2011-04-07 12:50:28 +05:30
|
|
|
! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
|
2011-04-04 19:39:54 +05:30
|
|
|
!
|
|
|
|
! This file is part of DAMASK,
|
2011-04-07 12:50:28 +05:30
|
|
|
! the Düsseldorf Advanced MAterial Simulation Kit.
|
2011-04-04 19:39:54 +05:30
|
|
|
!
|
|
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
|
|
! it under the terms of the GNU General Public License as published by
|
|
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
|
|
! (at your option) any later version.
|
|
|
|
!
|
|
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
! GNU General Public License for more details.
|
|
|
|
!
|
|
|
|
! You should have received a copy of the GNU General Public License
|
|
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
!
|
|
|
|
!##############################################################
|
2009-08-31 20:39:15 +05:30
|
|
|
!* $Id$
|
2007-03-21 15:50:25 +05:30
|
|
|
!##############################################################
|
|
|
|
MODULE math
|
|
|
|
!##############################################################
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
use prec, only: pReal,pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
|
|
|
|
2007-03-26 18:20:04 +05:30
|
|
|
real(pReal), parameter :: pi = 3.14159265358979323846264338327950288419716939937510_pReal
|
2007-03-21 15:50:25 +05:30
|
|
|
real(pReal), parameter :: inDeg = 180.0_pReal/pi
|
|
|
|
real(pReal), parameter :: inRad = pi/180.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-03-28 13:50:50 +05:30
|
|
|
! *** 3x3 Identity ***
|
2007-03-22 20:18:16 +05:30
|
|
|
real(pReal), dimension(3,3), parameter :: math_I3 = &
|
|
|
|
reshape( (/ &
|
|
|
|
1.0_pReal,0.0_pReal,0.0_pReal, &
|
|
|
|
0.0_pReal,1.0_pReal,0.0_pReal, &
|
|
|
|
0.0_pReal,0.0_pReal,1.0_pReal /),(/3,3/))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! *** Mandel notation ***
|
|
|
|
integer(pInt), dimension (2,6), parameter :: mapMandel = &
|
|
|
|
reshape((/&
|
2011-12-01 17:31:13 +05:30
|
|
|
1_pInt,1_pInt, &
|
|
|
|
2_pInt,2_pInt, &
|
|
|
|
3_pInt,3_pInt, &
|
|
|
|
1_pInt,2_pInt, &
|
|
|
|
2_pInt,3_pInt, &
|
|
|
|
1_pInt,3_pInt &
|
2008-02-15 18:12:27 +05:30
|
|
|
/),(/2,6/))
|
|
|
|
|
|
|
|
real(pReal), dimension(6), parameter :: nrmMandel = &
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal/)
|
|
|
|
real(pReal), dimension(6), parameter :: invnrmMandel = &
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal/)
|
|
|
|
|
|
|
|
! *** Voigt notation ***
|
|
|
|
integer(pInt), dimension (2,6), parameter :: mapVoigt = &
|
|
|
|
reshape((/&
|
2011-12-01 17:31:13 +05:30
|
|
|
1_pInt,1_pInt, &
|
|
|
|
2_pInt,2_pInt, &
|
|
|
|
3_pInt,3_pInt, &
|
|
|
|
2_pInt,3_pInt, &
|
|
|
|
1_pInt,3_pInt, &
|
|
|
|
1_pInt,2_pInt &
|
2008-02-15 18:12:27 +05:30
|
|
|
/),(/2,6/))
|
|
|
|
|
|
|
|
real(pReal), dimension(6), parameter :: nrmVoigt = &
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal/)
|
|
|
|
real(pReal), dimension(6), parameter :: invnrmVoigt = &
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal/)
|
|
|
|
|
|
|
|
! *** Plain notation ***
|
|
|
|
integer(pInt), dimension (2,9), parameter :: mapPlain = &
|
|
|
|
reshape((/&
|
2011-12-01 17:31:13 +05:30
|
|
|
1_pInt,1_pInt, &
|
|
|
|
1_pInt,2_pInt, &
|
|
|
|
1_pInt,3_pInt, &
|
|
|
|
2_pInt,1_pInt, &
|
|
|
|
2_pInt,2_pInt, &
|
|
|
|
2_pInt,3_pInt, &
|
|
|
|
3_pInt,1_pInt, &
|
|
|
|
3_pInt,2_pInt, &
|
|
|
|
3_pInt,3_pInt &
|
2008-02-15 18:12:27 +05:30
|
|
|
/),(/2,9/))
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
! Symmetry operations as quaternions
|
|
|
|
! 24 for cubic, 12 for hexagonal = 36
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), dimension(2), parameter :: math_NsymOperations = (/24_pInt,12_pInt/)
|
2010-04-28 22:49:58 +05:30
|
|
|
real(pReal), dimension(4,36), parameter :: math_symOperations = &
|
2009-12-14 16:32:10 +05:30
|
|
|
reshape((/&
|
2010-03-18 17:53:17 +05:30
|
|
|
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! cubic symmetry operations
|
|
|
|
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, & ! 2-fold symmetry
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, &
|
|
|
|
0.0_pReal, -0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, & ! 3-fold symmetry
|
|
|
|
-0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
-0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
|
|
|
-0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
|
|
|
0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
|
|
|
-0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
|
|
|
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, & ! 4-fold symmetry
|
|
|
|
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, &
|
|
|
|
-0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, &
|
|
|
|
0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
|
|
|
-0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal, &
|
|
|
|
-0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! hexagonal symmetry operations
|
|
|
|
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, & ! 2-fold symmetry
|
|
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
2010-04-12 13:34:26 +05:30
|
|
|
0.0_pReal, 0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, -0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, 0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
|
|
|
|
0.0_pReal, -0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
|
2010-03-18 17:53:17 +05:30
|
|
|
0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, & ! 6-fold symmetry
|
|
|
|
-0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, &
|
|
|
|
0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
|
|
|
|
-0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
|
|
|
|
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal &
|
|
|
|
/),(/4,36/))
|
2009-01-26 18:28:58 +05:30
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
CONTAINS
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! initialization of module
|
|
|
|
!**************************************************************************
|
2007-03-28 12:51:47 +05:30
|
|
|
SUBROUTINE math_init ()
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
use prec, only: tol_math_check
|
2009-08-27 21:00:40 +05:30
|
|
|
use numerics, only: fixedSeed
|
2010-05-06 19:37:21 +05:30
|
|
|
use IO, only: IO_error
|
2011-03-21 16:01:17 +05:30
|
|
|
use debug, only: debug_verbosity
|
2007-03-28 12:51:47 +05:30
|
|
|
implicit none
|
|
|
|
|
2011-11-04 15:59:35 +05:30
|
|
|
integer(pInt) :: i
|
2010-05-06 19:37:21 +05:30
|
|
|
real(pReal), dimension(3,3) :: R,R2
|
2010-05-04 18:33:35 +05:30
|
|
|
real(pReal), dimension(3) :: Eulers
|
2011-11-04 15:59:35 +05:30
|
|
|
real(pReal), dimension(4) :: q,q2,axisangle,randTest
|
2011-12-01 17:31:13 +05:30
|
|
|
! the following variables are system dependend and shound NOT be pInt
|
2011-11-04 15:59:35 +05:30
|
|
|
integer :: randSize ! gfortran requires a variable length to compile
|
|
|
|
integer, dimension(:), allocatable :: randInit ! if recalculations of former randomness (with given seed) is necessary
|
|
|
|
! comment the first random_seed call out, set randSize to 1, and use ifort
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
!$OMP CRITICAL (write2out)
|
2009-08-31 20:39:15 +05:30
|
|
|
write(6,*)
|
|
|
|
write(6,*) '<<<+- math init -+>>>'
|
|
|
|
write(6,*) '$Id$'
|
|
|
|
write(6,*)
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
!$OMP END CRITICAL (write2out)
|
2011-08-01 15:41:32 +05:30
|
|
|
|
2011-11-04 15:59:35 +05:30
|
|
|
call random_seed(size=randSize)
|
|
|
|
allocate(randInit(randSize))
|
2009-08-27 21:00:40 +05:30
|
|
|
if (fixedSeed > 0_pInt) then
|
2011-11-04 15:59:35 +05:30
|
|
|
randInit(1:randSize) = int(fixedSeed) ! fixedSeed is of type pInt, randInit not
|
2009-08-27 21:00:40 +05:30
|
|
|
call random_seed(put=randInit)
|
|
|
|
else
|
|
|
|
call random_seed()
|
|
|
|
endif
|
|
|
|
|
2011-01-21 00:55:45 +05:30
|
|
|
call random_seed(get=randInit)
|
2011-11-04 15:59:35 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do i = 1_pInt, 4_pInt
|
2011-11-04 15:59:35 +05:30
|
|
|
call random_number(randTest(i))
|
|
|
|
enddo
|
|
|
|
|
2011-06-14 19:38:13 +05:30
|
|
|
!$OMP CRITICAL (write2out)
|
|
|
|
! this critical block did cause trouble at IWM
|
2011-11-04 15:59:35 +05:30
|
|
|
write(6,*) 'value of random seed: ', randInit(1)
|
|
|
|
write(6,*) 'size of random seed: ', randSize
|
|
|
|
write(6,'(a,4(/,26x,f16.14))') ' start of random sequence: ', randTest
|
|
|
|
write(6,*) ''
|
2011-06-14 19:38:13 +05:30
|
|
|
!$OMP END CRITICAL (write2out)
|
2011-03-21 16:01:17 +05:30
|
|
|
|
2011-11-04 15:59:35 +05:30
|
|
|
call random_seed(put=randInit)
|
|
|
|
call random_seed(get=randInit)
|
|
|
|
|
2011-01-21 00:55:45 +05:30
|
|
|
call halton_seed_set(randInit(1))
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton_ndim_set(3_pInt)
|
2010-05-04 18:33:35 +05:30
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
! --- check rotation dictionary ---
|
|
|
|
|
|
|
|
! +++ q -> a -> q +++
|
|
|
|
q = math_qRnd();
|
|
|
|
axisangle = math_QuaternionToAxisAngle(q);
|
|
|
|
q2 = math_AxisAngleToQuaternion(axisangle(1:3),axisangle(4))
|
2011-12-01 17:31:13 +05:30
|
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
|
|
|
any(abs(-q-q2) > tol_math_check) ) &
|
|
|
|
call IO_error(670_pInt)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
! +++ q -> R -> q +++
|
|
|
|
R = math_QuaternionToR(q);
|
|
|
|
q2 = math_RToQuaternion(R)
|
2011-12-01 17:31:13 +05:30
|
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
|
|
|
any(abs(-q-q2) > tol_math_check) ) &
|
|
|
|
call IO_error(671_pInt)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
! +++ q -> euler -> q +++
|
|
|
|
Eulers = math_QuaternionToEuler(q);
|
|
|
|
q2 = math_EulerToQuaternion(Eulers)
|
2011-12-01 17:31:13 +05:30
|
|
|
if ( any(abs( q-q2) > tol_math_check) .and. &
|
|
|
|
any(abs(-q-q2) > tol_math_check) ) &
|
|
|
|
call IO_error(672_pInt)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
! +++ R -> euler -> R +++
|
|
|
|
Eulers = math_RToEuler(R);
|
|
|
|
R2 = math_EulerToR(Eulers)
|
2011-12-01 17:31:13 +05:30
|
|
|
if ( any(abs( R-R2) > tol_math_check) ) &
|
|
|
|
call IO_error(673_pInt)
|
2010-05-04 18:24:13 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE math_init
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2009-01-26 18:28:58 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! Quicksort algorithm for two-dimensional integer arrays
|
|
|
|
!
|
|
|
|
! Sorting is done with respect to array(1,:)
|
|
|
|
! and keeps array(2:N,:) linked to it.
