
|
|
pri_l = a%elems(l)%dis
|
|
|
|
if (pri_l .gt. pri_i) then
|
|
|
|
largest = l
|
|
|
|
pri_largest = pri_l
|
|
|
|
else
|
|
|
|
largest = i
|
|
|
|
pri_largest = pri_i
|
|
|
|
endif
|
|
|
|
|
|
|
|
!
|
|
|
|
! between i and l we have a winner
|
|
|
|
! now choose between that and r.
|
|
|
|
!
|
|
|
|
if (r .le. a%heap_size) then
|
|
|
|
pri_r = a%elems(r)%dis
|
|
|
|
if (pri_r .gt. pri_largest) then
|
|
|
|
largest = r
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (largest .ne. i) then
|
|
|
|
! swap data in nodes largest and i, then heapify
|
|
|
|
|
|
|
|
temp = a%elems(i)
|
|
|
|
a%elems(i) = a%elems(largest)
|
|
|
|
a%elems(largest) = temp
|
|
|
|
!
|
|
|
|
! Canonical heapify() algorithm has tail-ecursive call:
|
|
|
|
!
|
|
|
|
! call heapify(a,largest)
|
|
|
|
! we will simulate with cycle
|
|
|
|
!
|
|
|
|
i = largest
|
|
|
|
cycle bigloop ! continue the loop
|
|
|
|
else
|
|
|
|
return ! break from the loop
|
|
|
|
end if
|
|
|
|
enddo bigloop
|
|
|
|
return
|
|
|
|
end subroutine heapify
|
|
|
|
|
|
|
|
subroutine pq_max(a,e)
|
|
|
|
!
|
|
|
|
! return the priority and its payload of the maximum priority element
|
|
|
|
! on the queue, which should be the first one, if it is
|
|
|
|
! in heapified form.
|
|
|
|
!
|
|
|
|
type(pq),pointer :: a
|
|
|
|
type(kdtree2_result),intent(out) :: e
|
|
|
|
|
|
|
|
if (a%heap_size .gt. 0) then
|
|
|
|
e = a%elems(1)
|
|
|
|
else
|
|
|
|
write (*,*) 'PQ_MAX: ERROR, heap_size < 1'
|
|
|
|
stop
|
|
|
|
endif
|
|
|
|
return
|
|
|
|
end subroutine pq_max
|
|
|
|
|
|
|
|
real(pReal) function pq_maxpri(a)
|
|
|
|
type(pq), pointer :: a
|
|
|
|
|
|
|
|
if (a%heap_size .gt. 0) then
|
|
|
|
pq_maxpri = a%elems(1)%dis
|
|
|
|
else
|
|
|
|
write (*,*) 'PQ_MAX_PRI: ERROR, heapsize < 1'
|
|
|
|
stop
|
|
|
|
endif
|
|
|
|
return
|
|
|
|
end function pq_maxpri
|
|
|
|
|
|
|
|
subroutine pq_extract_max(a,e)
|
|
|
|
!
|
|
|
|
! return the priority and payload of maximum priority
|
|
|
|
! element, and remove it from the queue.
|
|
|
|
! (equivalent to 'pop()' on a stack)
|
|
|
|
!
|
|
|
|
type(pq),pointer :: a
|
|
|
|
type(kdtree2_result), intent(out) :: e
|
|
|
|
|
|
|
|
if (a%heap_size .ge. 1) then
|
|
|
|
!
|
|
|
|
! return max as first element
|
|
|
|
!
|
|
|
|
e = a%elems(1)
|
|
|
|
|
|
|
|
!
|
|
|
|
! move last element to first
|
|
|
|
!
|
|
|
|
a%elems(1) = a%elems(a%heap_size)
|
|
|
|
a%heap_size = a%heap_size-1
|
|
|
|
call heapify(a,1)
|
|
|
|
return
|
|
|
|
else
|
|
|
|
write (*,*) 'PQ_EXTRACT_MAX: error, attempted to pop non-positive PQ'
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
|
|
|
end subroutine pq_extract_max
|
|
|
|
|
|
|
|
|
|
|
|
real(pReal) function pq_insert(a,dis,idx)
|
|
|
|
!
|
|
|
|
! Insert a new element and return the new maximum priority,
|
|
|
|
! which may or may not be the same as the old maximum priority.
|
|
|
|
!
|
|
|
|
type(pq),pointer :: a
|
|
|
|
real(pReal), intent(in) :: dis
|
|
|
|
integer(pInt), intent(in) :: idx
|
|
|
|
! type(kdtree2_result), intent(in) :: e
|
|
|
|
!
|
|
|
|
integer(pInt) :: i, isparent
|
|
|
|
real(pReal) :: parentdis
|
|
|
|
!
|
|
|
|
|
|
|
|
! if (a%heap_size .ge. a%max_elems) then
|
|
|
|
! write (*,*) 'PQ_INSERT: error, attempt made to insert element on full PQ'
|
|
|
|
! stop
|
|
|
|
! else
|
|
|
|
a%heap_size = a%heap_size + 1
|
|
|
|
i = a%heap_size
|
|
|
|
|
|
|
|
do while (i .gt. 1)
|
|
|
|
isparent = int(i/2)
|
|
|
|
parentdis = a%elems(isparent)%dis
|
|
|
|
if (dis .gt. parentdis) then
|
|
|
|
! move what was in i's parent into i.
|
|
|
|
a%elems(i)%dis = parentdis
|
|
|
|
a%elems(i)%idx = a%elems(isparent)%idx
|
|
|
|
i = isparent
|
|
|
|
else
|
|
|
|
exit
|
|
|
|
endif
|
|
|
|
end do
|
|
|
|
|
|
|
|
! insert the element at the determined position
|
|
|
|
a%elems(i)%dis = dis
|
|
|
|
a%elems(i)%idx = idx
|
|
|
|
|
|
|
|
pq_insert = a%elems(1)%dis
|
|
|
|
return
|
|
|
|
! end if
|
|
|
|
|
|
|
|
end function pq_insert
|
|
|
|
|
|
|
|
subroutine pq_adjust_heap(a,i)
|
|
|
|
type(pq),pointer :: a
|
|
|
|
integer(pInt), intent(in) :: i
|
|
|
|
!
|
|
|
|
! nominally arguments (a,i), but specialize for a=1
|
|
|
|
!
|
|
|
|
! This routine assumes that the trees with roots 2 and 3 are already heaps, i.e.
|
|
|
|
! the children of '1' are heaps. When the procedure is completed, the
|
|
|
|
! tree rooted at 1 is a heap.
|
|
|
|
real(pReal) :: prichild
|
|
|
|
integer(pInt) :: parent, child, N
|
|
|
|
|
|
|
|
type(kdtree2_result) :: e
|
|
|
|
|
|
|
|
e = a%elems(i)
|
|
|
|
|
|
|
|
parent = i
|
|
|
|
child = 2*i
|
|
|
|
N = a%heap_size
|
|
|
|
|
|
|
|
do while (child .le. N)
|
|
|
|
if (child .lt. N) then
|
|
|
|
if (a%elems(child)%dis .lt. a%elems(child+1)%dis) then
|
|
|
|
child = child+1
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
prichild = a%elems(child)%dis
|
|
|
|
if (e%dis .ge. prichild) then
|
|
|
|
exit
|
|
|
|
else
|
|
|
|
! move child into parent.
|
|
|
|
a%elems(parent) = a%elems(child)
|
|
|
|
parent = child
|
|
|
|
child = 2*parent
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
a%elems(parent) = e
|
|
|
|
return
|
|
|
|
end subroutine pq_adjust_heap
|
|
|
|
|
|
|
|
|
|
|
|
real(pReal) function pq_replace_max(a,dis,idx)
|
|
|
|
!
|
|
|
|
! Replace the extant maximum priority element
|
|
|
|
! in the PQ with (dis,idx). Return
|
|
|
|
! the new maximum priority, which may be larger
|
|
|
|
! or smaller than the old one.
|
|
|
|
!
|
|
|
|
type(pq),pointer :: a
|
|
|
|
real(pReal), intent(in) :: dis
|
|
|
|
integer(pInt), intent(in) :: idx
|
|
|
|
! type(kdtree2_result), intent(in) :: e
|
|
|
|
! not tested as well!
|
|
|
|
|
|
|
|
integer(pInt) :: parent, child, N
|
|
|
|
real(pReal) :: prichild, prichildp1
|
|
|
|
|
|
|
|
type(kdtree2_result) :: etmp
|
|
|
|
|
|
|
|
if (.true.) then
|
|
|
|
N=a%heap_size
|
|
|
|
if (N .ge. 1) then
|
|
|
|
parent =1
|
|
|
|
child=2
|
|
|
|
|
|
|
|
loop: do while (child .le. N)
|
|
|
|
prichild = a%elems(child)%dis
|
|
|
|
|
|
|
|
!
|
|
|
|
! posibly child+1 has higher priority, and if
|
|
|
|
! so, get it, and increment child.
|
|
|
|
!
|
|
|
|
|
|
|
|
if (child .lt. N) then
|
|
|
|
prichildp1 = a%elems(child+1)%dis
|
|
|
|
if (prichild .lt. prichildp1) then
|
|
|
|
child = child+1
|
|
|
|
prichild = prichildp1
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (dis .ge. prichild) then
|
|
|
|
exit loop
|
|
|
|
! we have a proper place for our new element,
|
|
|
|
! bigger than either children's priority.
|
|
|
|
else
|
|
|
|
! move child into parent.