|
|
|
|
!**************************************************************************
|
|
|
|
RECURSIVE SUBROUTINE qsort(a, istart, iend)
|
|
|
|
|
|
|
|
implicit none
|
2007-04-04 14:19:48 +05:30
|
|
|
integer(pInt), dimension(:,:) :: a
|
2007-04-03 13:47:58 +05:30
|
|
|
integer(pInt) :: istart,iend,ipivot
|
|
|
|
|
|
|
|
if (istart < iend) then
|
|
|
|
ipivot = math_partition(a,istart, iend)
|
2011-12-01 17:31:13 +05:30
|
|
|
call qsort(a, istart, ipivot-1_pInt)
|
|
|
|
call qsort(a, ipivot+1_pInt, iend)
|
2007-04-03 13:47:58 +05:30
|
|
|
endif
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE qsort
|
2007-04-03 13:47:58 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! Partitioning required for quicksort
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
integer(pInt) function math_partition(a, istart, iend)
|
2007-04-03 13:47:58 +05:30
|
|
|
|
|
|
|
implicit none
|
2007-04-04 14:19:48 +05:30
|
|
|
integer(pInt), dimension(:,:) :: a
|
2007-04-03 13:47:58 +05:30
|
|
|
integer(pInt) :: istart,iend,d,i,j,k,x,tmp
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
d = size(a,1_pInt) ! number of linked data
|
2008-02-15 18:12:27 +05:30
|
|
|
! set the starting and ending points, and the pivot point
|
|
|
|
|
|
|
|
i = istart
|
|
|
|
|
2007-04-04 14:19:48 +05:30
|
|
|
j = iend
|
2007-04-03 13:47:58 +05:30
|
|
|
x = a(1,istart)
|
|
|
|
do
|
|
|
|
! find the first element on the right side less than or equal to the pivot point
|
2011-12-01 17:31:13 +05:30
|
|
|
do j = j, istart, -1_pInt
|
2007-04-03 13:47:58 +05:30
|
|
|
if (a(1,j) <= x) exit
|
|
|
|
enddo
|
|
|
|
! find the first element on the left side greater than the pivot point
|
|
|
|
do i = i, iend
|
|
|
|
if (a(1,i) > x) exit
|
|
|
|
enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
if (i < j) then ! if the indexes do not cross, exchange values
|
|
|
|
do k = 1_pInt,d
|
2007-04-03 13:47:58 +05:30
|
|
|
tmp = a(k,i)
|
|
|
|
a(k,i) = a(k,j)
|
|
|
|
a(k,j) = tmp
|
|
|
|
enddo
|
2007-12-14 19:06:04 +05:30
|
|
|
else ! if they do cross, exchange left value with pivot and return with the partition index
|
2011-12-01 17:31:13 +05:30
|
|
|
do k = 1_pInt,d
|
2007-04-03 13:47:58 +05:30
|
|
|
tmp = a(k,istart)
|
|
|
|
a(k,istart) = a(k,j)
|
|
|
|
a(k,j) = tmp
|
|
|
|
enddo
|
2007-04-04 14:19:48 +05:30
|
|
|
math_partition = j
|
2007-04-03 13:47:58 +05:30
|
|
|
return
|
|
|
|
endif
|
|
|
|
enddo
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_partition
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
|
2009-03-04 17:18:54 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! range of integers starting at one
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_range(N)
|
2009-03-04 17:18:54 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: N
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-03-04 17:18:54 +05:30
|
|
|
integer(pInt), dimension(N) :: math_range
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:N) math_range(i) = i
|
2009-03-04 17:18:54 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_range
|
2009-03-04 17:18:54 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
!**************************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
! second rank identity tensor of specified dimension
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_identity2nd(dimen)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
integer(pInt), intent(in) :: dimen
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2007-04-11 15:34:22 +05:30
|
|
|
real(pReal), dimension(dimen,dimen) :: math_identity2nd
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
math_identity2nd = 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:dimen) math_identity2nd(i,i) = 1.0_pReal
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_identity2nd
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2008-03-26 19:05:01 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! permutation tensor e_ijk used for computing cross product of two tensors
|
|
|
|
! e_ijk = 1 if even permutation of ijk
|
|
|
|
! e_ijk = -1 if odd permutation of ijk
|
|
|
|
! e_ijk = 0 otherwise
|
|
|
|
!**************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
pure function math_civita(i,j,k)
|
2008-03-26 19:05:01 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
integer(pInt), intent(in) :: i,j,k
|
2009-07-31 17:32:20 +05:30
|
|
|
real(pReal) math_civita
|
2008-03-26 19:05:01 +05:30
|
|
|
|
2009-07-31 17:32:20 +05:30
|
|
|
math_civita = 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
if (((i == 1_pInt).and.(j == 2_pInt).and.(k == 3_pInt)) .or. &
|
|
|
|
((i == 2_pInt).and.(j == 3_pInt).and.(k == 1_pInt)) .or. &
|
|
|
|
((i == 3_pInt).and.(j == 1_pInt).and.(k == 2_pInt))) math_civita = 1.0_pReal
|
|
|
|
if (((i == 1_pInt).and.(j == 3_pInt).and.(k == 2_pInt)) .or. &
|
|
|
|
((i == 2_pInt).and.(j == 1_pInt).and.(k == 3_pInt)) .or. &
|
|
|
|
((i == 3_pInt).and.(j == 2_pInt).and.(k == 1_pInt))) math_civita = -1.0_pReal
|
2008-03-27 17:24:34 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_civita
|
2008-03-27 17:24:34 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2008-03-27 17:24:34 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! kronecker delta function d_ij
|
|
|
|
! d_ij = 1 if i = j
|
|
|
|
! d_ij = 0 otherwise
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_delta(i,j)
|
2008-03-27 17:24:34 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
integer(pInt), intent (in) :: i,j
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_delta
|
2008-03-27 17:24:34 +05:30
|
|
|
|
|
|
|
math_delta = 0.0_pReal
|
|
|
|
if (i == j) math_delta = 1.0_pReal
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_delta
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! fourth rank identity tensor of specified dimension
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_identity4th(dimen)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
integer(pInt), intent(in) :: dimen
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j,k,l
|
2007-04-11 15:34:22 +05:30
|
|
|
real(pReal), dimension(dimen,dimen,dimen,dimen) :: math_identity4th
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:dimen,j=1_pInt:dimen,k=1_pInt:dimen,l=1_pInt:dimen) math_identity4th(i,j,k,l) = &
|
2010-09-22 17:34:43 +05:30
|
|
|
0.5_pReal*(math_I3(i,k)*math_I3(j,k)+math_I3(i,l)*math_I3(j,k))
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_identity4th
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! vector product a x b
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_vectorproduct(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(3) :: math_vectorproduct
|
|
|
|
|
|
|
|
math_vectorproduct(1) = A(2)*B(3)-A(3)*B(2)
|
|
|
|
math_vectorproduct(2) = A(3)*B(1)-A(1)*B(3)
|
|
|
|
math_vectorproduct(3) = A(1)*B(2)-A(2)*B(1)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_vectorproduct
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2009-03-05 20:07:59 +05:30
|
|
|
|
2009-03-17 20:43:17 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! tensor product a \otimes b
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_tensorproduct(A,B)
|
2009-03-17 20:43:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(3,3) :: math_tensorproduct
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-03-17 20:43:17 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_tensorproduct(i,j) = A(i)*B(j)
|
2009-03-17 20:43:17 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_tensorproduct
|
2009-03-17 20:43:17 +05:30
|
|
|
|
|
|
|
|
2009-03-05 20:07:59 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 3x3 = 1
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul3x3(A,B)
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-03-05 20:07:59 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
2010-09-30 15:02:49 +05:30
|
|
|
real(pReal), dimension(3) :: C
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_mul3x3
|
2009-03-05 20:07:59 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt) C(i) = A(i)*B(i)
|
2009-03-05 20:07:59 +05:30
|
|
|
math_mul3x3 = sum(C)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul3x3
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 6x6 = 1
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul6x6(A,B)
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-03-05 20:07:59 +05:30
|
|
|
real(pReal), dimension(6), intent(in) :: A,B
|
2010-09-30 15:02:49 +05:30
|
|
|
real(pReal), dimension(6) :: C
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_mul6x6
|
2009-03-05 20:07:59 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt) C(i) = A(i)*B(i)
|
2009-03-05 20:07:59 +05:30
|
|
|
math_mul6x6 = sum(C)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul6x6
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2010-09-30 15:02:49 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 33x33 = 1 (double contraction --> ij * ij)
|
|
|
|
!**************************************************************************
|
|
|
|
pure function math_mul33xx33(A,B)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2010-09-30 15:02:49 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(3,3) :: C
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_mul33xx33
|
2010-09-30 15:02:49 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) C(i,j) = A(i,j) * B(i,j)
|
2010-09-30 15:02:49 +05:30
|
|
|
math_mul33xx33 = sum(C)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul33xx33
|
2010-09-30 15:02:49 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2010-10-13 21:34:44 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 3333x33 = 33 (double contraction --> ijkl *kl = ij)
|
|
|
|
!**************************************************************************
|
|
|
|
pure function math_mul3333xx33(A,B)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2010-10-13 21:34:44 +05:30
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: A
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: B
|
2011-04-13 19:46:22 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_mul3333xx33
|
2010-10-13 21:34:44 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do i = 1_pInt,3_pInt
|
|
|
|
do j = 1_pInt,3_pInt
|
|
|
|
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
2010-10-13 21:34:44 +05:30
|
|
|
enddo; enddo
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul3333xx33
|
2010-10-13 21:34:44 +05:30
|
|
|
|
2010-09-30 15:02:49 +05:30
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
2009-03-05 20:07:59 +05:30
|
|
|
! matrix multiplication 33x33 = 3x3
|
2010-09-30 14:16:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul33x33(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-01-20 00:40:58 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(3,3) :: math_mul33x33
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_mul33x33(i,j) = &
|
2009-01-20 00:40:58 +05:30
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul33x33
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
!**************************************************************************
|
2009-03-05 20:07:59 +05:30
|
|
|
! matrix multiplication 66x66 = 6x6
|
2008-07-09 01:08:22 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul66x66(A,B)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-01-20 00:40:58 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: A,B
|
|
|
|
real(pReal), dimension(6,6) :: math_mul66x66
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_mul66x66(i,j) = &
|
2008-07-09 01:08:22 +05:30
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
|
|
|
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul66x66
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 99x99 = 9x9
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul99x99(A,B)
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
real(pReal), dimension(9,9), intent(in) :: A,B
|
|
|
|
|
|
|
|
real(pReal), dimension(9,9) :: math_mul99x99
|
|
|
|
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_mul99x99(i,j) = &
|
2009-08-11 22:01:57 +05:30
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
|
|
|
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) + &
|
|
|
|
A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul99x99
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication 33x3 = 3
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul33x3(A,B)
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-08-11 22:01:57 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: A
|
|
|
|
real(pReal), dimension(3), intent(in) :: B
|
|
|
|
real(pReal), dimension(3) :: math_mul33x3
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt) math_mul33x3(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3)
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul33x3
|
2010-09-22 17:34:43 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! matrix multiplication complex(33) x real(3) = complex(3)
|
|
|
|
!**************************************************************************
|
|
|
|
pure function math_mul33x3_complex(A,B)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2010-09-22 17:34:43 +05:30
|
|
|
complex(pReal), dimension(3,3), intent(in) :: A
|
|
|
|
real(pReal), dimension(3), intent(in) :: B
|
|
|
|
complex(pReal), dimension(3) :: math_mul33x3_complex
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt) math_mul33x3_complex(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3)
|
2010-09-22 17:34:43 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul33x3_complex
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
2009-03-05 20:07:59 +05:30
|
|
|
! matrix multiplication 66x6 = 6
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_mul66x6(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2009-01-20 00:40:58 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: A
|
|
|
|
real(pReal), dimension(6), intent(in) :: B
|
|
|
|
real(pReal), dimension(6) :: math_mul66x6
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt) math_mul66x6(i) = &
|
2009-01-20 00:40:58 +05:30
|
|
|
A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) + &
|
|
|
|
A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_mul66x6
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! random quaternion
|
|
|
|
!**************************************************************************
|
|
|
|
function math_qRnd()
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4) :: math_qRnd
|
|
|
|
real(pReal), dimension(3) :: rnd
|
|
|
|
|
|
|
|
call halton(3,rnd)
|
2011-02-25 14:55:53 +05:30
|
|
|
math_qRnd(1) = cos(2.0_pReal*pi*rnd(1))*sqrt(rnd(3))
|
|
|
|
math_qRnd(2) = sin(2.0_pReal*pi*rnd(2))*sqrt(1.0_pReal-rnd(3))
|
|
|
|
math_qRnd(3) = cos(2.0_pReal*pi*rnd(2))*sqrt(1.0_pReal-rnd(3))
|
|
|
|
math_qRnd(4) = sin(2.0_pReal*pi*rnd(1))*sqrt(rnd(3))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qRnd
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! quaternion multiplication q1xq2 = q12
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qMul(A,B)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: A, B
|
|
|
|
real(pReal), dimension(4) :: math_qMul
|
|
|
|
|
|
|
|
math_qMul(1) = A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4)
|
|
|
|
math_qMul(2) = A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3)
|
|
|
|
math_qMul(3) = A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2)
|
|
|
|
math_qMul(4) = A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qMul
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! quaternion dotproduct
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qDot(A,B)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: A, B
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_qDot
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
math_qDot = A(1)*B(1) + A(2)*B(2) + A(3)*B(3) + A(4)*B(4)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qDot
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! quaternion conjugation
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qConj(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(4) :: math_qConj
|
|
|
|
|
|
|
|
math_qConj(1) = Q(1)
|
|
|
|
math_qConj(2:4) = -Q(2:4)
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qConj
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! quaternion norm
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qNorm(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_qNorm
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_qNorm = sqrt(max(0.0_pReal, Q(1)*Q(1) + Q(2)*Q(2) + Q(3)*Q(3) + Q(4)*Q(4)))
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qNorm
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! quaternion inversion
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qInv(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(4) :: math_qInv
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: squareNorm
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
math_qInv = 0.0_pReal
|
|
|
|
|
|
|
|
squareNorm = math_qDot(Q,Q)
|
|
|
|
if (squareNorm > tiny(squareNorm)) &
|
|
|
|
math_qInv = math_qConj(Q) / squareNorm
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qInv
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
2010-09-30 14:16:58 +05:30
|
|
|
! action of a quaternion on a vector (rotate vector v with Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_qRot(Q,v)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(3), intent(in) :: v
|
|
|
|
real(pReal), dimension(3) :: math_qRot
|
|
|
|
real(pReal), dimension(4,4) :: T
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i, j
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do i = 1_pInt,4_pInt
|
|
|
|
do j = 1_pInt,i
|
2010-03-18 17:53:17 +05:30
|
|
|
T(i,j) = Q(i) * Q(j)
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
math_qRot(1) = -v(1)*(T(3,3)+T(4,4)) + v(2)*(T(3,2)-T(4,1)) + v(3)*(T(4,2)+T(3,1))
|
|
|
|
math_qRot(2) = v(1)*(T(3,2)+T(4,1)) - v(2)*(T(2,2)+T(4,4)) + v(3)*(T(4,3)-T(2,1))
|
|
|
|
math_qRot(3) = v(1)*(T(4,2)-T(3,1)) + v(2)*(T(4,3)+T(2,1)) - v(3)*(T(2,2)+T(3,3))
|
|
|
|
|
|
|
|
math_qRot = 2.0_pReal * math_qRot + v
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_qRot
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
!**************************************************************************
|
2009-08-11 22:01:57 +05:30
|
|
|
! transposition of a 3x3 matrix
|
2008-07-09 01:08:22 +05:30
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
pure function math_transpose3x3(A)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
|
|
real(pReal),dimension(3,3) :: math_transpose3x3
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall(i=1_pInt:3_pInt, j=1_pInt:3_pInt) math_transpose3x3(i,j) = A(j,i)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_transpose3x3
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
2009-03-31 13:01:38 +05:30
|
|
|
! Cramer inversion of 3x3 matrix (function)
|
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
pure function math_inv3x3(A)
|
2009-03-31 13:01:38 +05:30
|
|
|
|
|
|
|
! direct Cramer inversion of matrix A.
|
|
|
|
! returns all zeroes if not possible, i.e. if det close to zero
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: DetA
|
2009-03-31 14:21:14 +05:30
|
|
|
real(pReal),dimension(3,3) :: math_inv3x3
|
|
|
|
|
|
|
|
math_inv3x3 = 0.0_pReal
|
2009-03-31 13:01:38 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DetA = A(1,1) * (A(2,2) * A(3,3) - A(2,3) * A(3,2))&
|
|
|
|
- A(1,2) * (A(2,1) * A(3,3) - A(2,3) * A(3,1))&
|
|
|
|
+ A(1,3) * (A(2,1) * A(3,2) - A(2,2) * A(3,1))
|
2009-03-31 13:01:38 +05:30
|
|
|
|
|
|
|
if (DetA > tiny(DetA)) then
|
2011-12-01 17:31:13 +05:30
|
|
|
math_inv3x3(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2)) / DetA
|
|
|
|
math_inv3x3(2,1) = (-A(2,1) * A(3,3) + A(2,3) * A(3,1)) / DetA
|
|
|
|
math_inv3x3(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1)) / DetA
|
2009-03-31 13:01:38 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
math_inv3x3(1,2) = (-A(1,2) * A(3,3) + A(1,3) * A(3,2)) / DetA
|
|
|
|
math_inv3x3(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1)) / DetA
|
|
|
|
math_inv3x3(3,2) = (-A(1,1) * A(3,2) + A(1,2) * A(3,1)) / DetA
|
2009-03-31 13:01:38 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
math_inv3x3(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2)) / DetA
|
|
|
|
math_inv3x3(2,3) = (-A(1,1) * A(2,3) + A(1,3) * A(2,1)) / DetA
|
|
|
|
math_inv3x3(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1)) / DetA
|
2009-03-31 13:01:38 +05:30
|
|
|
endif
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_inv3x3
|
2009-03-31 13:01:38 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
! Cramer inversion of 3x3 matrix (subroutine)
|
2007-03-29 21:02:52 +05:30
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
PURE SUBROUTINE math_invert3x3(A, InvA, DetA, error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Bestimmung der Determinanten und Inversen einer 3x3-Matrix
|
|
|
|
! A = Matrix A
|
|
|
|
! InvA = Inverse of A
|
|
|
|
! DetA = Determinant of A
|
2007-04-11 15:34:22 +05:30
|
|
|
! error = logical
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
logical, intent(out) :: error
|
2007-04-11 15:34:22 +05:30
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
|
|
real(pReal),dimension(3,3),intent(out) :: InvA
|
|
|
|
real(pReal), intent(out) :: DetA
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DetA = A(1,1) * (A(2,2) * A(3,3) - A(2,3) * A(3,2))&
|
|
|
|
- A(1,2) * (A(2,1) * A(3,3) - A(2,3) * A(3,1))&
|
|
|
|
+ A(1,3) * (A(2,1) * A(3,2) - A(2,2) * A(3,1))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
if (DetA <= tiny(DetA)) then
|
|
|
|
error = .true.
|
2007-04-11 15:34:22 +05:30
|
|
|
else
|
2011-12-01 17:31:13 +05:30
|
|
|
InvA(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2)) / DetA
|
|
|
|
InvA(2,1) = (-A(2,1) * A(3,3) + A(2,3) * A(3,1)) / DetA
|
|
|
|
InvA(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1)) / DetA
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
InvA(1,2) = (-A(1,2) * A(3,3) + A(1,3) * A(3,2)) / DetA
|
|
|
|
InvA(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1)) / DetA
|
|
|
|
InvA(3,2) = (-A(1,1) * A(3,2) + A(1,2) * A(3,1)) / DetA
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
InvA(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2)) / DetA
|
|
|
|
InvA(2,3) = (-A(1,1) * A(2,3) + A(1,3) * A(2,1)) / DetA
|
|
|
|
InvA(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1)) / DetA
|
2007-04-11 15:34:22 +05:30
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
error = .false.
|
2007-04-11 15:34:22 +05:30
|
|
|
endif
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE math_invert3x3
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
2011-08-30 12:59:13 +05:30
|
|
|
! Gauss elimination to invert matrix of arbitrary dimension
|
2007-03-29 21:02:52 +05:30
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
PURE SUBROUTINE math_invert(dimen,A, InvA, AnzNegEW, error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Invertieren einer dimen x dimen - Matrix
|
|
|
|
! A = Matrix A
|
|
|
|
! InvA = Inverse von A
|
|
|
|
! AnzNegEW = Anzahl der negativen Eigenwerte von A
|
|
|
|
! error = logical
|
|
|
|
! = false: Inversion wurde durchgefuehrt.
|
|
|
|
! = true: Die Inversion in SymGauss wurde wegen eines verschwindenen
|
|
|
|
! Pivotelement abgebrochen.
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: dimen
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(dimen,dimen), intent(in) :: A
|
|
|
|
real(pReal), dimension(dimen,dimen), intent(out) :: InvA
|
2007-04-11 15:34:22 +05:30
|
|
|
integer(pInt), intent(out) :: AnzNegEW
|
2008-02-15 18:12:27 +05:30
|
|
|
logical, intent(out) :: error
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: LogAbsDetA
|
|
|
|
real(pReal), dimension(dimen,dimen) :: B
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
InvA = math_identity2nd(dimen)
|
|
|
|
B = A
|
|
|
|
CALL Gauss(dimen,B,InvA,LogAbsDetA,AnzNegEW,error)
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDSUBROUTINE math_invert
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
2009-12-14 16:32:10 +05:30
|
|
|
PURE SUBROUTINE Gauss (dimen,A,B,LogAbsDetA,NegHDK,error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Loesung eines linearen Gleichungsssystem A * X = B mit Hilfe des
|
|
|
|
! GAUSS-Algorithmus
|
|
|
|
! Zur numerischen Stabilisierung wird eine Zeilen- und Spaltenpivotsuche
|
|
|
|
! durchgefuehrt.
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Eingabeparameter:
|
2008-02-15 18:12:27 +05:30
|
|
|
! A(dimen,dimen) = Koeffizientenmatrix A
|
|
|
|
! B(dimen,dimen) = rechte Seiten B
|
|
|
|
!
|
|
|
|
! Ausgabeparameter:
|
|
|
|
! B(dimen,dimen) = Matrix der Unbekanntenvektoren X
|
|
|
|
! LogAbsDetA = 10-Logarithmus des Betrages der Determinanten von A
|
|
|
|
! NegHDK = Anzahl der negativen Hauptdiagonalkoeffizienten nach der
|
|
|
|
! Vorwaertszerlegung
|
|
|
|
! error = logical
|
|
|
|
! = false: Das Gleichungssystem wurde geloest.
|
|
|
|
! = true : Matrix A ist singulaer.
|
2011-12-01 17:31:13 +05:30
|
|
|
!
|
2008-02-15 18:12:27 +05:30
|
|
|
! A und B werden veraendert!
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
logical, intent(out) :: error
|
|
|
|
integer(pInt), intent(in) :: dimen
|
|
|
|
integer(pInt), intent(out) :: NegHDK
|
|
|
|
real(pReal), intent(out) :: LogAbsDetA
|
|
|
|
real(pReal), intent(inout), dimension(dimen,dimen) :: A, B
|
|
|
|
logical :: SortX
|
|
|
|
integer(pInt) :: PivotZeile, PivotSpalte, StoreI, I, IP1, J, K, L
|
|
|
|
integer(pInt), dimension(dimen) :: XNr
|
|
|
|
real(pReal) :: AbsA, PivotWert, EpsAbs, Quote
|
|
|
|
real(pReal), dimension(dimen) :: StoreA, StoreB
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
error = .true.; NegHDK = 1_pInt; SortX = .false.
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Unbekanntennumerierung
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
XNr(I) = I
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Genauigkeitsschranke und Bestimmung des groessten Pivotelementes
|
|
|
|
|
|
|
|
PivotWert = ABS(A(1,1))
|
2011-12-01 17:31:13 +05:30
|
|
|
PivotZeile = 1_pInt
|
|
|
|
PivotSpalte = 1_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do I = 1_pInt, dimen; do J = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
AbsA = ABS(A(I,J))
|
|
|
|
IF (AbsA .GT. PivotWert) THEN
|
|
|
|
PivotWert = AbsA
|
|
|
|
PivotZeile = I
|
|
|
|
PivotSpalte = J
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDIF
|
2011-12-01 17:31:13 +05:30
|
|
|
enddo; enddo
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
IF (PivotWert .LT. 0.0000001_pReal) RETURN ! Pivotelement = 0?
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
EpsAbs = PivotWert * 0.1_pReal ** PRECISION(1.0_pReal)
|
|
|
|
|
|
|
|
! V O R W A E R T S T R I A N G U L A T I O N
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = 1_pInt, dimen - 1_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
! Zeilentausch?
|
|
|
|
IF (PivotZeile .NE. I) THEN
|
|
|
|
StoreA(I:dimen) = A(I,I:dimen)
|
|
|
|
A(I,I:dimen) = A(PivotZeile,I:dimen)
|
|
|
|
A(PivotZeile,I:dimen) = StoreA(I:dimen)
|
|
|
|
StoreB(1:dimen) = B(I,1:dimen)
|
|
|
|
B(I,1:dimen) = B(PivotZeile,1:dimen)
|
|
|
|
B(PivotZeile,1:dimen) = StoreB(1:dimen)
|
|
|
|
SortX = .TRUE.
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
! Spaltentausch?
|
|
|
|
IF (PivotSpalte .NE. I) THEN
|
|
|
|
StoreA(1:dimen) = A(1:dimen,I)
|
|
|
|
A(1:dimen,I) = A(1:dimen,PivotSpalte)
|
|
|
|
A(1:dimen,PivotSpalte) = StoreA(1:dimen)
|
|
|
|
StoreI = XNr(I)
|
|
|
|
XNr(I) = XNr(PivotSpalte)
|
|
|
|
XNr(PivotSpalte) = StoreI
|
|
|
|
SortX = .TRUE.
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
! Triangulation
|
2011-12-01 17:31:13 +05:30
|
|
|
DO J = I + 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
Quote = A(J,I) / A(I,I)
|
2011-12-01 17:31:13 +05:30
|
|
|
DO K = I + 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
A(J,K) = A(J,K) - Quote * A(I,K)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2011-12-01 17:31:13 +05:30
|
|
|
DO K = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
B(J,K) = B(J,K) - Quote * B(I,K)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
! Bestimmung des groessten Pivotelementes
|
2011-12-01 17:31:13 +05:30
|
|
|
IP1 = I + 1_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
PivotWert = ABS(A(IP1,IP1))
|
|
|
|
PivotZeile = IP1
|
|
|
|
PivotSpalte = IP1
|
|
|
|
DO J = IP1, dimen
|
|
|
|
DO K = IP1, dimen
|
|
|
|
AbsA = ABS(A(J,K))
|
|
|
|
IF (AbsA .GT. PivotWert) THEN
|
|
|
|
PivotWert = AbsA
|
|
|
|
PivotZeile = J
|
|
|
|
PivotSpalte = K
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDIF
|
|
|
|
ENDDO
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
IF (PivotWert .LT. EpsAbs) RETURN ! Pivotelement = 0?
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! R U E C K W A E R T S A U F L O E S U N G
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = dimen, 1_pInt, -1_pInt
|
|
|
|
DO L = 1_pInt, dimen
|
|
|
|
DO J = I + 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
B(I,L) = B(I,L) - A(I,J) * B(J,L)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
B(I,L) = B(I,L) / A(I,I)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Sortieren der Unbekanntenvektoren?
|
|
|
|
|
|
|
|
IF (SortX) THEN
|
2011-12-01 17:31:13 +05:30
|
|
|
DO L = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
StoreA(1:dimen) = B(1:dimen,L)
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = 1_pInt, dimen
|
2008-02-15 18:12:27 +05:30
|
|
|
J = XNr(I)
|
|
|
|
B(J,L) = StoreA(I)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
|
|
|
ENDDO
|
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
! Determinante
|
|
|
|
|
|
|
|
LogAbsDetA = 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
NegHDK = 0_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
DO I = 1_pInt, dimen
|
|
|
|
IF (A(I,I) .LT. 0.0_pReal) NegHDK = NegHDK + 1_pInt
|
2008-02-15 18:12:27 +05:30
|
|
|
AbsA = ABS(A(I,I))
|
|
|
|
LogAbsDetA = LogAbsDetA + LOG10(AbsA)
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
error = .false.