|
|
|
|
a%elems(parent) = a%elems(child)
|
|
|
|
parent = child
|
|
|
|
child = 2*parent
|
|
|
|
end if
|
|
|
|
end do loop
|
|
|
|
a%elems(parent)%dis = dis
|
|
|
|
a%elems(parent)%idx = idx
|
|
|
|
pq_replace_max = a%elems(1)%dis
|
|
|
|
else
|
|
|
|
a%elems(1)%dis = dis
|
|
|
|
a%elems(1)%idx = idx
|
|
|
|
pq_replace_max = dis
|
|
|
|
endif
|
|
|
|
else
|
|
|
|
!
|
|
|
|
! slower version using elementary pop and push operations.
|
|
|
|
!
|
|
|
|
call pq_extract_max(a,etmp)
|
|
|
|
etmp%dis = dis
|
|
|
|
etmp%idx = idx
|
|
|
|
pq_replace_max = pq_insert(a,dis,idx)
|
|
|
|
endif
|
|
|
|
return
|
|
|
|
end function pq_replace_max
|
|
|
|
|
|
|
|
subroutine pq_delete(a,i)
|
|
|
|
!
|
|
|
|
! delete item with index 'i'
|
|
|
|
!
|
|
|
|
type(pq),pointer :: a
|
|
|
|
integer(pInt) :: i
|
|
|
|
|
|
|
|
if ((i .lt. 1) .or. (i .gt. a%heap_size)) then
|
|
|
|
write (*,*) 'PQ_DELETE: error, attempt to remove out of bounds element.'
|
|
|
|
stop
|
|
|
|
endif
|
|
|
|
|
|
|
|
! swap the item to be deleted with the last element
|
|
|
|
! and shorten heap by one.
|
|
|
|
a%elems(i) = a%elems(a%heap_size)
|
|
|
|
a%heap_size = a%heap_size - 1
|
|
|
|
|
|
|
|
call heapify(a,i)
|
|
|
|
|
|
|
|
end subroutine pq_delete
|
|
|
|
|
|
|
|
end module kdtree2_priority_queue_module
|
|
|
|
|
|
|
|
|
|
|
|
module kdtree2_module
|
|
|
|
use prec
|
|
|
|
use kdtree2_priority_queue_module
|
|
|
|
! K-D tree routines in Fortran 90 by Matt Kennel.
|
|
|
|
! Original program was written in Sather by Steve Omohundro and
|
|
|
|
! Matt Kennel. Only the Euclidean metric is supported.
|
|
|
|
!
|
|
|
|
!
|
|
|
|
! This module is identical to 'kd_tree', except that the order
|
|
|
|
! of subscripts is reversed in the data file.
|
|
|
|
! In otherwords for an embedding of N D-dimensional vectors, the
|
|
|
|
! data file is here, in natural Fortran order data(1:D, 1:N)
|
|
|
|
! because Fortran lays out columns first,
|
|
|
|
!
|
|
|
|
! whereas conventionally (C-style) it is data(1:N,1:D)
|
|
|
|
! as in the original kd_tree module.
|
|
|
|
!
|
|
|
|
!-------------DATA TYPE, CREATION, DELETION---------------------
|
|
|
|
public :: pReal
|
|
|
|
public :: kdtree2, kdtree2_result, tree_node, kdtree2_create, kdtree2_destroy
|
|
|
|
!---------------------------------------------------------------
|
|
|
|
!-------------------SEARCH ROUTINES-----------------------------
|
|
|
|
public :: kdtree2_n_nearest,kdtree2_n_nearest_around_point
|
|
|
|
! Return fixed number of nearest neighbors around arbitrary vector,
|
|
|
|
! or extant point in dataset, with decorrelation window.
|
|
|
|
!
|
|
|
|
public :: kdtree2_r_nearest, kdtree2_r_nearest_around_point
|
|
|
|
! Return points within a fixed ball of arb vector/extant point
|
|
|
|
!
|
|
|
|
public :: kdtree2_sort_results
|
|
|
|
! Sort, in order of increasing distance, rseults from above.
|
|
|
|
!
|
|
|
|
public :: kdtree2_r_count, kdtree2_r_count_around_point
|
|
|
|
! Count points within a fixed ball of arb vector/extant point
|
|
|
|
!
|
|
|
|
public :: kdtree2_n_nearest_brute_force, kdtree2_r_nearest_brute_force
|
|
|
|
! brute force of kdtree2_[n|r]_nearest
|
|
|
|
!----------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
integer(pInt), parameter :: bucket_size = 12
|
|
|
|
! The maximum number of points to keep in a terminal node.
|
|
|
|
|
|
|
|
type interval
|
|
|
|
real(pReal) :: lower,upper
|
|
|
|
end type interval
|
|
|
|
|
|
|
|
type :: tree_node
|
|
|
|
! an internal tree node
|
|
|
|
private
|
|
|
|
integer(pInt) :: cut_dim
|
|
|
|
! the dimension to cut
|
|
|
|
real(pReal) :: cut_val
|
|
|
|
! where to cut the dimension
|
|
|
|
real(pReal) :: cut_val_left, cut_val_right
|
|
|
|
! improved cutoffs knowing the spread in child boxes.
|
|
|
|
integer(pInt) :: l, u
|
|
|
|
type (tree_node), pointer :: left, right
|
|
|
|
type(interval), pointer :: box(:) => null()
|
|
|
|
! child pointers
|
|
|
|
! Points included in this node are indexes[k] with k \in [l,u]
|
|
|
|
|
|
|
|
|
|
|
|
end type tree_node
|
|
|
|
|
|
|
|
type :: kdtree2
|
|
|
|
! Global information about the tree, one per tree
|
|
|
|
integer(pInt) :: dimen=0, n=0
|
|
|
|
! dimensionality and total # of points
|
|
|
|
real(pReal), pointer :: the_data(:,:) => null()
|
|
|
|
! pointer to the actual data array
|
|
|
|
!
|
|
|
|
! IMPORTANT NOTE: IT IS DIMENSIONED the_data(1:d,1:N)
|
|
|
|
! which may be opposite of what may be conventional.
|
|
|
|
! This is, because in Fortran, the memory layout is such that
|
|
|
|
! the first dimension is in sequential order. Hence, with
|
|
|
|
! (1:d,1:N), all components of the vector will be in consecutive
|
|
|
|
! memory locations. The search time is dominated by the
|
|
|
|
! evaluation of distances in the terminal nodes. Putting all
|
|
|
|
! vector components in consecutive memory location improves
|
|
|
|
! memory cache locality, and hence search speed, and may enable
|
|
|
|
! vectorization on some processors and compilers.
|
|
|
|
|
|
|
|
integer(pInt), pointer :: ind(:) => null()
|
|
|
|
! permuted index into the data, so that indexes[l..u] of some
|
|
|
|
! bucket represent the indexes of the actual points in that
|
|
|
|
! bucket.
|
|
|
|
logical :: sort = .false.
|
|
|
|
! do we always sort output results?
|
|
|
|
logical :: rearrange = .false.
|
|
|
|
real(pReal), pointer :: rearranged_data(:,:) => null()
|
|
|
|
! if (rearrange .eqv. .true.) then rearranged_data has been
|
|
|
|
! created so that rearranged_data(:,i) = the_data(:,ind(i)),
|
|
|
|
! permitting search to use more cache-friendly rearranged_data, at
|
|
|
|
! some initial computation and storage cost.
|
|
|
|
type (tree_node), pointer :: root => null()
|
|
|
|
! root pointer of the tree
|
|
|
|
end type kdtree2
|
|
|
|
|
|
|
|
|
|
|
|
type :: tree_search_record
|
|
|
|
!
|
|
|
|
! One of these is created for each search.
|
|
|
|
!
|
|
|
|
private
|
|
|
|
!
|
|
|
|
! Many fields are copied from the tree structure, in order to
|
|
|
|
! speed up the search.
|
|
|
|
!
|
|
|
|
integer(pInt) :: dimen
|
|
|
|
integer(pInt) :: nn, nfound
|
|
|
|
real(pReal) :: ballsize
|
|
|
|
integer(pInt) :: centeridx=999, correltime=9999
|
|
|
|
! exclude points within 'correltime' of 'centeridx', iff centeridx >= 0
|
|
|
|
integer(pInt) :: nalloc ! how much allocated for results(:)?
|
|
|
|
logical :: rearrange ! are the data rearranged or original?
|
|
|
|
! did the # of points found overflow the storage provided?
|
|
|
|
logical :: overflow
|
|
|
|
real(pReal), pointer :: qv(:) ! query vector
|
|
|
|
type(kdtree2_result), pointer :: results(:) ! results
|
|
|
|
type(pq) :: pq
|
|
|
|
real(pReal), pointer :: data(:,:) ! temp pointer to data
|
|
|
|
integer(pInt), pointer :: ind(:) ! temp pointer to indexes
|
|
|
|
end type tree_search_record
|
|
|
|
|
|
|
|
private
|
|
|
|
! everything else is private.
|
|
|
|
|
|
|
|
type(tree_search_record), save, target :: sr ! A GLOBAL VARIABLE for search
|
|
|
|
|
|
|
|
contains
|
|
|
|
|
|
|
|
function kdtree2_create(input_data,dim,sort,rearrange) result (mr)
|
|
|
|
!
|
|
|
|
! create the actual tree structure, given an input array of data.
|
|
|
|
!
|
|
|
|
! Note, input data is input_data(1:d,1:N), NOT the other way around.
|
|
|
|
! THIS IS THE REVERSE OF THE PREVIOUS VERSION OF THIS MODULE.
|
|
|
|
! The reason for it is cache friendliness, improving performance.
|
|
|
|
!
|
|
|
|
! Optional arguments: If 'dim' is specified, then the tree
|
|
|
|
! will only search the first 'dim' components
|
|
|
|
! of input_data, otherwise, dim is inferred
|
|
|
|
! from SIZE(input_data,1).