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
ENDSUBROUTINE Gauss
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! symmetrize a 3x3 matrix
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
function math_symmetric3x3(m)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_symmetric3x3
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetric3x3(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_symmetric3x3
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! symmetrize a 6x6 matrix
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_symmetric6x6(m)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2009-01-20 00:40:58 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: m
|
|
|
|
real(pReal), dimension(6,6) :: math_symmetric6x6
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_symmetric6x6(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_symmetric6x6
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2010-03-24 18:50:12 +05:30
|
|
|
!********************************************************************
|
|
|
|
! equivalent scalar quantity of a full strain tensor
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_equivStrain33(m)
|
2010-03-24 18:50:12 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_equivStrain33,e11,e22,e33,s12,s23,s31
|
2010-03-24 18:50:12 +05:30
|
|
|
|
|
|
|
e11 = (2.0_pReal*m(1,1)-m(2,2)-m(3,3))/3.0_pReal
|
|
|
|
e22 = (2.0_pReal*m(2,2)-m(3,3)-m(1,1))/3.0_pReal
|
|
|
|
e33 = (2.0_pReal*m(3,3)-m(1,1)-m(2,2))/3.0_pReal
|
|
|
|
s12 = 2.0_pReal*m(1,2)
|
|
|
|
s23 = 2.0_pReal*m(2,3)
|
|
|
|
s31 = 2.0_pReal*m(3,1)
|
|
|
|
|
|
|
|
math_equivStrain33 = 2.0_pReal*(1.50_pReal*(e11**2.0_pReal+e22**2.0_pReal+e33**2.0_pReal) + &
|
|
|
|
0.75_pReal*(s12**2.0_pReal+s23**2.0_pReal+s31**2.0_pReal))**(0.5_pReal)/3.0_pReal
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_equivStrain33
|
2010-03-24 18:50:12 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
!********************************************************************
|
|
|
|
subroutine math_equivStrain33_field(res,tensor,vm)
|
|
|
|
!********************************************************************
|
|
|
|
!calculate von Mises equivalent of tensor field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: tensor
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3)) :: vm
|
|
|
|
! other variables
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
real(pReal), dimension(3,3) :: deviator, delta = 0.0_pReal
|
|
|
|
real(pReal) :: J_2
|
|
|
|
|
|
|
|
delta(1,1) = 1.0_pReal
|
|
|
|
delta(2,2) = 1.0_pReal
|
|
|
|
delta(3,3) = 1.0_pReal
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
deviator = tensor(i,j,k,1:3,1:3) - 1.0_pReal/3.0_pReal*tensor(i,j,k,1,1)*tensor(i,j,k,2,2)*tensor(i,j,k,3,3)*delta
|
|
|
|
J_2 = deviator(1,1)*deviator(2,2)&
|
|
|
|
+ deviator(2,2)*deviator(3,3)&
|
|
|
|
+ deviator(1,1)*deviator(3,3)&
|
|
|
|
- (deviator(1,2))**2.0_pReal&
|
|
|
|
- (deviator(2,3))**2.0_pReal&
|
|
|
|
- (deviator(1,3))**2.0_pReal
|
|
|
|
vm(i,j,k) = sqrt(3.0_pReal*J_2)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine math_equivStrain33_field
|
|
|
|
|
2011-07-29 21:27:39 +05:30
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
! determinant of a 3x3 matrix
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_det3x3(m)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_det3x3
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
math_det3x3 = m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
|
|
|
-m(1,2)*(m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
|
|
|
+m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_det3x3
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-07-29 21:27:39 +05:30
|
|
|
!********************************************************************
|
|
|
|
! norm of a 3x3 matrix
|
|
|
|
!********************************************************************
|
|
|
|
pure function math_norm33(m)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_norm33
|
2011-07-29 21:27:39 +05:30
|
|
|
|
|
|
|
math_norm33 = sqrt(sum(m**2.0_pReal))
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
!********************************************************************
|
|
|
|
! euclidic norm of a 3x1 vector
|
|
|
|
!********************************************************************
|
2010-03-18 17:53:17 +05:30
|
|
|
pure function math_norm3(v)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
implicit none
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: v
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_norm3
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_norm3 = sqrt(v(1)*v(1) + v(2)*v(2) + v(3)*v(3))
|
2009-08-11 22:01:57 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_norm3
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
|
|
|
! convert 3x3 matrix into vector 9x1
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Plain33to9(m33)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: m33
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(9) :: math_Plain33to9
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt) math_Plain33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Plain33to9
|
2011-08-26 19:36:37 +05:30
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
|
|
|
! convert Plain 9x1 back to 3x3 matrix
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Plain9to33(v9)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(9), intent(in) :: v9
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_Plain9to33
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt) math_Plain9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Plain9to33
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
!********************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
! convert symmetric 3x3 matrix into Mandel vector 6x1
|
2007-03-28 12:51:47 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Mandel33to6(m33)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: m33
|
2007-03-28 12:51:47 +05:30
|
|
|
real(pReal), dimension(6) :: math_Mandel33to6
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt) math_Mandel33to6(i) = nrmMandel(i)*m33(mapMandel(1,i),mapMandel(2,i))
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Mandel33to6
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! convert Mandel 6x1 back to symmetric 3x3 matrix
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Mandel6to33(v6)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(6), intent(in) :: v6
|
2007-03-28 12:51:47 +05:30
|
|
|
real(pReal), dimension(3,3) :: math_Mandel6to33
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt)
|
2007-03-28 13:50:50 +05:30
|
|
|
math_Mandel6to33(mapMandel(1,i),mapMandel(2,i)) = invnrmMandel(i)*v6(i)
|
|
|
|
math_Mandel6to33(mapMandel(2,i),mapMandel(1,i)) = invnrmMandel(i)*v6(i)
|
2007-03-28 12:51:47 +05:30
|
|
|
end forall
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Mandel6to33
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
|
|
|
! convert 3x3x3x3 tensor into plain matrix 9x9
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Plain3333to99(m3333)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(9,9) :: math_Plain3333to99
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain3333to99(i,j) = &
|
2008-02-15 18:12:27 +05:30
|
|
|
m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Plain3333to99
|
2010-09-22 17:34:43 +05:30
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! plain matrix 9x9 into 3x3x3x3 tensor
|
|
|
|
!********************************************************************
|
|
|
|
pure function math_Plain99to3333(m99)
|
|
|
|
|
|
|
|
implicit none
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2010-09-22 17:34:43 +05:30
|
|
|
real(pReal), dimension(9,9), intent(in) :: m99
|
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Plain99to3333
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2010-09-22 17:34:43 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain99to3333(mapPlain(1,i),mapPlain(2,i),&
|
2010-09-22 17:34:43 +05:30
|
|
|
mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Plain99to3333
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-07-29 21:27:39 +05:30
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! convert Mandel matrix 6x6 into Plain matrix 6x6
|
|
|
|
!********************************************************************
|
|
|
|
pure function math_Mandel66toPlain66(m66)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
|
|
|
real(pReal), dimension(6,6) :: math_Mandel66toPlain66
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2011-07-29 21:27:39 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
2011-07-29 21:27:39 +05:30
|
|
|
math_Mandel66toPlain66(i,j) = invnrmMandel(i) * invnrmMandel(j) * m66(i,j)
|
|
|
|
return
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! convert Plain matrix 6x6 into Mandel matrix 6x6
|
|
|
|
!********************************************************************
|
|
|
|
pure function math_Plain66toMandel66(m66)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
|
|
|
real(pReal), dimension(6,6) :: math_Plain66toMandel66
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
2011-07-29 21:27:39 +05:30
|
|
|
math_Plain66toMandel66(i,j) = nrmMandel(i) * nrmMandel(j) * m66(i,j)
|
|
|
|
return
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
!********************************************************************
|
|
|
|
! convert symmetric 3x3x3x3 tensor into Mandel matrix 6x6
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Mandel3333to66(m3333)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
2007-03-28 12:51:47 +05:30
|
|
|
real(pReal), dimension(6,6) :: math_Mandel3333to66
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_Mandel3333to66(i,j) = &
|
2007-03-28 13:50:50 +05:30
|
|
|
nrmMandel(i)*nrmMandel(j)*m3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j))
|
2007-03-28 12:51:47 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Mandel3333to66
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
!********************************************************************
|
|
|
|
! convert Mandel matrix 6x6 back to symmetric 3x3x3x3 tensor
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Mandel66to3333(m66)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Mandel66to3333
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
|
2008-02-15 18:12:27 +05:30
|
|
|
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
end forall
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Mandel66to3333
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! convert Voigt matrix 6x6 back to symmetric 3x3x3x3 tensor
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_Voigt66to3333(m66)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
|
2008-02-15 18:12:27 +05:30
|
|
|
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
end forall
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_Voigt66to3333
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! Euler angles (in radians) from rotation matrix
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_RtoEuler(R)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
implicit none
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension (3,3), intent(in) :: R
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3) :: math_RtoEuler
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: sqhkl, squvw, sqhk, val
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3))
|
|
|
|
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
|
|
|
|
sqhk=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
|
|
|
! calculate PHI
|
|
|
|
val=R(3,3)/sqhkl
|
|
|
|
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_RtoEuler(2) = acos(val)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
if(math_RtoEuler(2) < 1.0e-8_pReal) then
|
2007-03-29 21:02:52 +05:30
|
|
|
! calculate phi2
|
|
|
|
math_RtoEuler(3) = 0.0_pReal
|
|
|
|
! calculate phi1
|
|
|
|
val=R(1,1)/squvw
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_RtoEuler(1) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
|
|
|
else
|
|
|
|
! calculate phi2
|
|
|
|
val=R(2,3)/sqhk
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_RtoEuler(3) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
|
|
|
! calculate phi1
|
|
|
|
val=-R(3,2)/sin(math_RtoEuler(2))
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_RtoEuler(1) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
|
|
|
end if
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_RtoEuler
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! quaternion (w+ix+jy+kz) from orientation matrix
|
|
|
|
!********************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! math adopted from http://code.google.com/p/mtex/source/browse/trunk/geometry/geometry_tools/mat2quat.m
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_RtoQuaternion(R)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension (3,3), intent(in) :: R
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(4) :: absQ, math_RtoQuaternion
|
|
|
|
real(pReal) :: max_absQ
|
2010-05-26 21:22:54 +05:30
|
|
|
integer(pInt), dimension(1) :: largest
|
|
|
|
|
2011-03-03 16:17:07 +05:30
|
|
|
absQ(1) = 1.0_pReal+R(1,1)+R(2,2)+R(3,3)
|
|
|
|
absQ(2) = 1.0_pReal+R(1,1)-R(2,2)-R(3,3)
|
|
|
|
absQ(3) = 1.0_pReal-R(1,1)+R(2,2)-R(3,3)
|
|
|
|
absQ(4) = 1.0_pReal-R(1,1)-R(2,2)+R(3,3)
|
2011-12-01 17:31:13 +05:30
|
|
|
math_RtoQuaternion = 0.0_pReal
|
2011-03-03 16:17:07 +05:30
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
largest = maxloc(absQ)
|
2011-03-03 16:17:07 +05:30
|
|
|
|
|
|
|
max_absQ=0.5_pReal * sqrt(absQ(largest(1)))
|
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
select case(largest(1))
|
2011-12-01 17:31:13 +05:30
|
|
|
case (1_pInt)
|
|
|
|
!1----------------------------------
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(2) = R(2,3)-R(3,2)
|
|
|
|
math_RtoQuaternion(3) = R(3,1)-R(1,3)
|
|
|
|
math_RtoQuaternion(4) = R(1,2)-R(2,1)
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (2_pInt)
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(1) = R(2,3)-R(3,2)
|
2011-12-01 17:31:13 +05:30
|
|
|
!2----------------------------------
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(3) = R(1,2)+R(2,1)
|
|
|
|
math_RtoQuaternion(4) = R(3,1)+R(1,3)
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (3_pInt)
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(1) = R(3,1)-R(1,3)
|
|
|
|
math_RtoQuaternion(2) = R(1,2)+R(2,1)
|
2011-12-01 17:31:13 +05:30
|
|
|
!3----------------------------------
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion(4) = R(2,3)+R(3,2)
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (4_pInt)
|
2010-05-26 21:22:54 +05:30
|
|
|
math_RtoQuaternion (1) = R(1,2)-R(2,1)
|
|
|
|
math_RtoQuaternion (2) = R(3,1)+R(1,3)
|
|
|
|
math_RtoQuaternion (3) = R(3,2)+R(2,3)
|
2011-12-01 17:31:13 +05:30
|
|
|
!4----------------------------------
|
2010-05-26 21:22:54 +05:30
|
|
|
end select
|
|
|
|
|
2011-03-03 16:17:07 +05:30
|
|
|
math_RtoQuaternion = math_RtoQuaternion*0.25_pReal/max_absQ
|
|
|
|
math_RtoQuaternion(largest(1)) = max_absQ
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_RtoQuaternion
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
!****************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! rotation matrix from Euler angles (in radians)
|
2010-03-18 17:53:17 +05:30
|
|
|
!****************************************************************
|
2011-08-01 15:41:32 +05:30
|
|
|
pure function math_EulerToR(Euler)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: Euler
|
|
|
|
real(pReal), dimension(3,3) :: math_EulerToR
|
|
|
|
real(pReal) c1, c, c2, s1, s, s2
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
C1 = cos(Euler(1))
|
|
|
|
C = cos(Euler(2))
|
|
|
|
C2 = cos(Euler(3))
|
|
|
|
S1 = sin(Euler(1))
|
|
|
|
S = sin(Euler(2))
|
|
|
|
S2 = sin(Euler(3))
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
math_EulerToR(1,1)=C1*C2-S1*S2*C
|
|
|
|
math_EulerToR(1,2)=S1*C2+C1*S2*C
|
|
|
|
math_EulerToR(1,3)=S2*S
|
|
|
|
math_EulerToR(2,1)=-C1*S2-S1*C2*C
|
|
|
|
math_EulerToR(2,2)=-S1*S2+C1*C2*C
|
|
|
|
math_EulerToR(2,3)=C2*S
|
|
|
|
math_EulerToR(3,1)=S1*S
|
|
|
|
math_EulerToR(3,2)=-C1*S
|
|
|
|
math_EulerToR(3,3)=C
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_EulerToR
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! quaternion (w+ix+jy+kz) from 3-1-3 Euler angles (in radians)
|
2010-03-18 17:53:17 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_EulerToQuaternion(eulerangles)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: eulerangles
|
|
|
|
real(pReal), dimension(4) :: math_EulerToQuaternion
|
|
|
|
real(pReal), dimension(3) :: halfangles
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: c, s
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
halfangles = 0.5_pReal * eulerangles
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
c = cos(halfangles(2))
|
|
|
|
s = sin(halfangles(2))
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_EulerToQuaternion(1) = cos(halfangles(1)+halfangles(3)) * c
|
|
|
|
math_EulerToQuaternion(2) = cos(halfangles(1)-halfangles(3)) * s
|
|
|
|
math_EulerToQuaternion(3) = sin(halfangles(1)-halfangles(3)) * s
|
|
|
|
math_EulerToQuaternion(4) = sin(halfangles(1)+halfangles(3)) * c
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_EulerToQuaternion
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
!****************************************************************
|
|
|
|
! rotation matrix from axis and angle (in radians)
|
|
|
|
!****************************************************************
|
|
|
|
pure function math_AxisAngleToR(axis,omega)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: axis
|
|
|
|
real(pReal), intent(in) :: omega
|
|
|
|
real(pReal), dimension(3) :: axisNrm
|
|
|
|
real(pReal), dimension(3,3) :: math_AxisAngleToR
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: norm,s,c,c1
|
|
|
|
integer(pInt) :: i
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
norm = sqrt(math_mul3x3(axis,axis))
|
2011-12-01 17:31:13 +05:30
|
|
|
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
|
|
|
forall (i=1_pInt:3_pInt) axisNrm(i) = axis(i)/norm ! normalize axis to be sure
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
s = sin(omega)
|
|
|
|
c = cos(omega)
|
2010-05-06 19:37:21 +05:30
|
|
|
c1 = 1.0_pReal - c
|
|
|
|
|
|
|
|
! formula for active rotation taken from http://mathworld.wolfram.com/RodriguesRotationFormula.html
|
|
|
|
! below is transposed form to get passive rotation
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
math_AxisAngleToR(1,1) = c + c1*axisNrm(1)**2.0_pReal
|
2010-05-06 19:37:21 +05:30
|
|
|
math_AxisAngleToR(2,1) = -s*axisNrm(3) + c1*axisNrm(1)*axisNrm(2)
|
|
|
|
math_AxisAngleToR(3,1) = s*axisNrm(2) + c1*axisNrm(1)*axisNrm(3)
|
|
|
|
|
|
|
|
math_AxisAngleToR(1,2) = s*axisNrm(3) + c1*axisNrm(2)*axisNrm(1)
|
2011-12-01 17:31:13 +05:30
|
|
|
math_AxisAngleToR(2,2) = c + c1*axisNrm(2)**2.0_pReal
|
2010-05-06 19:37:21 +05:30
|
|
|
math_AxisAngleToR(3,2) = -s*axisNrm(1) + c1*axisNrm(2)*axisNrm(3)
|
|
|
|
|
|
|
|
math_AxisAngleToR(1,3) = -s*axisNrm(2) + c1*axisNrm(3)*axisNrm(1)
|
|
|
|
math_AxisAngleToR(2,3) = s*axisNrm(1) + c1*axisNrm(3)*axisNrm(2)
|
2011-12-01 17:31:13 +05:30
|
|
|
math_AxisAngleToR(3,3) = c + c1*axisNrm(3)**2.0_pReal
|
2010-05-06 19:37:21 +05:30
|
|
|
else
|
|
|
|
math_AxisAngleToR = math_I3
|
|
|
|
endif
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_AxisAngleToR
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
|
|
!****************************************************************
|
|
|
|
! quaternion (w+ix+jy+kz) from axis and angle (in radians)
|
|
|
|
!****************************************************************
|
|
|
|
pure function math_AxisAngleToQuaternion(axis,omega)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: axis
|
|
|
|
real(pReal), intent(in) :: omega
|
|
|
|
real(pReal), dimension(3) :: axisNrm
|
|
|
|
real(pReal), dimension(4) :: math_AxisAngleToQuaternion
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: s,c,norm
|
|
|
|
integer(pInt) :: i
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
norm = sqrt(math_mul3x3(axis,axis))
|
2010-05-06 19:37:21 +05:30
|
|
|
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt) axisNrm(i) = axis(i)/norm ! normalize axis to be sure
|
2010-05-06 19:37:21 +05:30
|
|
|
! formula taken from http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
2011-02-25 14:55:53 +05:30
|
|
|
s = sin(omega/2.0_pReal)
|
|
|
|
c = cos(omega/2.0_pReal)
|
2010-05-06 19:37:21 +05:30
|
|
|
math_AxisAngleToQuaternion(1) = c
|
|
|
|
math_AxisAngleToQuaternion(2:4) = s * axisNrm(1:3)
|
|
|
|
else
|
|
|
|
math_AxisAngleToQuaternion = (/1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal/) ! no rotation
|
|
|
|
endif
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_AxisAngleToQuaternion
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! orientation matrix from quaternion (w+ix+jy+kz)
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_QuaternionToR(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(3,3) :: math_QuaternionToR, T,S
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i, j
|
2010-03-18 17:53:17 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
|
|
|
|
T(i,j) = Q(i+1_pInt) * Q(j+1_pInt)
|
2010-05-06 19:37:21 +05:30
|
|
|
S = reshape( (/0.0_pReal, Q(4), -Q(3), &
|
|
|
|
-Q(4),0.0_pReal, +Q(2), &
|
|
|
|
Q(3), -Q(2),0.0_pReal/),(/3,3/)) ! notation is transposed!
|
|
|
|
|
|
|
|
math_QuaternionToR = (2.0_pReal * Q(1)*Q(1) - 1.0_pReal) * math_I3 + &
|
|
|
|
2.0_pReal * T - &
|
|
|
|
2.0_pReal * Q(1) * S
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionToR
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz)
|
2010-03-18 17:53:17 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_QuaternionToEuler(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(3) :: math_QuaternionToEuler
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: acos_arg
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_QuaternionToEuler(2) = acos(1.0_pReal-2.0_pReal*(Q(2)*Q(2)+Q(3)*Q(3)))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
if (abs(math_QuaternionToEuler(2)) < 1.0e-3_pReal) then
|
2011-03-03 19:53:39 +05:30
|
|
|
acos_arg=Q(1)
|
|
|
|
if(acos_arg > 1.0_pReal)acos_arg = 1.0_pReal
|
|
|
|
if(acos_arg < -1.0_pReal)acos_arg = -1.0_pReal
|
|
|
|
math_QuaternionToEuler(1) = 2.0_pReal*acos(acos_arg)
|
2010-05-26 21:22:54 +05:30
|
|
|
math_QuaternionToEuler(3) = 0.0_pReal
|
|
|
|
else
|
2011-02-25 14:55:53 +05:30
|
|
|
math_QuaternionToEuler(1) = atan2(Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)-Q(3)*Q(4))
|
2010-05-26 21:22:54 +05:30
|
|
|
if (math_QuaternionToEuler(1) < 0.0_pReal) &
|
|
|
|
math_QuaternionToEuler(1) = math_QuaternionToEuler(1) + 2.0_pReal * pi
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
math_QuaternionToEuler(3) = atan2(-Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)+Q(3)*Q(4))
|
2010-05-26 21:22:54 +05:30
|
|
|
if (math_QuaternionToEuler(3) < 0.0_pReal) &
|
|
|
|
math_QuaternionToEuler(3) = math_QuaternionToEuler(3) + 2.0_pReal * pi
|
|
|
|
endif
|
2010-03-19 21:41:53 +05:30
|
|
|
|
|
|
|
if (math_QuaternionToEuler(2) < 0.0_pReal) &
|
|
|
|
math_QuaternionToEuler(2) = math_QuaternionToEuler(2) + pi
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionToEuler
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
2010-04-12 16:37:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
2010-04-12 16:37:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_QuaternionToAxisAngle(Q)
|
2010-04-12 16:37:25 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: halfAngle, sinHalfAngle
|
2010-04-12 16:37:25 +05:30
|
|
|
real(pReal), dimension(4) :: math_QuaternionToAxisAngle
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
halfAngle = acos(max(-1.0_pReal, min(1.0_pReal, Q(1)))) ! limit to [-1,1] --> 0 to 180 deg
|
|
|
|
sinHalfAngle = sin(halfAngle)
|
2010-04-29 15:31:09 +05:30
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
if (sinHalfAngle <= 1.0e-4_pReal) then ! very small rotation angle?
|
2010-04-29 15:31:09 +05:30
|
|
|
math_QuaternionToAxisAngle = 0.0_pReal
|
|
|
|
else
|
|
|
|
math_QuaternionToAxisAngle(1:3) = Q(2:4)/sinHalfAngle
|
2010-05-06 19:37:21 +05:30
|
|
|
math_QuaternionToAxisAngle(4) = halfAngle*2.0_pReal
|
2010-04-29 15:31:09 +05:30
|
|
|
endif
|
2011-08-01 15:41:32 +05:30
|
|
|
|
|
|
|
endfunction math_QuaternionToAxisAngle
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2010-04-12 16:37:25 +05:30
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
2010-04-28 22:49:58 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_QuaternionToRodrig(Q)
|
2010-04-28 22:49:58 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
use prec, only: DAMASK_NaN
|
2010-04-28 22:49:58 +05:30
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
real(pReal), dimension(3) :: math_QuaternionToRodrig
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
if (Q(1) /= 0.0_pReal) then ! unless rotation by 180 deg
|
2010-04-28 22:49:58 +05:30
|
|
|
math_QuaternionToRodrig = Q(2:4)/Q(1)
|
|
|
|
else
|
2011-10-18 14:51:38 +05:30
|
|
|
math_QuaternionToRodrig = DAMASK_NaN ! NaN since Rodrig is unbound for 180 deg...
|
2010-04-28 22:49:58 +05:30
|
|
|
endif
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionToRodrig
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! misorientation angle between two sets of Euler angles
|
2007-03-29 21:02:52 +05:30
|
|
|
!**************************************************************************
|
2010-04-28 22:49:58 +05:30
|
|
|
pure function math_EulerMisorientation(EulerA,EulerB)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: EulerA,EulerB
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3,3) :: r
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_EulerMisorientation, tr
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2008-07-23 18:19:40 +05:30
|
|
|
r = math_mul33x33(math_EulerToR(EulerB),transpose(math_EulerToR(EulerA)))
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
tr = (r(1,1)+r(2,2)+r(3,3)-1.0_pReal)*0.4999999_pReal
|
2010-04-28 22:49:58 +05:30
|
|
|
math_EulerMisorientation = abs(0.5_pReal*pi-asin(tr))
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_EulerMisorientation
|
2010-05-06 19:37:21 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! figures whether unit quat falls into stereographic standard triangle
|
2010-04-28 22:49:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
pure function math_QuaternionInSST(Q, symmetryType)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q ! orientation
|
|
|
|
integer(pInt), intent(in) :: symmetryType ! Type of crystal symmetry; 1:cubic, 2:hexagonal
|
|
|
|
|
|
|
|
!*** output variables
|
2011-12-01 17:31:13 +05:30
|
|
|
logical :: math_QuaternionInSST
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
real(pReal), dimension(3) :: Rodrig ! Rodrigues vector of Q
|
|
|
|
|
|
|
|
Rodrig = math_QuaternionToRodrig(Q)
|
|
|
|
select case (symmetryType)
|
2011-12-01 17:31:13 +05:30
|
|
|
case (1_pInt)
|
2010-04-28 22:49:58 +05:30
|
|
|
math_QuaternionInSST = Rodrig(1) > Rodrig(2) .and. &
|
|
|
|
Rodrig(2) > Rodrig(3) .and. &
|
|
|
|
Rodrig(3) > 0.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
case (2_pInt)
|
2011-02-25 14:55:53 +05:30
|
|
|
math_QuaternionInSST = Rodrig(1) > sqrt(3.0_pReal)*Rodrig(2) .and. &
|
2010-04-28 22:49:58 +05:30
|
|
|
Rodrig(2) > 0.0_pReal .and. &
|
|
|
|
Rodrig(3) > 0.0_pReal
|
|
|
|
case default
|
|
|
|
math_QuaternionInSST = .true.