|
|
|
|
!
|
|
|
|
! if sort .eqv. .true. then output results
|
|
|
|
! will be sorted by increasing distance.
|
|
|
|
! default=.false., as it is faster to not sort.
|
|
|
|
!
|
|
|
|
! if rearrange .eqv. .true. then an internal
|
|
|
|
! copy of the data, rearranged by terminal node,
|
|
|
|
! will be made for cache friendliness.
|
|
|
|
! default=.true., as it speeds searches, but
|
|
|
|
! building takes longer, and extra memory is used.
|
|
|
|
!
|
|
|
|
! .. Function Return Cut_value ..
|
|
|
|
type (kdtree2), pointer :: mr
|
|
|
|
integer(pInt), intent(in), optional :: dim
|
|
|
|
logical, intent(in), optional :: sort
|
|
|
|
logical, intent(in), optional :: rearrange
|
|
|
|
! ..
|
|
|
|
! .. Array Arguments ..
|
|
|
|
real(pReal), target :: input_data(:,:)
|
|
|
|
!
|
|
|
|
integer(pInt) :: i
|
|
|
|
! ..
|
|
|
|
allocate (mr)
|
|
|
|
mr%the_data => input_data
|
|
|
|
! pointer assignment
|
|
|
|
|
|
|
|
if (present(dim)) then
|
|
|
|
mr%dimen = dim
|
|
|
|
else
|
|
|
|
mr%dimen = size(input_data,1)
|
|
|
|
end if
|
|
|
|
mr%n = size(input_data,2)
|
|
|
|
|
|
|
|
if (mr%dimen > mr%n) then
|
|
|
|
! unlikely to be correct
|
|
|
|
write (*,*) 'KD_TREE_TRANS: likely user error.'
|
|
|
|
write (*,*) 'KD_TREE_TRANS: You passed in matrix with D=',mr%dimen
|
|
|
|
write (*,*) 'KD_TREE_TRANS: and N=',mr%n
|
|
|
|
write (*,*) 'KD_TREE_TRANS: note, that new format is data(1:D,1:N)'
|
|
|
|
write (*,*) 'KD_TREE_TRANS: with usually N >> D. If N =approx= D, then a k-d tree'
|
|
|
|
write (*,*) 'KD_TREE_TRANS: is not an appropriate data structure.'
|
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
|
|
|
call build_tree(mr)
|
|
|
|
|
|
|
|
if (present(sort)) then
|
|
|
|
mr%sort = sort
|
|
|
|
else
|
|
|
|
mr%sort = .false.
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (present(rearrange)) then
|
|
|
|
mr%rearrange = rearrange
|
|
|
|
else
|
|
|
|
mr%rearrange = .true.
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (mr%rearrange) then
|
|
|
|
allocate(mr%rearranged_data(mr%dimen,mr%n))
|
|
|
|
do i=1,mr%n
|
|
|
|
mr%rearranged_data(:,i) = mr%the_data(:, &
|
|
|
|
mr%ind(i))
|
|
|
|
enddo
|
|
|
|
else
|
|
|
|
nullify(mr%rearranged_data)
|
|
|
|
endif
|
|
|
|
|
|
|
|
end function kdtree2_create
|
|
|
|
|
|
|
|
subroutine build_tree(tp)
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
! ..
|
|
|
|
integer(pInt) :: j
|
|
|
|
type(tree_node), pointer :: dummy => null()
|
|
|
|
! ..
|
|
|
|
allocate (tp%ind(tp%n))
|
|
|
|
forall (j=1:tp%n)
|
|
|
|
tp%ind(j) = j
|
|
|
|
end forall
|
|
|
|
tp%root => build_tree_for_range(tp,1,tp%n, dummy)
|
|
|
|
end subroutine build_tree
|
|
|
|
|
|
|
|
recursive function build_tree_for_range(tp,l,u,parent) result (res)
|
|
|
|
! .. Function Return Cut_value ..
|
|
|
|
type (tree_node), pointer :: res
|
|
|
|
! ..
|
|
|
|
! .. Structure Arguments ..
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
type (tree_node),pointer :: parent
|
|
|
|
! ..
|
|
|
|
! .. Scalar Arguments ..
|
|
|
|
integer(pInt), intent (In) :: l, u
|
|
|
|
! ..
|
|
|
|
! .. Local Scalars ..
|
|
|
|
integer(pInt) :: i, c, m, dimen
|
|
|
|
logical :: recompute
|
|
|
|
real(pReal) :: average
|
|
|
|
|
|
|
|
!!$ If (.False.) Then
|
|
|
|
!!$ If ((l .Lt. 1) .Or. (l .Gt. tp%n)) Then
|
|
|
|
!!$ Stop 'illegal L value in build_tree_for_range'
|
|
|
|
!!$ End If
|
|
|
|
!!$ If ((u .Lt. 1) .Or. (u .Gt. tp%n)) Then
|
|
|
|
!!$ Stop 'illegal u value in build_tree_for_range'
|
|
|
|
!!$ End If
|
|
|
|
!!$ If (u .Lt. l) Then
|
|
|
|
!!$ Stop 'U is less than L, thats illegal.'
|
|
|
|
!!$ End If
|
|
|
|
!!$ Endif
|
|
|
|
!!$
|
|
|
|
! first compute min and max
|
|
|
|
dimen = tp%dimen
|
|
|
|
allocate (res)
|
|
|
|
allocate(res%box(dimen))
|
|
|
|
|
|
|
|
! First, compute an APPROXIMATE bounding box of all points associated with this node.
|
|
|
|
if ( u < l ) then
|
|
|
|
! no points in this box
|
|
|
|
nullify(res)
|
|
|
|
return
|
|
|
|
end if
|
|
|
|
|
|
|
|
if ((u-l)<=bucket_size) then
|
|
|
|
!
|
|
|
|
! always compute true bounding box for terminal nodes.
|
|
|
|
!
|
|
|
|
do i=1,dimen
|
|
|
|
call spread_in_coordinate(tp,i,l,u,res%box(i))
|
|
|
|
end do
|
|
|
|
res%cut_dim = 0
|
|
|
|
res%cut_val = 0.0
|
|
|
|
res%l = l
|
|
|
|
res%u = u
|
|
|
|
res%left =>null()
|
|
|
|
res%right => null()
|
|
|
|
else
|
|
|
|
!
|
|
|
|
! modify approximate bounding box. This will be an
|
|
|
|
! overestimate of the true bounding box, as we are only recomputing
|
|
|
|
! the bounding box for the dimension that the parent split on.
|
|
|
|
!
|
|
|
|
! Going to a true bounding box computation would significantly
|
|
|
|
! increase the time necessary to build the tree, and usually
|
|
|
|
! has only a very small difference. This box is not used
|
|
|
|
! for searching but only for deciding which coordinate to split on.
|
|
|
|
!
|
|
|
|
do i=1,dimen
|
|
|
|
recompute=.true.
|
|
|
|
if (associated(parent)) then
|
|
|
|
if (i .ne. parent%cut_dim) then
|
|
|
|
recompute=.false.
|
|
|
|
end if
|
|
|
|
endif
|
|
|
|
if (recompute) then
|
|
|
|
call spread_in_coordinate(tp,i,l,u,res%box(i))
|
|
|
|
else
|
|
|
|
res%box(i) = parent%box(i)
|
|
|
|
endif
|
|
|
|
end do
|
|
|
|
|
|
|
|
|
|
|
|
c = maxloc(res%box(1:dimen)%upper-res%box(1:dimen)%lower,1)
|
|
|
|
!
|
|
|
|
! c is the identity of which coordinate has the greatest spread.
|
|
|
|
!
|
|
|
|
|
|
|
|
if (.false.) then
|
|
|
|
! select exact median to have fully balanced tree.
|
|
|
|
m = (l+u)/2
|
|
|
|
call select_on_coordinate(tp%the_data,tp%ind,c,m,l,u)
|
|
|
|
else
|
|
|
|
!
|
|
|
|
! select point halfway between min and max, as per A. Moore,
|
|
|
|
! who says this helps in some degenerate cases, or
|
|
|
|
! actual arithmetic average.
|
|
|
|
!
|
|
|
|
if (.true.) then
|
|
|
|
! actually compute average
|
|
|
|
average = sum(tp%the_data(c,tp%ind(l:u))) / real(u-l+1,pReal)
|
|
|
|
else
|
|
|
|
average = (res%box(c)%upper + res%box(c)%lower)/2.0
|
|
|
|
endif
|
|
|
|
|
|
|
|
res%cut_val = average
|
|
|
|
m = select_on_coordinate_value(tp%the_data,tp%ind,c,average,l,u)
|
|
|
|
endif
|
|
|
|
|
|
|
|
! moves indexes around
|
|
|
|
res%cut_dim = c
|
|
|
|
res%l = l
|
|
|
|
res%u = u
|
|
|
|
! res%cut_val = tp%the_data(c,tp%ind(m))
|
|
|
|
|
|
|
|
res%left => build_tree_for_range(tp,l,m,res)
|
|
|
|
res%right => build_tree_for_range(tp,m+1,u,res)
|
|
|
|
|
|
|
|
if (associated(res%right) .eqv. .false.) then
|
|
|
|
res%box = res%left%box
|
|
|
|
res%cut_val_left = res%left%box(c)%upper
|
|
|
|
res%cut_val = res%cut_val_left
|
|
|
|
elseif (associated(res%left) .eqv. .false.) then
|
|
|
|
res%box = res%right%box
|
|
|
|
res%cut_val_right = res%right%box(c)%lower
|
|
|
|
res%cut_val = res%cut_val_right
|
|
|
|
else
|
|
|
|
res%cut_val_right = res%right%box(c)%lower
|
|
|
|
res%cut_val_left = res%left%box(c)%upper
|
|
|
|
res%cut_val = (res%cut_val_left + res%cut_val_right)/2
|
|
|
|
|
|
|
|
|
|
|
|
! now remake the true bounding box for self.