|
|
|
|
end select
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionInSST
|
2010-04-28 22:49:58 +05:30
|
|
|
|
2010-05-04 18:24:13 +05:30
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
! calculates the disorientation for 2 unit quaternions
|
2010-04-28 22:49:58 +05:30
|
|
|
!**************************************************************************
|
2010-05-04 21:32:05 +05:30
|
|
|
function math_QuaternionDisorientation(Q1, Q2, symmetryType)
|
2010-04-28 22:49:58 +05:30
|
|
|
|
2010-05-04 21:32:05 +05:30
|
|
|
use IO, only: IO_error
|
2010-04-28 22:49:58 +05:30
|
|
|
implicit none
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q1, & ! 1st orientation
|
|
|
|
Q2 ! 2nd orientation
|
|
|
|
integer(pInt), intent(in) :: symmetryType ! Type of crystal symmetry; 1:cubic, 2:hexagonal
|
|
|
|
|
|
|
|
!*** output variables
|
|
|
|
real(pReal), dimension(4) :: math_QuaternionDisorientation ! disorientation
|
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
real(pReal), dimension(4) :: dQ,dQsymA,mis
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j,k,s
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
dQ = math_qMul(math_qConj(Q1),Q2)
|
|
|
|
math_QuaternionDisorientation = dQ
|
|
|
|
|
2010-05-04 18:24:13 +05:30
|
|
|
select case (symmetryType)
|
2011-12-01 17:31:13 +05:30
|
|
|
case (0_pInt)
|
2010-05-06 19:37:21 +05:30
|
|
|
if (math_QuaternionDisorientation(1) < 0.0_pReal) &
|
|
|
|
math_QuaternionDisorientation = -math_QuaternionDisorientation ! keep omega within 0 to 180 deg
|
2010-05-04 18:24:13 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (1_pInt,2_pInt)
|
|
|
|
s = sum(math_NsymOperations(1:symmetryType-1_pInt))
|
|
|
|
do i = 1_pInt,2_pInt
|
2010-05-06 19:37:21 +05:30
|
|
|
dQ = math_qConj(dQ) ! switch order of "from -- to"
|
2011-12-01 17:31:13 +05:30
|
|
|
do j = 1_pInt,math_NsymOperations(symmetryType) ! run through first crystal's symmetries
|
|
|
|
dQsymA = math_qMul(math_symOperations(1:4,s+j),dQ) ! apply sym
|
|
|
|
do k = 1_pInt,math_NsymOperations(symmetryType) ! run through 2nd crystal's symmetries
|
|
|
|
mis = math_qMul(dQsymA,math_symOperations(1:4,s+k)) ! apply sym
|
2010-05-06 19:37:21 +05:30
|
|
|
if (mis(1) < 0.0_pReal) & ! want positive angle
|
|
|
|
mis = -mis
|
|
|
|
if (mis(1)-math_QuaternionDisorientation(1) > -1e-8_pReal .and. &
|
|
|
|
math_QuaternionInSST(mis,symmetryType)) &
|
|
|
|
math_QuaternionDisorientation = mis ! found better one
|
|
|
|
enddo; enddo; enddo
|
2010-05-04 18:24:13 +05:30
|
|
|
|
|
|
|
case default
|
2011-12-01 17:31:13 +05:30
|
|
|
call IO_error(550_pInt,symmetryType) ! complain about unknown symmetry
|
2010-05-04 18:24:13 +05:30
|
|
|
end select
|
2010-04-28 22:49:58 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_QuaternionDisorientation
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
! draw a random sample from Euler space
|
2007-03-21 15:50:25 +05:30
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
function math_sampleRandomOri()
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(3_pInt,rnd)
|
2007-03-29 21:02:52 +05:30
|
|
|
math_sampleRandomOri(1) = rnd(1)*2.0_pReal*pi
|
|
|
|
math_sampleRandomOri(2) = acos(2.0_pReal*rnd(2)-1.0_pReal)
|
|
|
|
math_sampleRandomOri(3) = rnd(3)*2.0_pReal*pi
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_sampleRandomOri
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
!********************************************************************
|
|
|
|
! draw a random sample from Gauss component
|
|
|
|
! with noise (in radians) half-width
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
function math_sampleGaussOri(center,noise)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3) :: math_sampleGaussOri, center, disturb
|
|
|
|
real(pReal), dimension(3), parameter :: origin = (/0.0_pReal,0.0_pReal,0.0_pReal/)
|
|
|
|
real(pReal), dimension(5) :: rnd
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: noise,scatter,cosScatter
|
2007-03-29 21:02:52 +05:30
|
|
|
integer(pInt) i
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (noise==0.0_pReal) then
|
2008-02-15 18:12:27 +05:30
|
|
|
math_sampleGaussOri = center
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
! Helming uses different distribution with Bessel functions
|
|
|
|
! therefore the gauss scatter width has to be scaled differently
|
|
|
|
scatter = 0.95_pReal * noise
|
|
|
|
cosScatter = cos(scatter)
|
|
|
|
|
|
|
|
do
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(5_pInt,rnd)
|
|
|
|
forall (i=1_pInt:3_pInt) rnd(i) = 2.0_pReal*rnd(i)-1.0_pReal ! expand 1:3 to range [-1,+1]
|
2007-03-29 21:02:52 +05:30
|
|
|
disturb(1) = scatter * rnd(1) ! phi1
|
|
|
|
disturb(2) = sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)) ! Phi
|
|
|
|
disturb(3) = scatter * rnd(2) ! phi2
|
2011-12-01 17:31:13 +05:30
|
|
|
if (rnd(5) <= exp(-1.0_pReal*(math_EulerMisorientation(origin,disturb)/scatter)**2_pReal)) exit
|
2008-07-09 01:08:22 +05:30
|
|
|
enddo
|
|
|
|
|
2008-07-23 18:19:40 +05:30
|
|
|
math_sampleGaussOri = math_RtoEuler(math_mul33x33(math_EulerToR(disturb),math_EulerToR(center)))
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_sampleGaussOri
|
2007-03-29 21:02:52 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
!********************************************************************
|
|
|
|
! draw a random sample from Fiber component
|
|
|
|
! with noise (in radians)
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
function math_sampleFiberOri(alpha,beta,noise)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
real(pReal), dimension(3) :: math_sampleFiberOri, fiberInC,fiberInS,axis
|
|
|
|
real(pReal), dimension(2) :: alpha,beta, rnd
|
|
|
|
real(pReal), dimension(3,3) :: oRot,fRot,pRot
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: noise, scatter, cos2Scatter, angle
|
|
|
|
integer(pInt), dimension(2,3), parameter :: rotMap = reshape((/2_pInt,3_pInt,&
|
|
|
|
3_pInt,1_pInt,&
|
|
|
|
1_pInt,2_pInt/),(/2,3/))
|
|
|
|
integer(pInt) :: i
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
! Helming uses different distribution with Bessel functions
|
|
|
|
! therefore the gauss scatter width has to be scaled differently
|
|
|
|
scatter = 0.95_pReal * noise
|
|
|
|
cos2Scatter = cos(2.0_pReal*scatter)
|
|
|
|
|
|
|
|
! fiber axis in crystal coordinate system
|
|
|
|
fiberInC(1)=sin(alpha(1))*cos(alpha(2))
|
|
|
|
fiberInC(2)=sin(alpha(1))*sin(alpha(2))
|
|
|
|
fiberInC(3)=cos(alpha(1))
|
|
|
|
! fiber axis in sample coordinate system
|
|
|
|
fiberInS(1)=sin(beta(1))*cos(beta(2))
|
|
|
|
fiberInS(2)=sin(beta(1))*sin(beta(2))
|
|
|
|
fiberInS(3)=cos(beta(1))
|
|
|
|
|
|
|
|
! ---# rotation matrix from sample to crystal system #---
|
2011-02-25 14:55:53 +05:30
|
|
|
angle = -acos(dot_product(fiberInC,fiberInS))
|
2007-03-29 21:02:52 +05:30
|
|
|
if(angle /= 0.0_pReal) then
|
|
|
|
! rotation axis between sample and crystal system (cross product)
|
|
|
|
forall(i=1:3) axis(i) = fiberInC(rotMap(1,i))*fiberInS(rotMap(2,i))-fiberInC(rotMap(2,i))*fiberInS(rotMap(1,i))
|
2010-05-06 19:37:21 +05:30
|
|
|
oRot = math_AxisAngleToR(math_vectorproduct(fiberInC,fiberInS),angle)
|
2007-03-29 21:02:52 +05:30
|
|
|
else
|
|
|
|
oRot = math_I3
|
|
|
|
end if
|
|
|
|
|
|
|
|
! ---# rotation matrix about fiber axis (random angle) #---
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(1_pInt,rnd)
|
2010-05-06 19:37:21 +05:30
|
|
|
fRot = math_AxisAngleToR(fiberInS,rnd(1)*2.0_pReal*pi)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
! ---# rotation about random axis perpend to fiber #---
|
2010-05-06 19:37:21 +05:30
|
|
|
! random axis pependicular to fiber axis
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(2_pInt,axis)
|
2007-03-29 21:02:52 +05:30
|
|
|
if (fiberInS(3) /= 0.0_pReal) then
|
|
|
|
axis(3)=-(axis(1)*fiberInS(1)+axis(2)*fiberInS(2))/fiberInS(3)
|
|
|
|
else if(fiberInS(2) /= 0.0_pReal) then
|
|
|
|
axis(3)=axis(2)
|
|
|
|
axis(2)=-(axis(1)*fiberInS(1)+axis(3)*fiberInS(3))/fiberInS(2)
|
|
|
|
else if(fiberInS(1) /= 0.0_pReal) then
|
|
|
|
axis(3)=axis(1)
|
|
|
|
axis(1)=-(axis(2)*fiberInS(2)+axis(3)*fiberInS(3))/fiberInS(1)
|
|
|
|
end if
|
|
|
|
|
|
|
|
! scattered rotation angle
|
|
|
|
do
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(2_pInt,rnd)
|
2007-03-29 21:02:52 +05:30
|
|
|
angle = acos(cos2Scatter+(1.0_pReal-cos2Scatter)*rnd(1))
|
2011-12-01 17:31:13 +05:30
|
|
|
if (rnd(2) <= exp(-1.0_pReal*(angle/scatter)**2.0_pReal)) exit
|
2007-03-29 21:02:52 +05:30
|
|
|
enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(1_pInt,rnd)
|
2007-03-29 21:02:52 +05:30
|
|
|
if (rnd(1) <= 0.5) angle = -angle
|
2010-05-06 19:37:21 +05:30
|
|
|
pRot = math_AxisAngleToR(axis,angle)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
! ---# apply the three rotations #---
|
2010-05-06 19:37:21 +05:30
|
|
|
math_sampleFiberOri = math_RtoEuler(math_mul33x33(pRot,math_mul33x33(fRot,oRot)))
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_sampleFiberOri
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
! symmetric Euler angles for given symmetry string
|
|
|
|
! 'triclinic' or '', 'monoclinic', 'orthotropic'
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_symmetricEulers(sym,Euler)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2009-03-04 17:18:54 +05:30
|
|
|
integer(pInt), intent(in) :: sym
|
2008-02-15 18:12:27 +05:30
|
|
|
real(pReal), dimension(3), intent(in) :: Euler
|
|
|
|
real(pReal), dimension(3,3) :: math_symmetricEulers
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: i,j
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
math_symmetricEulers(1,1) = pi+Euler(1)
|
|
|
|
math_symmetricEulers(2,1) = Euler(2)
|
|
|
|
math_symmetricEulers(3,1) = Euler(3)
|
|
|
|
|
|
|
|
math_symmetricEulers(1,2) = pi-Euler(1)
|
|
|
|
math_symmetricEulers(2,2) = pi-Euler(2)
|
|
|
|
math_symmetricEulers(3,2) = pi+Euler(3)
|
|
|
|
|
|
|
|
math_symmetricEulers(1,3) = 2.0_pReal*pi-Euler(1)
|
|
|
|
math_symmetricEulers(2,3) = pi-Euler(2)
|
|
|
|
math_symmetricEulers(3,3) = pi+Euler(3)
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_symmetricEulers(j,i) = modulo(math_symmetricEulers(j,i),2.0_pReal*pi)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
select case (sym)
|
2011-12-01 17:31:13 +05:30
|
|
|
case (4_pInt) ! all done
|
2008-02-15 18:12:27 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
case (2_pInt) ! return only first
|
|
|
|
math_symmetricEulers(1:3,2:3) = 0.0_pReal
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
case default ! return blank
|
|
|
|
math_symmetricEulers = 0.0_pReal
|
|
|
|
end select
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_symmetricEulers
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
2011-02-04 21:11:32 +05:30
|
|
|
!********************************************************************
|
|
|
|
! draw a random sample from Gauss variable
|
|
|
|
!********************************************************************
|
|
|
|
function math_sampleGaussVar(meanvalue, stddev, width)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
|
|
|
|
stddev ! standard deviation of gauss distribution
|
|
|
|
real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation
|
|
|
|
|
|
|
|
!*** output variables
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: math_sampleGaussVar
|
2011-02-04 21:11:32 +05:30
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
real(pReal), dimension(2) :: rnd ! random numbers
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: scatter, & ! normalized scatter around meanvalue
|
2011-02-04 21:11:32 +05:30
|
|
|
myWidth
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (stddev == 0.0_pReal) then
|
2011-02-04 21:11:32 +05:30
|
|
|
math_sampleGaussVar = meanvalue
|
|
|
|
return
|
|
|
|
endif
|
|
|
|
|
|
|
|
if (present(width)) then
|
|
|
|
myWidth = width
|
|
|
|
else
|
|
|
|
myWidth = 3.0_pReal ! use +-3*sigma as default value for scatter
|
|
|
|
endif
|
|
|
|
|
|
|
|
do
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton(2_pInt, rnd)
|
2011-02-04 21:11:32 +05:30
|
|
|
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
|
|
|
|
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) & ! test if scattered value is drawn
|
|
|
|
exit
|
|
|
|
enddo
|
|
|
|
|
|
|
|
math_sampleGaussVar = scatter * stddev
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_sampleGaussVar
|
2011-09-14 18:56:00 +05:30
|
|
|
|
|
|
|
|
|
|
|
!****************************************************************
|
|
|
|
subroutine math_spectralDecompositionSym3x3(M,values,vectors,error)
|
|
|
|
!****************************************************************
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: M
|
|
|
|
real(pReal), dimension(3), intent(out) :: values
|
|
|
|
real(pReal), dimension(3,3), intent(out) :: vectors
|
|
|
|
logical, intent(out) :: error
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: info
|
2011-09-14 18:56:00 +05:30
|
|
|
real(pReal), dimension((64+2)*3) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
2011-02-04 21:11:32 +05:30
|
|
|
|
2011-09-14 18:56:00 +05:30
|
|
|
vectors = M ! copy matrix to input (doubles as output) array
|
|
|
|
call DSYEV('V','U',3,vectors,3,values,work,(64+2)*3,info)
|
|
|
|
error = (info == 0_pInt)
|
|
|
|
|
|
|
|
return
|
|
|
|
end subroutine
|
2011-02-04 21:11:32 +05:30
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!****************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
pure subroutine math_pDecomposition(FE,U,R,error)
|
2010-05-06 19:37:21 +05:30
|
|
|
!-----FE = R.U
|
2007-03-21 15:50:25 +05:30
|
|
|
!****************************************************************
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), intent(in), dimension(3,3) :: FE
|
|
|
|
real(pReal), intent(out), dimension(3,3) :: R, U
|
2009-12-14 16:32:10 +05:30
|
|
|
logical, intent(out) :: error
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(3,3) :: CE, EB1, EB2, EB3, UI
|
|
|
|
real(pReal) :: EW1, EW2, EW3, det
|
2007-04-11 15:34:22 +05:30
|
|
|
|
|
|
|
error = .false.
|
2011-08-26 19:36:37 +05:30
|
|
|
ce = math_mul33x33(math_transpose3x3(FE),FE)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
CALL math_spectral1(CE,EW1,EW2,EW3,EB1,EB2,EB3)
|
2011-02-25 14:55:53 +05:30
|
|
|
U=sqrt(EW1)*EB1+sqrt(EW2)*EB2+sqrt(EW3)*EB3
|
2007-04-11 15:34:22 +05:30
|
|
|
call math_invert3x3(U,UI,det,error)
|
2009-05-07 21:57:36 +05:30
|
|
|
if (.not. error) R = math_mul33x33(FE,UI)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE math_pDecomposition
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!**********************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
pure subroutine math_spectral1(M,EW1,EW2,EW3,EB1,EB2,EB3)
|
2007-03-21 15:50:25 +05:30
|
|
|
!**** EIGENWERTE UND EIGENWERTBASIS DER SYMMETRISCHEN 3X3 MATRIX M
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), dimension(3,3), intent(in) :: M
|
|
|
|
real(pReal), dimension(3,3), intent(out) :: EB1, EB2, EB3
|
|
|
|
real(pReal), intent(out) :: EW1,EW2,EW3
|
|
|
|
real(pReal) HI1M, HI2M, HI3M, R, S, T, P, Q, RHO, PHI, Y1, Y2, Y3, D1, D2, D3
|
|
|
|
real(pReal), parameter :: TOL=1.e-14_pReal
|
|
|
|
real(pReal), dimension(3,3) :: M1, M2, M3
|
|
|
|
real(pReal) C1,C2,C3,arg
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
CALL math_hi(M,HI1M,HI2M,HI3M)
|
|
|
|
R=-HI1M
|
|
|
|
S= HI2M
|
|
|
|
T=-HI3M
|
|
|
|
P=S-R**2.0_pReal/3.0_pReal
|
|
|
|
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
|
|
|
EB1=0.0_pReal
|
|
|
|
EB2=0.0_pReal
|
|
|
|
EB3=0.0_pReal
|
|
|
|
IF((ABS(P).LT.TOL).AND.(ABS(Q).LT.TOL))THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
! DREI GLEICHE EIGENWERTE
|
2007-03-20 19:25:22 +05:30
|
|
|
EW1=HI1M/3.0_pReal
|
|
|
|
EW2=EW1
|
|
|
|
EW3=EW1
|
2007-03-21 15:50:25 +05:30
|
|
|
! this is not really correct, but this way U is calculated
|
|
|
|
! correctly in PDECOMPOSITION (correct is EB?=I)
|
2007-03-20 19:25:22 +05:30
|
|
|
EB1(1,1)=1.0_pReal
|
|
|
|
EB2(2,2)=1.0_pReal
|
|
|
|
EB3(3,3)=1.0_pReal
|
|
|
|
ELSE
|
2011-02-25 14:55:53 +05:30
|
|
|
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
2007-03-20 19:25:22 +05:30
|
|
|
arg=-Q/RHO/2.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
if(arg.GT.1.0_pReal) arg=1.0_pReal
|
|
|
|
if(arg.LT.-1.0_pReal) arg=-1.0_pReal
|
2011-02-25 14:55:53 +05:30
|
|
|
PHI=acos(arg)
|
2011-12-01 17:31:13 +05:30
|
|
|
Y1=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
|
|
Y2=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
|
|
Y3=2.0_pReal*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
2007-03-20 19:25:22 +05:30
|
|
|
EW1=Y1-R/3.0_pReal
|
|
|
|
EW2=Y2-R/3.0_pReal
|
|
|
|
EW3=Y3-R/3.0_pReal
|
|
|
|
C1=ABS(EW1-EW2)
|
|
|
|
C2=ABS(EW2-EW3)
|
|
|
|
C3=ABS(EW3-EW1)
|
|
|
|
|
|
|
|
IF(C1.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
! EW1 is equal to EW2
|
2007-03-20 19:25:22 +05:30
|
|
|
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
2007-03-27 20:43:08 +05:30
|
|
|
M1=M-EW1*math_I3
|
|
|
|
M2=M-EW2*math_I3
|
2008-07-23 18:19:40 +05:30
|
|
|
EB3=math_mul33x33(M1,M2)*D3
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-27 20:43:08 +05:30
|
|
|
EB1=math_I3-EB3
|
2007-03-21 15:50:25 +05:30
|
|
|
! both EB2 and EW2 are set to zero so that they do not
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
EW2=0.0_pReal
|
|
|
|
ELSE IF(C2.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
! EW2 is equal to EW3
|
2007-03-20 19:25:22 +05:30
|
|
|
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
2007-03-27 20:43:08 +05:30
|
|
|
M2=M-math_I3*EW2
|
|
|
|
M3=M-math_I3*EW3
|
2008-07-23 18:19:40 +05:30
|
|
|
EB1=math_mul33x33(M2,M3)*D1
|
2007-03-27 20:43:08 +05:30
|
|
|
EB2=math_I3-EB1
|
2007-03-21 15:50:25 +05:30
|
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
EW3=0.0_pReal
|
|
|
|
ELSE IF(C3.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
! EW1 is equal to EW3
|
2007-03-20 19:25:22 +05:30
|
|
|
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
2007-03-27 20:43:08 +05:30
|
|
|
M1=M-math_I3*EW1
|
|
|
|
M3=M-math_I3*EW3
|
2008-07-23 18:19:40 +05:30
|
|
|
EB2=math_mul33x33(M1,M3)*D2
|
2007-03-27 20:43:08 +05:30
|
|
|
EB1=math_I3-EB2
|
2007-03-21 15:50:25 +05:30
|
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
EW3=0.0_pReal
|
|
|
|
ELSE
|
2007-03-21 15:50:25 +05:30
|
|
|
! all three eigenvectors are different
|
2007-03-20 19:25:22 +05:30
|
|
|
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
|
|
|
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
|
|
|
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
2007-03-27 20:43:08 +05:30
|
|
|
M1=M-EW1*math_I3
|
|
|
|
M2=M-EW2*math_I3
|
|
|
|
M3=M-EW3*math_I3
|
2008-07-23 18:19:40 +05:30
|
|
|
EB1=math_mul33x33(M2,M3)*D1
|
|
|
|
EB2=math_mul33x33(M1,M3)*D2
|
|
|
|
EB3=math_mul33x33(M1,M2)*D3
|
2008-07-09 01:08:22 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
END IF
|
|
|
|
END IF
|
2011-08-01 15:41:32 +05:30
|
|
|
|
|
|
|
ENDSUBROUTINE math_spectral1
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-08-26 19:36:37 +05:30
|
|
|
!**********************************************************************
|
|
|
|
function math_eigenvalues3x3(M)
|
|
|
|
!**** Eigenvalues of symmetric 3X3 matrix M
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal), intent(in), dimension(3,3) :: M
|
|
|
|
real(pReal), dimension(3,3) :: EB1 = 0.0_pReal, EB2 = 0.0_pReal, EB3 = 0.0_pReal
|
2011-08-26 19:36:37 +05:30
|
|
|
real(pReal), dimension(3) :: math_eigenvalues3x3
|
2011-12-01 17:31:13 +05:30
|
|
|
real(pReal) :: HI1M, HI2M, HI3M, R, S, T, P, Q, RHO, PHI, Y1, Y2, Y3, arg
|
|
|
|
real(pReal), parameter :: TOL=1.e-14_pReal
|
|
|
|
|
2011-08-26 19:36:37 +05:30
|
|
|
CALL math_hi(M,HI1M,HI2M,HI3M)
|
|
|
|
R=-HI1M
|
|
|
|
S= HI2M
|
|
|
|
T=-HI3M
|
|
|
|
P=S-R**2.0_pReal/3.0_pReal
|
|
|
|
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-08-26 19:36:37 +05:30
|
|
|
if((abs(P) < TOL) .and. (abs(Q) < TOL)) THEN
|
|
|
|
! three equivalent eigenvalues
|
|
|
|
math_eigenvalues3x3(1) = HI1M/3.0_pReal
|
|
|
|
math_eigenvalues3x3(2)=math_eigenvalues3x3(1)
|
|
|
|
math_eigenvalues3x3(3)=math_eigenvalues3x3(1)
|
|
|
|
! this is not really correct, but this way U is calculated
|
|
|
|
! correctly in PDECOMPOSITION (correct is EB?=I)
|
|
|
|
EB1(1,1)=1.0_pReal
|
|
|
|
EB2(2,2)=1.0_pReal
|
|
|
|
EB3(3,3)=1.0_pReal
|
|
|
|
else
|
|
|
|
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
|
|
|
arg=-Q/RHO/2.0_pReal
|
2011-12-01 17:31:13 +05:30
|
|
|
if(arg.GT.1.0_pReal) arg=1.0_pReal
|
|
|
|
if(arg.LT.-1.0_pReal) arg=-1.0_pReal
|
2011-08-26 19:36:37 +05:30
|
|
|
PHI=acos(arg)
|
|
|
|
Y1=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
|
|
Y2=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
|
|
Y3=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
|
|
|
math_eigenvalues3x3(1) = Y1-R/3.0_pReal
|
|
|
|
math_eigenvalues3x3(2) = Y2-R/3.0_pReal
|
|
|
|
math_eigenvalues3x3(3) = Y3-R/3.0_pReal
|
|
|
|
endif
|
|
|
|
endfunction math_eigenvalues3x3
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
!**********************************************************************
|
|
|
|
!**** HAUPTINVARIANTEN HI1M, HI2M, HI3M DER 3X3 MATRIX M
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
PURE SUBROUTINE math_hi(M,HI1M,HI2M,HI3M)
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
real(pReal), intent(in) :: M(3,3)
|
|
|
|
real(pReal), intent(out) :: HI1M, HI2M, HI3M
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
HI1M=M(1,1)+M(2,2)+M(3,3)
|
2011-12-01 17:31:13 +05:30
|
|
|
HI2M=HI1M**2.0_pReal/2.0_pReal- (M(1,1)**2.0_pReal+M(2,2)**2.0_pReal+M(3,3)**2.0_pReal)&
|
|
|
|
/2.0_pReal-M(1,2)*M(2,1)-M(1,3)*M(3,1)-M(2,3)*M(3,2)
|
2007-03-22 20:18:16 +05:30
|
|
|
HI3M=math_det3x3(M)
|
|
|
|
! QUESTION: is 3rd equiv det(M) ?? if yes, use function math_det !agreed on YES
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE math_hi
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! GET_SEED returns a seed for the random number generator.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! The seed depends on the current time, and ought to be (slightly)
|
|
|
|
! different every millisecond. Once the seed is obtained, a random
|
|
|
|
! number generator should be called a few times to further process
|
|
|
|
! the seed.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Output, integer SEED, a pseudorandom seed value.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 27 June 2000
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
SUBROUTINE get_seed(seed)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt) :: seed
|
|
|
|
real(pReal) :: temp = 0.0_pReal
|
|
|
|
character(len = 10) :: time
|
|
|
|
character(len = 8) :: today
|
|
|
|
integer(pInt) :: values(8)
|
|
|
|
character(len = 5) :: zone
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call date_and_time (today, time, zone, values)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
temp = temp + real(values(2)- 1_pInt, pReal) / 11.0_pReal
|
|
|
|
temp = temp + real(values(3)- 1_pInt, pReal) / 30.0_pReal
|
|
|
|
temp = temp + real(values(5), pReal) / 23.0_pReal
|
|
|
|
temp = temp + real(values(6), pReal) / 59.0_pReal
|
|
|
|
temp = temp + real(values(7), pReal) / 59.0_pReal
|
|
|
|
temp = temp + real(values(8), pReal) / 999.0_pReal
|
|
|
|
temp = temp / 6.0_pReal
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (temp <= 0.0_pReal) then
|
|
|
|
temp = 1.0_pReal / 3.0_pReal
|
|
|
|
else if (1.0_pReal <= temp) then
|
|
|
|
temp = 2.0_pReal / 3.0_pReal
|
2007-03-20 19:25:22 +05:30
|
|
|
end if
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
seed = int(real(huge(1_pInt),pReal)*temp, pInt)
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Never use a seed of 0 or maximum integer.
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
if (seed == 0_pInt) then
|
|
|
|
seed = 1_pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
end if
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (seed == huge(1_pInt)) then
|
|
|
|
seed = seed -1_pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
end if
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE get_seed
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! HALTON computes the next element in the Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer NDIM, the dimension of the element.
|
|
|
|
! Output, real R(NDIM), the next element of the current Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 09 March 2003
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
subroutine halton(ndim, r)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), intent(in) :: ndim
|
|
|
|
real(pReal), intent(out), dimension(ndim) :: r
|
|
|
|
integer(pInt), dimension(ndim) :: base
|
|
|
|
integer(pInt) :: seed
|
|
|
|
integer(pInt), dimension(1) :: value_halton
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton_memory ('GET', 'SEED', 1_pInt, value_halton)
|
|
|
|
seed = value_halton(1)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call halton_memory ('GET', 'BASE', ndim, base)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
call i_to_halton (seed, base, ndim, r)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
value_halton(1) = 1_pInt
|
|
|
|
call halton_memory ('INC', 'SEED', 1_pInt, value_halton)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE halton
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! HALTON_MEMORY sets or returns quantities associated with the Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, character (len = *) action_halton, the desired action.
|
|
|
|
! 'GET' means get the value of a particular quantity.
|
|
|
|
! 'SET' means set the value of a particular quantity.
|
|
|
|
! 'INC' means increment the value of a particular quantity.
|
|
|
|
! (Only the SEED can be incremented.)