|
|
|
|
! Since we are taking unions (in effect) of a tree structure,
|
|
|
|
! this is much faster than doing an exhaustive
|
|
|
|
! search over all points
|
|
|
|
res%box%upper = max(res%left%box%upper,res%right%box%upper)
|
|
|
|
res%box%lower = min(res%left%box%lower,res%right%box%lower)
|
|
|
|
endif
|
|
|
|
end if
|
|
|
|
end function build_tree_for_range
|
|
|
|
|
|
|
|
integer(pInt) function select_on_coordinate_value(v,ind,c,alpha,li,ui) &
|
|
|
|
result(res)
|
|
|
|
! Move elts of ind around between l and u, so that all points
|
|
|
|
! <= than alpha (in c cooordinate) are first, and then
|
|
|
|
! all points > alpha are second.
|
|
|
|
|
|
|
|
!
|
|
|
|
! Algorithm (matt kennel).
|
|
|
|
!
|
|
|
|
! Consider the list as having three parts: on the left,
|
|
|
|
! the points known to be <= alpha. On the right, the points
|
|
|
|
! known to be > alpha, and in the middle, the currently unknown
|
|
|
|
! points. The algorithm is to scan the unknown points, starting
|
|
|
|
! from the left, and swapping them so that they are added to
|
|
|
|
! the left stack or the right stack, as appropriate.
|
|
|
|
!
|
|
|
|
! The algorithm finishes when the unknown stack is empty.
|
|
|
|
!
|
|
|
|
! .. Scalar Arguments ..
|
|
|
|
integer(pInt), intent (In) :: c, li, ui
|
|
|
|
real(pReal), intent(in) :: alpha
|
|
|
|
! ..
|
|
|
|
real(pReal) :: v(1:,1:)
|
|
|
|
integer(pInt) :: ind(1:)
|
|
|
|
integer(pInt) :: tmp
|
|
|
|
! ..
|
|
|
|
integer(pInt) :: lb, rb
|
|
|
|
!
|
|
|
|
! The points known to be <= alpha are in
|
|
|
|
! [l,lb-1]
|
|
|
|
!
|
|
|
|
! The points known to be > alpha are in
|
|
|
|
! [rb+1,u].
|
|
|
|
!
|
|
|
|
! Therefore we add new points into lb or
|
|
|
|
! rb as appropriate. When lb=rb
|
|
|
|
! we are done. We return the location of the last point <= alpha.
|
|
|
|
!
|
|
|
|
!
|
|
|
|
lb = li; rb = ui
|
|
|
|
|
|
|
|
do while (lb < rb)
|
|
|
|
if ( v(c,ind(lb)) <= alpha ) then
|
|
|
|
! it is good where it is.
|
|
|
|
lb = lb+1
|
|
|
|
else
|
|
|
|
! swap it with rb.
|
|
|
|
tmp = ind(lb); ind(lb) = ind(rb); ind(rb) = tmp
|
|
|
|
rb = rb-1
|
|
|
|
endif
|
|
|
|
end do
|
|
|
|
|
|
|
|
! now lb .eq. ub
|
|
|
|
if (v(c,ind(lb)) <= alpha) then
|
|
|
|
res = lb
|
|
|
|
else
|
|
|
|
res = lb-1
|
|
|
|
endif
|
|
|
|
|
|
|
|
end function select_on_coordinate_value
|
|
|
|
|
|
|
|
subroutine select_on_coordinate(v,ind,c,k,li,ui)
|
|
|
|
! Move elts of ind around between l and u, so that the kth
|
|
|
|
! element
|
|
|
|
! is >= those below, <= those above, in the coordinate c.
|
|
|
|
! .. Scalar Arguments ..
|
|
|
|
integer(pInt), intent (In) :: c, k, li, ui
|
|
|
|
! ..
|
|
|
|
integer(pInt) :: i, l, m, s, t, u
|
|
|
|
! ..
|
|
|
|
real(pReal) :: v(:,:)
|
|
|
|
integer(pInt) :: ind(:)
|
|
|
|
! ..
|
|
|
|
l = li
|
|
|
|
u = ui
|
|
|
|
do while (l<u)
|
|
|
|
t = ind(l)
|
|
|
|
m = l
|
|
|
|
do i = l + 1, u
|
|
|
|
if (v(c,ind(i))<v(c,t)) then
|
|
|
|
m = m + 1
|
|
|
|
s = ind(m)
|
|
|
|
ind(m) = ind(i)
|
|
|
|
ind(i) = s
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
s = ind(l)
|
|
|
|
ind(l) = ind(m)
|
|
|
|
ind(m) = s
|
|
|
|
if (m<=k) l = m + 1
|
|
|
|
if (m>=k) u = m - 1
|
|
|
|
end do
|
|
|
|
end subroutine select_on_coordinate
|
|
|
|
|
|
|
|
subroutine spread_in_coordinate(tp,c,l,u,interv)
|
|
|
|
! the spread in coordinate 'c', between l and u.
|
|
|
|
!
|
|
|
|
! Return lower bound in 'smin', and upper in 'smax',
|
|
|
|
! ..
|
|
|
|
! .. Structure Arguments ..
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
type(interval), intent(out) :: interv
|
|
|
|
! ..
|
|
|
|
! .. Scalar Arguments ..
|
|
|
|
integer(pInt), intent (In) :: c, l, u
|
|
|
|
! ..
|
|
|
|
! .. Local Scalars ..
|
|
|
|
real(pReal) :: last, lmax, lmin, t, smin,smax
|
|
|
|
integer(pInt) :: i, ulocal
|
|
|
|
! ..
|
|
|
|
! .. Local Arrays ..
|
|
|
|
real(pReal), pointer :: v(:,:)
|
|
|
|
integer(pInt), pointer :: ind(:)
|
|
|
|
! ..
|
|
|
|
v => tp%the_data(1:,1:)
|
|
|
|
ind => tp%ind(1:)
|
|
|
|
smin = v(c,ind(l))
|
|
|
|
smax = smin
|
|
|
|
|
|
|
|
ulocal = u
|
|
|
|
|
|
|
|
do i = l + 2, ulocal, 2
|
|
|
|
lmin = v(c,ind(i-1))
|
|
|
|
lmax = v(c,ind(i))
|
|
|
|
if (lmin>lmax) then
|
|
|
|
t = lmin
|
|
|
|
lmin = lmax
|
|
|
|
lmax = t
|
|
|
|
end if
|
|
|
|
if (smin>lmin) smin = lmin
|
|
|
|
if (smax<lmax) smax = lmax
|
|
|
|
end do
|
|
|
|
if (i==ulocal+1) then
|
|
|
|
last = v(c,ind(ulocal))
|
|
|
|
if (smin>last) smin = last
|
|
|
|
if (smax<last) smax = last
|
|
|
|
end if
|
|
|
|
|
|
|
|
interv%lower = smin
|
|
|
|
interv%upper = smax
|
|
|
|
|
|
|
|
end subroutine spread_in_coordinate
|
|
|
|
|
|
|
|
|
|
|
|
subroutine kdtree2_destroy(tp)
|
|
|
|
! Deallocates all memory for the tree, except input data matrix
|
|
|
|
! .. Structure Arguments ..
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
! ..
|
|
|
|
call destroy_node(tp%root)
|
|
|
|
|
|
|
|
deallocate (tp%ind)
|
|
|
|
nullify (tp%ind)
|
|
|
|
|
|
|
|
if (tp%rearrange) then
|
|
|
|
deallocate(tp%rearranged_data)
|
|
|
|
nullify(tp%rearranged_data)
|
|
|
|
endif
|
|
|
|
|
|
|
|
deallocate(tp)
|
|
|
|
return
|
|
|
|
|
|
|
|
contains
|
|
|
|
recursive subroutine destroy_node(np)
|
|
|
|
! .. Structure Arguments ..
|
|
|
|
type (tree_node), pointer :: np
|
|
|
|
! ..
|
|
|
|
! .. Intrinsic Functions ..
|
|
|
|
intrinsic ASSOCIATED
|
|
|
|
! ..
|
|
|
|
if (associated(np%left)) then
|
|
|
|
call destroy_node(np%left)
|
|
|
|
nullify (np%left)
|
|
|
|
end if
|
|
|
|
if (associated(np%right)) then
|
|
|
|
call destroy_node(np%right)
|
|
|
|
nullify (np%right)
|
|
|
|
end if
|
|
|
|
if (associated(np%box)) deallocate(np%box)
|
|
|
|
deallocate(np)
|
|
|
|
return
|
|
|
|
|
|
|
|
end subroutine destroy_node
|
|
|
|
|
|
|
|
end subroutine kdtree2_destroy
|
|
|
|
|
|
|
|
subroutine kdtree2_n_nearest(tp,qv,nn,results)
|
|
|
|
! Find the 'nn' vectors in the tree nearest to 'qv' in euclidean norm
|
|
|
|
! returning their indexes and distances in 'indexes' and 'distances'
|
|
|
|
! arrays already allocated passed to this subroutine.
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
real(pReal), target, intent (In) :: qv(:)
|
|
|
|
integer(pInt), intent (In) :: nn
|
|
|
|
type(kdtree2_result), target :: results(:)
|
|
|
|
|
|
|
|
|
|
|
|
sr%ballsize = huge(1.0)
|
|
|
|
sr%qv => qv
|
|
|
|
sr%nn = nn
|
|
|
|
sr%nfound = 0
|
|
|
|
sr%centeridx = -1
|
|
|
|
sr%correltime = 0
|
|
|
|
sr%overflow = .false.
|
|
|
|
|
|
|
|
sr%results => results
|
|
|
|
|
|
|
|
sr%nalloc = nn ! will be checked
|
|
|
|
|
|
|
|
sr%ind => tp%ind
|
|
|
|
sr%rearrange = tp%rearrange
|
|
|
|
if (tp%rearrange) then
|
|
|
|
sr%Data => tp%rearranged_data
|
|
|
|
else
|
|
|
|
sr%Data => tp%the_data
|
|
|
|
endif
|
|
|
|
sr%dimen = tp%dimen
|
|
|
|
|
|
|
|
call validate_query_storage(nn)
|
|
|
|
sr%pq = pq_create(results)
|
|
|
|
|
|
|
|
call search(tp%root)
|
|
|
|
|
|
|
|
if (tp%sort) then
|
|
|
|
call kdtree2_sort_results(nn, results)
|
|
|
|
endif
|
|
|
|
! deallocate(sr%pqp)
|
|
|
|
return
|
|
|
|
end subroutine kdtree2_n_nearest
|
|
|
|
|
|
|
|
subroutine kdtree2_n_nearest_around_point(tp,idxin,correltime,nn,results)
|
|
|
|
! Find the 'nn' vectors in the tree nearest to point 'idxin',
|
|
|
|
! with correlation window 'correltime', returing results in
|
|
|
|
! results(:), which must be pre-allocated upon entry.
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
integer(pInt), intent (In) :: idxin, correltime, nn
|
|
|
|
type(kdtree2_result), target :: results(:)
|
|
|
|
|
|
|
|
allocate (sr%qv(tp%dimen))
|
|
|
|
sr%qv = tp%the_data(:,idxin) ! copy the vector
|
|
|
|
sr%ballsize = huge(1.0) ! the largest real(pReal) number
|
|
|
|
sr%centeridx = idxin
|
|
|
|
sr%correltime = correltime
|
|
|
|
|
|
|
|
sr%nn = nn
|
|
|
|
sr%nfound = 0
|
|
|
|
|
|
|
|
sr%dimen = tp%dimen
|
|
|
|
sr%nalloc = nn
|
|
|
|
|
|
|
|
sr%results => results
|
|
|
|
|
|
|
|
sr%ind => tp%ind
|
|
|
|
sr%rearrange = tp%rearrange
|
|
|
|
|
|
|
|
if (sr%rearrange) then
|
|
|
|
sr%Data => tp%rearranged_data
|
|
|
|
else
|
|
|
|
sr%Data => tp%the_data
|
|
|
|
endif
|
|
|
|
|
|
|
|
call validate_query_storage(nn)
|
|
|
|
sr%pq = pq_create(results)
|
|
|
|
|
|
|
|
call search(tp%root)
|
|
|
|
|
|
|
|
if (tp%sort) then
|
|
|
|
call kdtree2_sort_results(nn, results)
|
|
|
|
endif
|
|
|
|
deallocate (sr%qv)
|
|
|
|
return
|
|
|
|
end subroutine kdtree2_n_nearest_around_point
|
|
|
|
|
|
|
|
subroutine kdtree2_r_nearest(tp,qv,r2,nfound,nalloc,results)
|
|
|
|
! find the nearest neighbors to point 'idxin', within SQUARED
|
|
|
|
! Euclidean distance 'r2'. Upon ENTRY, nalloc must be the
|
|
|
|
! size of memory allocated for results(1:nalloc). Upon
|
|
|
|
! EXIT, nfound is the number actually found within the ball.
|
|
|
|
!
|
|
|
|
! Note that if nfound .gt. nalloc then more neighbors were found
|
|
|
|
! than there were storage to store. The resulting list is NOT
|
|
|
|
! the smallest ball inside norm r^2
|
|
|
|
!
|
|
|
|
! Results are NOT sorted unless tree was created with sort option.
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
real(pReal), target, intent (In) :: qv(:)
|
|
|
|
real(pReal), intent(in) :: r2
|
|
|
|
integer(pInt), intent(out) :: nfound
|
|
|
|
integer(pInt), intent (In) :: nalloc
|
|
|
|
type(kdtree2_result), target :: results(:)
|
|
|
|
|
|
|
|
!
|
|
|
|
sr%qv => qv
|
|
|
|
sr%ballsize = r2
|
|
|
|
sr%nn = 0 ! flag for fixed ball search
|
|
|
|
sr%nfound = 0
|
|
|
|
sr%centeridx = -1
|
|
|
|
sr%correltime = 0
|
|
|
|
|
|
|
|
sr%results => results
|
|
|
|
|
|
|
|
call validate_query_storage(nalloc)
|
|
|
|
sr%nalloc = nalloc
|
|
|
|
sr%overflow = .false.
|
|
|
|
sr%ind => tp%ind
|
|
|
|
sr%rearrange= tp%rearrange
|
|
|
|
|
|
|
|
if (tp%rearrange) then
|
|
|
|
sr%Data => tp%rearranged_data
|
|
|
|
else
|
|
|
|
sr%Data => tp%the_data
|
|
|
|
endif
|
|
|
|
sr%dimen = tp%dimen
|
|
|
|
|
|
|
|
!
|
|
|
|
!sr%dsl = Huge(sr%dsl) ! set to huge positive values
|
|
|
|
!sr%il = -1 ! set to invalid indexes
|
|
|
|
!
|
|
|
|
|
|
|
|
call search(tp%root)
|
|
|
|
nfound = sr%nfound
|
|
|
|
if (tp%sort) then
|
|
|
|
call kdtree2_sort_results(nfound, results)
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (sr%overflow) then
|
|
|
|
write (*,*) 'KD_TREE_TRANS: warning! return from kdtree2_r_nearest found more neighbors'
|
|
|
|
write (*,*) 'KD_TREE_TRANS: than storage was provided for. Answer is NOT smallest ball'
|
|
|
|
write (*,*) 'KD_TREE_TRANS: with that number of neighbors! I.e. it is wrong.'
|
|
|
|
endif
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine kdtree2_r_nearest
|
|
|
|
|
|
|
|
subroutine kdtree2_r_nearest_around_point(tp,idxin,correltime,r2,&
|
|
|
|
nfound,nalloc,results)
|
|
|
|
!
|
|
|
|
! Like kdtree2_r_nearest, but around a point 'idxin' already existing
|
|
|
|
! in the data set.
|
|
|
|
!
|
|
|
|
! Results are NOT sorted unless tree was created with sort option.
|
|
|
|
!
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
integer(pInt), intent (In) :: idxin, correltime, nalloc
|
|
|
|
real(pReal), intent(in) :: r2
|
|
|
|
integer(pInt), intent(out) :: nfound
|
|
|
|
type(kdtree2_result), target :: results(:)
|
|
|
|
! ..
|
|
|
|
! .. Intrinsic Functions ..
|
|
|
|
intrinsic HUGE
|
|
|
|
! ..
|
|
|
|
allocate (sr%qv(tp%dimen))
|
|
|
|
sr%qv = tp%the_data(:,idxin) ! copy the vector
|
|
|
|
sr%ballsize = r2
|
|
|
|
sr%nn = 0 ! flag for fixed r search
|
|
|
|
sr%nfound = 0
|
|
|
|
sr%centeridx = idxin
|
|
|
|
sr%correltime = correltime
|
|
|
|
|
|
|
|
sr%results => results
|
|
|
|
|
|
|
|
sr%nalloc = nalloc
|
|
|
|
sr%overflow = .false.
|
|
|
|
|
|
|
|
call validate_query_storage(nalloc)
|
|
|
|
|
|
|
|
! sr%dsl = HUGE(sr%dsl) ! set to huge positive values
|
|
|
|
! sr%il = -1 ! set to invalid indexes
|
|
|
|
|
|
|
|
sr%ind => tp%ind
|
|
|
|
sr%rearrange = tp%rearrange
|
|
|
|
|
|
|
|
if (tp%rearrange) then
|
|
|
|
sr%Data => tp%rearranged_data
|
|
|
|
else
|
|
|
|
sr%Data => tp%the_data
|
|
|
|
endif
|
|
|
|
sr%rearrange = tp%rearrange
|
|
|
|
sr%dimen = tp%dimen
|
|
|
|
|
|
|
|
!
|
|
|
|
!sr%dsl = Huge(sr%dsl) ! set to huge positive values
|
|
|
|
!sr%il = -1 ! set to invalid indexes
|
|
|
|
!
|
|
|
|
|
|
|
|
call search(tp%root)
|
|
|
|
nfound = sr%nfound
|
|
|
|
if (tp%sort) then
|
|
|
|
call kdtree2_sort_results(nfound,results)
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (sr%overflow) then
|
|
|
|
write (*,*) 'KD_TREE_TRANS: warning! return from kdtree2_r_nearest found more neighbors'
|
|
|
|
write (*,*) 'KD_TREE_TRANS: than storage was provided for. Answer is NOT smallest ball'
|
|
|
|
write (*,*) 'KD_TREE_TRANS: with that number of neighbors! I.e. it is wrong.'
|
|
|
|
endif
|
|
|
|
|
|
|
|
deallocate (sr%qv)
|
|
|
|
return
|
|
|
|
end subroutine kdtree2_r_nearest_around_point
|
|
|
|
|
|
|
|
function kdtree2_r_count(tp,qv,r2) result(nfound)
|
|
|
|
! Count the number of neighbors within square distance 'r2'.
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
real(pReal), target, intent (In) :: qv(:)
|
|
|
|
real(pReal), intent(in) :: r2
|
|
|
|
integer(pInt) :: nfound
|
|
|
|
! ..
|
|
|
|
! .. Intrinsic Functions ..
|
|
|
|
intrinsic HUGE
|
|
|
|
! ..
|
|
|
|
sr%qv => qv
|
|
|
|
sr%ballsize = r2
|
|
|
|
|
|
|
|
sr%nn = 0 ! flag for fixed r search
|
|
|
|
sr%nfound = 0
|
|
|
|
sr%centeridx = -1
|
|
|
|
sr%correltime = 0
|
|
|
|
|
|
|
|
nullify(sr%results) ! for some reason, FTN 95 chokes on '=> null()'
|
|
|
|
|
|
|
|
sr%nalloc = 0 ! we do not allocate any storage but that's OK
|
|
|
|
! for counting.
|
|
|
|
sr%ind => tp%ind
|
|
|
|
sr%rearrange = tp%rearrange
|
|
|
|
if (tp%rearrange) then
|
|
|
|
sr%Data => tp%rearranged_data
|
|
|
|
else
|
|
|
|
sr%Data => tp%the_data
|
|
|
|
endif
|
|
|
|
sr%dimen = tp%dimen
|
|
|
|
|
|
|
|
!
|
|
|
|
!sr%dsl = Huge(sr%dsl) ! set to huge positive values
|
|
|
|
!sr%il = -1 ! set to invalid indexes
|
|
|
|
!
|
|
|
|
sr%overflow = .false.
|
|
|
|
|
|
|
|
call search(tp%root)
|
|
|
|
|
|
|
|
nfound = sr%nfound
|
|
|
|
|
|
|
|
return
|
|
|
|
end function kdtree2_r_count
|
|
|
|
|
|
|
|
function kdtree2_r_count_around_point(tp,idxin,correltime,r2) &
|
|
|
|
result(nfound)
|
|
|
|
! Count the number of neighbors within square distance 'r2' around
|
|
|
|
! point 'idxin' with decorrelation time 'correltime'.
|
|
|
|
!
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
integer(pInt), intent (In) :: correltime, idxin
|
|
|
|
real(pReal), intent(in) :: r2
|
|
|
|
integer(pInt) :: nfound
|
|
|
|
! ..
|
|
|
|
! ..
|
|
|
|
! .. Intrinsic Functions ..
|
|
|
|
intrinsic HUGE
|
|
|
|
! ..
|
|
|
|
allocate (sr%qv(tp%dimen))
|
|
|
|
sr%qv = tp%the_data(:,idxin)
|
|
|
|
sr%ballsize = r2
|
|
|
|
|
|
|
|
sr%nn = 0 ! flag for fixed r search
|
|
|
|
sr%nfound = 0
|
|
|
|
sr%centeridx = idxin
|
|
|
|
sr%correltime = correltime
|
|
|
|
nullify(sr%results)
|
|
|
|
|
|
|
|
sr%nalloc = 0 ! we do not allocate any storage but that's OK
|
|
|
|
! for counting.
|
|
|
|
|
|
|
|
sr%ind => tp%ind
|
|
|
|
sr%rearrange = tp%rearrange
|
|
|
|
|
|
|
|
if (sr%rearrange) then
|
|
|
|
sr%Data => tp%rearranged_data
|
|
|
|
else
|
|
|
|
sr%Data => tp%the_data
|
|
|
|
endif
|
|
|
|
sr%dimen = tp%dimen
|
|
|
|
|
|
|
|
!
|
|
|
|
!sr%dsl = Huge(sr%dsl) ! set to huge positive values
|
|
|
|
!sr%il = -1 ! set to invalid indexes
|
|
|
|
!
|
|
|
|
sr%overflow = .false.
|
|
|
|
|
|
|
|
call search(tp%root)
|
|
|
|
|
|
|
|
nfound = sr%nfound
|
|
|
|
|
|
|
|
return
|
|
|
|
end function kdtree2_r_count_around_point
|
|
|
|
|
|
|
|
|
|
|
|
subroutine validate_query_storage(n)
|
|
|
|
!
|
|
|
|
! make sure we have enough storage for n
|
|
|
|
!
|
|
|
|
integer(pInt), intent(in) :: n
|
|
|
|
|
|
|
|
if (size(sr%results,1) .lt. n) then
|
|
|
|
write (*,*) 'KD_TREE_TRANS: you did not provide enough storage for results(1:n)'
|
|
|
|
stop
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine validate_query_storage
|
|
|
|
|
|
|
|
function square_distance(d, iv,qv) result (res)
|
|
|
|
! distance between iv[1:n] and qv[1:n]
|
|
|
|
! .. Function Return Value ..
|
|
|
|
! re-implemented to improve vectorization.
|
|
|
|
real(pReal) :: res
|
|
|
|
! ..
|
|
|
|
! ..
|
|
|
|
! .. Scalar Arguments ..
|
|
|
|
integer(pInt) :: d
|
|
|
|
! ..
|
|
|
|
! .. Array Arguments ..
|
|
|
|
real(pReal) :: iv(:),qv(:)
|
|
|
|
! ..
|
|
|
|
! ..
|
|
|
|
res = sum( (iv(1:d)-qv(1:d))**2 )
|
|
|
|
end function square_distance
|
|
|
|
|
|
|
|
recursive subroutine search(node)
|
|
|
|
!
|
|
|
|
! This is the innermost core routine of the kd-tree search. Along
|
|
|
|
! with "process_terminal_node", it is the performance bottleneck.
|
|
|
|
!
|
|
|
|
! This version uses a logically complete secondary search of
|
|
|
|
! "box in bounds", whether the sear
|
|
|
|
!
|
|
|
|
type (Tree_node), pointer :: node
|
|
|
|
! ..
|
|
|
|
type(tree_node),pointer :: ncloser, nfarther
|
|
|
|
!
|
|
|
|
integer(pInt) :: cut_dim, i
|
|
|
|
! ..
|
|
|
|
real(pReal) :: qval, dis
|
|
|
|
real(pReal) :: ballsize
|
|
|
|
real(pReal), pointer :: qv(:)
|
|
|
|
type(interval), pointer :: box(:)
|
|
|
|
|
|
|
|
if ((associated(node%left) .and. associated(node%right)) .eqv. .false.) then
|
|
|
|
! we are on a terminal node
|
|
|
|
if (sr%nn .eq. 0) then
|
|
|
|
call process_terminal_node_fixedball(node)
|
|
|
|
else
|
|
|
|
call process_terminal_node(node)
|
|
|
|
endif
|
|
|
|
else
|
|
|
|
! we are not on a terminal node
|
|
|
|
qv => sr%qv(1:)
|
|
|
|
cut_dim = node%cut_dim
|
|
|
|
qval = qv(cut_dim)
|
|
|
|
|
|
|
|
if (qval < node%cut_val) then
|
|
|
|
ncloser => node%left
|
|
|
|
nfarther => node%right
|
|
|
|
dis = (node%cut_val_right - qval)**2
|
|
|
|
! extra = node%cut_val - qval
|
|
|
|
else
|
|
|
|
ncloser => node%right
|
|
|
|
nfarther => node%left
|
|
|
|
dis = (node%cut_val_left - qval)**2
|
|
|
|
! extra = qval- node%cut_val_left
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (associated(ncloser)) call search(ncloser)
|
|
|
|
|
|
|
|
! we may need to search the second node.
|
|
|
|
if (associated(nfarther)) then
|
|
|
|
ballsize = sr%ballsize
|
|
|
|
! dis=extra**2
|
|
|
|
if (dis <= ballsize) then
|
|
|
|
!
|
|
|
|
! we do this separately as going on the first cut dimen is often
|
|
|
|
! a good idea.
|
|
|
|
! note that if extra**2 < sr%ballsize, then the next
|
|
|
|
! check will also be false.
|
|
|
|
!
|
|
|
|
box => node%box(1:)
|
|
|
|
do i=1,sr%dimen
|
|
|
|
if (i .ne. cut_dim) then
|
|
|
|
dis = dis + dis2_from_bnd(qv(i),box(i)%lower,box(i)%upper)
|
|
|
|
if (dis > ballsize) then
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
end do
|
|
|
|
|
|
|
|
!
|
|
|
|
! if we are still here then we need to search mroe.
|
|
|
|
!
|
|
|
|
call search(nfarther)
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
end if
|
|
|
|
end subroutine search
|
|
|
|
|
|
|
|
|
|
|
|
real(pReal) function dis2_from_bnd(x,amin,amax) result (res)
|
|
|
|
real(pReal), intent(in) :: x, amin,amax
|
|
|
|
|
|
|
|
if (x > amax) then
|
|
|
|
res = (x-amax)**2;
|
|
|
|
return
|
|
|
|
else
|
|
|
|
if (x < amin) then
|
|
|
|
res = (amin-x)**2;
|
|
|
|
return
|
|
|
|
else
|
|
|
|
res = 0.0
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
return
|
|
|
|
end function dis2_from_bnd
|
|
|
|
|
|
|
|
logical function box_in_search_range(node, sr) result(res)
|
|
|
|
!
|
|
|
|
! Return the distance from 'qv' to the CLOSEST corner of node's
|
|
|
|
! bounding box
|
|
|
|
! for all coordinates outside the box. Coordinates inside the box
|
|
|
|
! contribute nothing to the distance.
|
|
|
|
!
|
|
|
|
type (tree_node), pointer :: node
|
|
|
|
type (tree_search_record), pointer :: sr
|
|
|
|
|
|
|
|
integer(pInt) :: dimen, i
|
|
|
|
real(pReal) :: dis, ballsize
|
|
|
|
real(pReal) :: l, u
|
|
|
|
|
|
|
|
dimen = sr%dimen
|
|
|
|
ballsize = sr%ballsize
|
|
|
|
dis = 0.0
|
|
|
|
res = .true.
|
|
|
|
do i=1,dimen
|
|
|
|
l = node%box(i)%lower
|
|
|
|
u = node%box(i)%upper
|
|
|
|
dis = dis + (dis2_from_bnd(sr%qv(i),l,u))
|
|
|
|
if (dis > ballsize) then
|
|
|
|
res = .false.
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
end do
|
|
|
|
res = .true.
|
|
|
|
return
|
|
|
|
end function box_in_search_range
|
|
|
|
|
|
|
|
|
|
|
|
subroutine process_terminal_node(node)
|
|
|
|
!
|
|
|
|
! Look for actual near neighbors in 'node', and update
|
|
|
|
! the search results on the sr data structure.
|
|
|
|
!
|
|
|
|
type (tree_node), pointer :: node
|
|
|
|
!
|
|
|
|
real(pReal), pointer :: qv(:)
|
|
|
|
integer(pInt), pointer :: ind(:)
|
|
|
|
real(pReal), pointer :: data(:,:)
|
|
|
|
!
|
|
|
|
integer(pInt) :: dimen, i, indexofi, k, centeridx, correltime
|
|
|
|
real(pReal) :: ballsize, sd, newpri
|
|
|
|
logical :: rearrange
|
|
|
|
type(pq), pointer :: pqp
|
|
|
|
!
|
|
|
|
! copy values from sr to local variables
|
|
|
|
!
|
|
|
|
!
|
|
|
|
! Notice, making local pointers with an EXPLICIT lower bound
|
|
|
|
! seems to generate faster code.
|
|
|
|
! why? I don't know.
|
|
|
|
qv => sr%qv(1:)
|
|
|
|
pqp => sr%pq
|
|
|
|
dimen = sr%dimen
|
|
|
|
ballsize = sr%ballsize
|
|
|
|
rearrange = sr%rearrange
|
|
|
|
ind => sr%ind(1:)
|
|
|
|
data => sr%Data(1:,1:)
|
|
|
|
centeridx = sr%centeridx
|
|
|
|
correltime = sr%correltime
|
|
|
|
|
|
|
|
! doing_correl = (centeridx >= 0) ! Do we have a decorrelation window?
|
|
|
|
! include_point = .true. ! by default include all points
|
|
|
|
! search through terminal bucket.
|
|
|
|
|
|
|
|
mainloop: do i = node%l, node%u
|
|
|
|
if (rearrange) then
|
|
|
|
sd = 0.0
|
|
|
|
do k = 1,dimen
|
|
|
|
sd = sd + (data(k,i) - qv(k))**2
|
|
|
|
if (sd>ballsize) cycle mainloop
|
|
|
|
end do
|
|
|
|
indexofi = ind(i) ! only read it if we have not broken out
|
|
|
|
else
|
|
|
|
indexofi = ind(i)
|
|
|
|
sd = 0.0
|
|
|
|
do k = 1,dimen
|
|
|
|
sd = sd + (data(k,indexofi) - qv(k))**2
|
|
|
|
if (sd>ballsize) cycle mainloop
|
|
|
|
end do
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (centeridx > 0) then ! doing correlation interval?
|
|
|
|
if (abs(indexofi-centeridx) < correltime) cycle mainloop
|
|
|
|
endif
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
! two choices for any point. The list so far is either undersized,
|
|
|
|
! or it is not.
|
|
|
|
!
|
|
|
|
! If it is undersized, then add the point and its distance
|
|
|
|
! unconditionally. If the point added fills up the working
|
|
|
|
! list then set the sr%ballsize, maximum distance bound (largest distance on
|
|
|
|
! list) to be that distance, instead of the initialized +infinity.
|
|
|
|
!
|
|
|
|
! If the running list is full size, then compute the
|
|
|
|
! distance but break out immediately if it is larger
|
|
|
|
! than sr%ballsize, "best squared distance" (of the largest element),
|
|
|
|
! as it cannot be a good neighbor.
|
|
|
|
!
|
|
|
|
! Once computed, compare to best_square distance.
|
|
|
|
! if it is smaller, then delete the previous largest
|
|
|
|
! element and add the new one.
|
|
|
|
|
|
|
|
if (sr%nfound .lt. sr%nn) then
|
|
|
|
!
|
|
|
|
! add this point unconditionally to fill list.
|
|
|
|
!
|
|
|
|
sr%nfound = sr%nfound +1
|
|
|
|
newpri = pq_insert(pqp,sd,indexofi)
|
|
|
|
if (sr%nfound .eq. sr%nn) ballsize = newpri
|
|
|
|
! we have just filled the working list.
|
|
|
|
! put the best square distance to the maximum value
|
|
|
|
! on the list, which is extractable from the PQ.
|
|
|
|
|
|
|
|
else
|
|
|
|
!
|
|
|
|
! now, if we get here,
|
|
|
|
! we know that the current node has a squared
|
|
|
|
! distance smaller than the largest one on the list, and
|
|
|
|
! belongs on the list.
|
|
|
|
! Hence we replace that with the current one.
|
|
|
|
!
|
|
|
|
ballsize = pq_replace_max(pqp,sd,indexofi)
|
|
|
|
endif
|
|
|
|
end do mainloop
|
|
|
|
!
|
|
|
|
! Reset sr variables which may have changed during loop
|
|
|
|
!
|
|
|
|
sr%ballsize = ballsize
|
|
|
|
|
|
|
|
end subroutine process_terminal_node
|
|
|
|
|
|
|
|
subroutine process_terminal_node_fixedball(node)
|
|
|
|
!
|
|
|
|
! Look for actual near neighbors in 'node', and update
|
|
|
|
! the search results on the sr data structure, i.e.
|
|
|
|
! save all within a fixed ball.
|
|
|
|
!
|
|
|
|
type (tree_node), pointer :: node
|
|
|
|
!
|
|
|
|
real(pReal), pointer :: qv(:)
|
|
|
|
integer(pInt), pointer :: ind(:)
|
|
|
|
real(pReal), pointer :: data(:,:)
|
|
|
|
!
|
|
|
|
integer(pInt) :: nfound
|
|
|
|
integer(pInt) :: dimen, i, indexofi, k
|
|
|
|
integer(pInt) :: centeridx, correltime, nn
|
|
|
|
real(pReal) :: ballsize, sd
|
|
|
|
logical :: rearrange
|
|
|
|
|
|
|
|
!
|
|
|
|
! copy values from sr to local variables
|
|
|
|
!
|
|
|
|
qv => sr%qv(1:)
|
|
|
|
dimen = sr%dimen
|
|
|
|
ballsize = sr%ballsize
|
|
|
|
rearrange = sr%rearrange
|
|
|
|
ind => sr%ind(1:)
|
|
|
|
data => sr%Data(1:,1:)
|
|
|
|
centeridx = sr%centeridx
|
|
|
|
correltime = sr%correltime
|
|
|
|
nn = sr%nn ! number to search for
|
|
|
|
nfound = sr%nfound
|
|
|
|
|
|
|
|
! search through terminal bucket.
|
|
|
|
mainloop: do i = node%l, node%u
|
|
|
|
|
|
|
|
!
|
|
|
|
! two choices for any point. The list so far is either undersized,
|
|
|
|
! or it is not.
|
|
|
|
!
|
|
|
|
! If it is undersized, then add the point and its distance
|
|
|
|
! unconditionally. If the point added fills up the working
|
|
|
|
! list then set the sr%ballsize, maximum distance bound (largest distance on
|
|
|
|
! list) to be that distance, instead of the initialized +infinity.
|
|
|
|
!
|
|
|
|
! If the running list is full size, then compute the
|
|
|
|
! distance but break out immediately if it is larger
|
|
|
|
! than sr%ballsize, "best squared distance" (of the largest element),
|
|
|
|
! as it cannot be a good neighbor.
|
|
|
|
!
|
|
|
|
! Once computed, compare to best_square distance.
|
|
|
|
! if it is smaller, then delete the previous largest
|
|
|
|
! element and add the new one.
|
|
|
|
|
|
|
|
! which index to the point do we use?
|
|
|
|
|
|
|
|
if (rearrange) then
|
|
|
|
sd = 0.0
|
|
|
|
do k = 1,dimen
|
|
|
|
sd = sd + (data(k,i) - qv(k))**2
|
|
|
|
if (sd>ballsize) cycle mainloop
|
|
|
|
end do
|
|
|
|
indexofi = ind(i) ! only read it if we have not broken out
|
|
|
|
else
|
|
|
|
indexofi = ind(i)
|
|
|
|
sd = 0.0
|
|
|
|
do k = 1,dimen
|
|
|
|
sd = sd + (data(k,indexofi) - qv(k))**2
|
|
|
|
if (sd>ballsize) cycle mainloop
|
|
|
|
end do
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (centeridx > 0) then ! doing correlation interval?
|
|
|
|
if (abs(indexofi-centeridx)<correltime) cycle mainloop
|
|
|
|
endif
|
|
|
|
|
|
|
|
nfound = nfound+1
|
|
|
|
if (nfound .gt. sr%nalloc) then
|
|
|
|
! oh nuts, we have to add another one to the tree but
|
|
|
|
! there isn't enough room.
|
|
|
|
sr%overflow = .true.
|
|
|
|
else
|
|
|
|
sr%results(nfound)%dis = sd
|
|
|
|
sr%results(nfound)%idx = indexofi
|
|
|
|
endif
|
|
|
|
end do mainloop
|
|
|
|
!
|
|
|
|
! Reset sr variables which may have changed during loop
|
|
|
|
!
|
|
|
|
sr%nfound = nfound
|
|
|
|
end subroutine process_terminal_node_fixedball
|
|
|
|
|
|
|
|
subroutine kdtree2_n_nearest_brute_force(tp,qv,nn,results)
|
|
|
|
! find the 'n' nearest neighbors to 'qv' by exhaustive search.
|
|
|
|
! only use this subroutine for testing, as it is SLOW! The
|
|
|
|
! whole point of a k-d tree is to avoid doing what this subroutine
|
|
|
|
! does.
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
real(pReal), intent (In) :: qv(:)
|
|
|
|
integer(pInt), intent (In) :: nn
|
|
|
|
type(kdtree2_result) :: results(:)
|
|
|
|
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
real(pReal), allocatable :: all_distances(:)
|
|
|
|
! ..
|
|
|
|
allocate (all_distances(tp%n))
|
|
|
|
do i = 1, tp%n
|
|
|
|
all_distances(i) = square_distance(tp%dimen,qv,tp%the_data(:,i))
|
|
|
|
end do
|
|
|
|
! now find 'n' smallest distances
|
|
|
|
do i = 1, nn
|
|
|
|
results(i)%dis = huge(1.0)
|
|
|
|
results(i)%idx = -1
|
|
|
|
end do
|
|
|
|
do i = 1, tp%n
|
|
|
|
if (all_distances(i)<results(nn)%dis) then
|
|
|
|
! insert it somewhere on the list
|
|
|
|
do j = 1, nn
|
|
|
|
if (all_distances(i)<results(j)%dis) exit
|
|
|
|
end do
|
|
|
|
! now we know 'j'
|
|
|
|
do k = nn - 1, j, -1
|
|
|
|
results(k+1) = results(k)
|
|
|
|
end do
|
|
|
|
results(j)%dis = all_distances(i)
|
|
|
|
results(j)%idx = i
|
|
|
|
end if
|
|
|
|
end do
|
|
|
|
deallocate (all_distances)
|
|
|
|
end subroutine kdtree2_n_nearest_brute_force
|
|
|
|
|
|
|
|
|
|
|
|
subroutine kdtree2_r_nearest_brute_force(tp,qv,r2,nfound,results)
|
|
|
|
! find the nearest neighbors to 'qv' with distance**2 <= r2 by exhaustive search.
|
|
|
|
! only use this subroutine for testing, as it is SLOW! The
|
|
|
|
! whole point of a k-d tree is to avoid doing what this subroutine
|
|
|
|
! does.
|
|
|
|
type (kdtree2), pointer :: tp
|
|
|
|
real(pReal), intent (In) :: qv(:)
|
|
|
|
real(pReal), intent (In) :: r2
|
|
|
|
integer(pInt), intent(out) :: nfound
|
|
|
|
type(kdtree2_result) :: results(:)
|
|
|
|
|
|
|
|
integer(pInt) :: i, nalloc
|
|
|
|
real(pReal), allocatable :: all_distances(:)
|
|
|
|
! ..
|
|
|
|
allocate (all_distances(tp%n))
|
|
|
|
do i = 1, tp%n
|
|
|
|
all_distances(i) = square_distance(tp%dimen,qv,tp%the_data(:,i))
|
|
|
|
end do
|
|
|
|
|
|
|
|
nfound = 0
|
|
|
|
nalloc = size(results,1)
|
|
|
|
|
|
|
|
do i = 1, tp%n
|
|
|
|
if (all_distances(i)< r2) then
|
|
|
|
! insert it somewhere on the list
|
|
|
|
if (nfound .lt. nalloc) then
|
|
|
|
nfound = nfound+1
|
|
|
|
results(nfound)%dis = all_distances(i)
|
|
|
|
results(nfound)%idx = i
|
|
|
|
endif
|
|
|
|
end if
|
|
|
|
enddo
|
|
|
|
deallocate (all_distances)
|
|
|
|
|
|
|
|
call kdtree2_sort_results(nfound,results)
|
|
|
|
|
|
|
|
|
|
|
|
end subroutine kdtree2_r_nearest_brute_force
|
|
|
|
|
|
|
|
subroutine kdtree2_sort_results(nfound,results)
|
|
|
|
! Use after search to sort results(1:nfound) in order of increasing
|
|
|
|
! distance.
|
|
|
|
integer(pInt), intent(in) :: nfound
|
|
|
|
type(kdtree2_result), target :: results(:)
|
|
|
|
!
|
|
|
|
!
|
|
|
|
|
|
|
|
!THIS IS BUGGY WITH INTEL FORTRAN
|
|
|
|
! If (nfound .Gt. 1) Call heapsort(results(1:nfound)%dis,results(1:nfound)%ind,nfound)
|
|
|
|
!
|
|
|
|
if (nfound .gt. 1) call heapsort_struct(results,nfound)
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine kdtree2_sort_results
|
|
|
|
|
|
|
|
subroutine heapsort(a,ind,n)
|
|
|
|
!
|
|
|
|
! Sort a(1:n) in ascending order, permuting ind(1:n) similarly.
|
|
|
|
!
|
|
|
|
! If ind(k) = k upon input, then it will give a sort index upon output.
|
|
|
|
!
|
|
|
|
integer(pInt),intent(in) :: n
|
|
|
|
real(pReal), intent(inout) :: a(:)
|
|
|
|
integer(pInt), intent(inout) :: ind(:)
|
|
|
|
|
|
|
|
!
|
|
|
|
!
|
|
|
|
real(pReal) :: value ! temporary for a value from a()
|
|
|
|
integer(pInt) :: ivalue ! temporary for a value from ind()
|
|
|
|
|
|
|
|
integer(pInt) :: i,j
|
|
|
|
integer(pInt) :: ileft,iright
|
|
|
|
|
|
|
|
ileft=n/2+1
|
|
|
|
iright=n
|
|
|
|
|
|
|
|
! do i=1,n
|
|
|
|
! ind(i)=i
|
|
|
|
! Generate initial idum array
|
|
|
|
! end do
|
|
|
|
|
|
|
|
if(n.eq.1) return
|
|
|
|
|
|
|
|
do
|
|
|
|
if(ileft > 1)then
|
|
|
|
ileft=ileft-1
|
|
|
|
value=a(ileft); ivalue=ind(ileft)
|
|
|
|
else
|
|
|
|
value=a(iright); ivalue=ind(iright)
|
|
|
|
a(iright)=a(1); ind(iright)=ind(1)
|
|
|
|
iright=iright-1
|
|
|
|
if (iright == 1) then
|
|
|
|
a(1)=value;ind(1)=ivalue
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
i=ileft
|
|
|
|
j=2*ileft
|
|
|
|
do while (j <= iright)
|
|
|
|
if(j < iright) then
|
|
|
|
if(a(j) < a(j+1)) j=j+1
|
|
|
|
endif
|
|
|
|
if(value < a(j)) then
|
|
|
|
a(i)=a(j); ind(i)=ind(j)
|
|
|
|
i=j
|
|
|
|
j=j+j
|
|
|
|
else
|
|
|
|
j=iright+1
|
|
|
|
endif
|
|
|
|
end do
|
|
|
|
a(i)=value; ind(i)=ivalue
|
|
|
|
end do
|
|
|
|
end subroutine heapsort
|
|
|
|
|
|
|
|
subroutine heapsort_struct(a,n)
|
|
|
|
!
|
|
|
|
! Sort a(1:n) in ascending order
|
|
|
|
!
|
|
|
|
!
|
|
|
|
integer(pInt),intent(in) :: n
|
|
|
|
type(kdtree2_result),intent(inout) :: a(:)
|
|
|
|
|
|
|
|
!
|
|
|
|
!
|
|
|
|
type(kdtree2_result) :: value ! temporary value
|
|
|
|
|
|
|
|
integer(pInt) :: i,j
|
|
|
|
integer(pInt) :: ileft,iright
|
|
|
|
|
|
|
|
ileft=n/2+1
|
|
|
|
iright=n
|
|
|
|
|
|
|
|
! do i=1,n
|
|
|
|
! ind(i)=i
|
|
|
|
! Generate initial idum array
|
|
|
|
! end do
|
|
|
|
|
|
|
|
if(n.eq.1) return
|
|
|
|
|
|
|
|
do
|
|
|
|
if(ileft > 1)then
|
|
|
|
ileft=ileft-1
|
|
|
|
value=a(ileft)
|
|
|
|
else
|
|
|
|
value=a(iright)
|
|
|
|
a(iright)=a(1)
|
|
|
|
iright=iright-1
|
|
|
|
if (iright == 1) then
|
|
|
|
a(1) = value
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
endif
|
|
|
|
i=ileft
|
|
|
|
j=2*ileft
|
|
|
|
do while (j <= iright)
|
|
|
|
if(j < iright) then
|
|
|
|
if(a(j)%dis < a(j+1)%dis) j=j+1
|
|
|
|
endif
|
|
|
|
if(value%dis < a(j)%dis) then
|
|
|
|
a(i)=a(j);
|
|
|
|
i=j
|
|
|
|
j=j+j
|
|
|
|
else
|
|
|
|
j=iright+1
|
|
|
|
endif
|
|
|
|
end do
|
|
|
|
a(i)=value
|
|
|
|
end do
|
|
|
|
end subroutine heapsort_struct
|
|
|
|
|
|
|
|
end module kdtree2_module
|
|
|
|
!#############################################################################################################################
|
|
|
|
! END KDTREE2
|
|
|
|
!#############################################################################################################################
|