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, character (len = *) name_halton, the name of the quantity.
|
|
|
|
! 'BASE' means the Halton base or bases.
|
|
|
|
! 'NDIM' means the spatial dimension.
|
|
|
|
! 'SEED' means the current Halton seed.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input/output, integer NDIM, the dimension of the quantity.
|
|
|
|
! If action_halton is 'SET' and action_halton is 'BASE', then NDIM is input, and
|
|
|
|
! is the number of entries in value_halton to be put into BASE.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input/output, integer value_halton(NDIM), contains a value.
|
|
|
|
! If action_halton is 'SET', then on input, value_halton contains values to be assigned
|
|
|
|
! to the internal variable.
|
|
|
|
! If action_halton is 'GET', then on output, value_halton contains the values of
|
|
|
|
! the specified internal variable.
|
|
|
|
! If action_halton is 'INC', then on input, value_halton contains the increment to
|
|
|
|
! be added to the specified internal variable.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 09 March 2003
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
|
|
|
|
|
|
|
subroutine halton_memory (action_halton, name_halton, ndim, value_halton)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
character(len = *), intent(in) :: action_halton, name_halton
|
|
|
|
integer(pInt), dimension(*), intent(inout) :: value_halton
|
|
|
|
integer(pInt), allocatable, save, dimension(:) :: base
|
2007-03-20 19:25:22 +05:30
|
|
|
logical, save :: first_call = .true.
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), intent(in) :: ndim
|
|
|
|
integer(pInt):: i
|
|
|
|
integer(pInt), save :: ndim_save = 0_pInt, seed = 1_pInt
|
|
|
|
|
|
|
|
|
|
|
|
if (first_call) then
|
|
|
|
ndim_save = 1_pInt
|
|
|
|
allocate(base(ndim_save))
|
|
|
|
base(1) = 2_pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
first_call = .false.
|
2011-12-01 17:31:13 +05:30
|
|
|
endif
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Set
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
if(action_halton(1:1) == 'S' .or. action_halton(1:1) == 's') then
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if(ndim_save /= ndim) then
|
|
|
|
deallocate(base)
|
2010-05-06 19:37:21 +05:30
|
|
|
ndim_save = ndim
|
2011-12-01 17:31:13 +05:30
|
|
|
allocate(base(ndim_save))
|
|
|
|
endif
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
base(1:ndim) = value_halton(1:ndim)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if(ndim_save /= value_halton(1)) then
|
|
|
|
deallocate(base)
|
|
|
|
ndim_save = value_halton(1)
|
|
|
|
allocate(base(ndim_save))
|
|
|
|
do i = 1_pInt, ndim_save
|
|
|
|
base(i) = prime (i)
|
2010-05-06 19:37:21 +05:30
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
else
|
2011-12-01 17:31:13 +05:30
|
|
|
ndim_save = value_halton(1)
|
|
|
|
endif
|
|
|
|
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
|
|
seed = value_halton(1)
|
|
|
|
endif
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Get
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
elseif(action_halton(1:1) == 'G' .or. action_halton(1:1) == 'g') then
|
|
|
|
if(name_halton(1:1) == 'B' .or. name_halton(1:1) == 'b') then
|
|
|
|
if(ndim /= ndim_save) then
|
|
|
|
deallocate(base)
|
2007-03-20 19:25:22 +05:30
|
|
|
ndim_save = ndim
|
2011-12-01 17:31:13 +05:30
|
|
|
allocate(base(ndim_save))
|
|
|
|
do i = 1_pInt, ndim_save
|
2007-03-20 19:25:22 +05:30
|
|
|
base(i) = prime(i)
|
2009-06-29 20:59:07 +05:30
|
|
|
enddo
|
2011-12-01 17:31:13 +05:30
|
|
|
endif
|
|
|
|
value_halton(1:ndim_save) = base(1:ndim_save)
|
|
|
|
elseif(name_halton(1:1) == 'N' .or. name_halton(1:1) == 'n') then
|
|
|
|
value_halton(1) = ndim_save
|
|
|
|
elseif(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
|
|
value_halton(1) = seed
|
|
|
|
endif
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Increment
|
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
elseif(action_halton(1:1) == 'I' .or. action_halton(1:1) == 'i') then
|
|
|
|
if(name_halton(1:1) == 'S' .or. name_halton(1:1) == 's') then
|
|
|
|
seed = seed + value_halton(1)
|
2007-03-20 19:25:22 +05:30
|
|
|
end if
|
2011-12-01 17:31:13 +05:30
|
|
|
endif
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE halton_memory
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! HALTON_NDIM_SET sets the dimension for a Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer NDIM, the dimension of the Halton vectors.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 26 February 2001
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
subroutine halton_ndim_set (ndim)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), intent(in) :: ndim
|
|
|
|
integer(pInt) :: value_halton(1)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
value_halton(1) = ndim
|
|
|
|
call halton_memory ('SET', 'NDIM', 1_pInt, value_halton)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE halton_ndim_set
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! HALTON_SEED_SET sets the "seed" for the Halton sequence.
|
|
|
|
!
|
|
|
|
! Calling HALTON repeatedly returns the elements of the
|
|
|
|
! Halton sequence in order, starting with element number 1.
|
|
|
|
! An internal counter, called SEED, keeps track of the next element
|
|
|
|
! to return. Each time the routine is called, the SEED-th element
|
|
|
|
! is computed, and then SEED is incremented by 1.
|
|
|
|
!
|
|
|
|
! To restart the Halton sequence, it is only necessary to reset
|
|
|
|
! SEED to 1. It might also be desirable to reset SEED to some other value.
|
|
|
|
! This routine allows the user to specify any value of SEED.
|
|
|
|
!
|
|
|
|
! The default value of SEED is 1, which restarts the Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer SEED, the seed for the Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 26 February 2001
|
|
|
|
! Author: John Burkardt
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
2011-12-01 17:31:13 +05:30
|
|
|
subroutine halton_seed_set (seed)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), parameter :: ndim = 1_pInt
|
|
|
|
integer(pInt), intent(in) :: seed
|
|
|
|
integer(pInt) :: value_halton(ndim)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
value_halton(1) = seed
|
|
|
|
call halton_memory ('SET', 'SEED', ndim, value_halton)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE halton_seed_set
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! I_TO_HALTON computes an element of a Halton sequence.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Reference:
|
2011-12-01 17:31:13 +05:30
|
|
|
! J H Halton: On the efficiency of certain quasi-random sequences of points
|
|
|
|
! in evaluating multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
|
|
|
!
|
2007-03-21 15:50:25 +05:30
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer SEED, the index of the desired element.
|
|
|
|
! Only the absolute value of SEED is considered. SEED = 0 is allowed,
|
|
|
|
! and returns R = 0.
|
|
|
|
!
|
|
|
|
! Input, integer BASE(NDIM), the Halton bases, which should be
|
|
|
|
! distinct prime numbers. This routine only checks that each base
|
|
|
|
! is greater than 1.
|
|
|
|
!
|
|
|
|
! Input, integer NDIM, the dimension of the sequence.
|
|
|
|
!
|
|
|
|
! Output, real R(NDIM), the SEED-th element of the Halton sequence
|
|
|
|
! for the given bases.
|
|
|
|
!
|
|
|
|
! Modified: 26 February 2001
|
|
|
|
! Author: John Burkardt
|
|
|
|
!
|
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz RotersA
|
|
|
|
|
|
|
|
subroutine i_to_halton (seed, base, ndim, r)
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: ndim
|
|
|
|
integer(pInt), intent(in), dimension(ndim) :: base
|
|
|
|
real(pReal), dimension(ndim) :: base_inv
|
|
|
|
integer(pInt), dimension(ndim) :: digit
|
|
|
|
integer(pInt) :: i
|
|
|
|
real(pReal), dimension(ndim), intent(out) ::r
|
|
|
|
integer(pInt) :: seed
|
|
|
|
integer(pInt), dimension(ndim) :: seed2
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
seed2(1:ndim) = abs(seed)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
r(1:ndim) = 0.0_pReal
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (any (base(1:ndim) <= 1_pInt)) then
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
!$OMP CRITICAL (write2out)
|
2011-12-01 17:31:13 +05:30
|
|
|
write (*, '(a)') ' '
|
|
|
|
write (*, '(a)') 'I_TO_HALTON - Fatal error!'
|
|
|
|
write (*, '(a)') ' An input base BASE is <= 1!'
|
2007-03-20 19:25:22 +05:30
|
|
|
do i = 1, ndim
|
2011-12-01 17:31:13 +05:30
|
|
|
write (*, '(i6,i6)') i, base(i)
|
2009-06-29 20:59:07 +05:30
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
call flush(6)
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
!$OMP END CRITICAL (write2out)
|
2007-03-20 19:25:22 +05:30
|
|
|
stop
|
|
|
|
end if
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
base_inv(1:ndim) = 1.0_pReal / real (base(1:ndim), pReal)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do while ( any ( seed2(1:ndim) /= 0_pInt) )
|
|
|
|
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim))
|
|
|
|
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal) * base_inv(1:ndim)
|
|
|
|
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal)
|
2007-03-20 19:25:22 +05:30
|
|
|
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
|
2009-06-29 20:59:07 +05:30
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
ENDSUBROUTINE i_to_halton
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
!*******************************************************************************
|
2011-12-01 17:31:13 +05:30
|
|
|
! PRIME returns any of the first PRIME_MAX prime numbers.
|
2007-03-21 15:50:25 +05:30
|
|
|
!
|
|
|
|
! Note:
|
2011-12-01 17:31:13 +05:30
|
|
|
! PRIME_MAX is 1500, and the largest prime stored is 12553.
|
2007-03-21 15:50:25 +05:30
|
|
|
! Reference:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
|
|
|
|
! US Department of Commerce, 1964, pages 870-873.
|
|
|
|
!
|
|
|
|
! Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
|
|
|
|
! 30th Edition, CRC Press, 1996, pages 95-98.
|
|
|
|
!
|
2007-03-21 15:50:25 +05:30
|
|
|
! Parameters:
|
2011-12-01 17:31:13 +05:30
|
|
|
! Input, integer N, the index of the desired prime number.
|
|
|
|
! N = -1 returns PRIME_MAX, the index of the largest prime available.
|
|
|
|
! N = 0 is legal, returning PRIME = 1.
|
|
|
|
! It should generally be true that 0 <= N <= PRIME_MAX.
|
|
|
|
!
|
|
|
|
! Output, integer PRIME, the N-th prime. If N is out of range, PRIME
|
|
|
|
! is returned as 0.
|
|
|
|
!
|
|
|
|
! Modified: 21 June 2002
|
|
|
|
! Author: John Burkardt
|
|
|
|
!
|
|
|
|
! Modified: 29 April 2005
|
|
|
|
! Author: Franz Roters
|
|
|
|
!
|
|
|
|
function prime(n)
|
2007-03-20 19:25:22 +05:30
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
integer(pInt), parameter :: prime_max = 1500
|
2011-12-01 17:31:13 +05:30
|
|
|
integer(pInt), save :: icall = 0_pInt
|
|
|
|
integer(pInt), intent(in) :: n
|
|
|
|
integer(pInt), save, dimension(prime_max) :: npvec
|
|
|
|
integer(pInt) prime
|
2007-03-21 15:50:25 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if (icall == 0_pInt) then
|
|
|
|
icall = 1_pInt
|
|
|
|
|
|
|
|
npvec(1:100) = (/&
|
|
|
|
2_pInt, 3_pInt, 5_pInt, 7_pInt, 11_pInt, 13_pInt, 17_pInt, 19_pInt, 23_pInt, 29_pInt, &
|
|
|
|
31_pInt, 37_pInt, 41_pInt, 43_pInt, 47_pInt, 53_pInt, 59_pInt, 61_pInt, 67_pInt, 71_pInt, &
|
|
|
|
73_pInt, 79_pInt, 83_pInt, 89_pInt, 97_pInt, 101_pInt, 103_pInt, 107_pInt, 109_pInt, 113_pInt, &
|
|
|
|
127_pInt, 131_pInt, 137_pInt, 139_pInt, 149_pInt, 151_pInt, 157_pInt, 163_pInt, 167_pInt, 173_pInt, &
|
|
|
|
179_pInt, 181_pInt, 191_pInt, 193_pInt, 197_pInt, 199_pInt, 211_pInt, 223_pInt, 227_pInt, 229_pInt, &
|
|
|
|
233_pInt, 239_pInt, 241_pInt, 251_pInt, 257_pInt, 263_pInt, 269_pInt, 271_pInt, 277_pInt, 281_pInt, &
|
|
|
|
283_pInt, 293_pInt, 307_pInt, 311_pInt, 313_pInt, 317_pInt, 331_pInt, 337_pInt, 347_pInt, 349_pInt, &
|
|
|
|
353_pInt, 359_pInt, 367_pInt, 373_pInt, 379_pInt, 383_pInt, 389_pInt, 397_pInt, 401_pInt, 409_pInt, &
|
|
|
|
419_pInt, 421_pInt, 431_pInt, 433_pInt, 439_pInt, 443_pInt, 449_pInt, 457_pInt, 461_pInt, 463_pInt, &
|
|
|
|
467_pInt, 479_pInt, 487_pInt, 491_pInt, 499_pInt, 503_pInt, 509_pInt, 521_pInt, 523_pInt, 541_pInt/)
|
|
|
|
|
|
|
|
npvec(101:200) = (/ &
|
|
|
|
547_pInt, 557_pInt, 563_pInt, 569_pInt, 571_pInt, 577_pInt, 587_pInt, 593_pInt, 599_pInt, 601_pInt, &
|
|
|
|
607_pInt, 613_pInt, 617_pInt, 619_pInt, 631_pInt, 641_pInt, 643_pInt, 647_pInt, 653_pInt, 659_pInt, &
|
|
|
|
661_pInt, 673_pInt, 677_pInt, 683_pInt, 691_pInt, 701_pInt, 709_pInt, 719_pInt, 727_pInt, 733_pInt, &
|
|
|
|
739_pInt, 743_pInt, 751_pInt, 757_pInt, 761_pInt, 769_pInt, 773_pInt, 787_pInt, 797_pInt, 809_pInt, &
|
|
|
|
811_pInt, 821_pInt, 823_pInt, 827_pInt, 829_pInt, 839_pInt, 853_pInt, 857_pInt, 859_pInt, 863_pInt, &
|
|
|
|
877_pInt, 881_pInt, 883_pInt, 887_pInt, 907_pInt, 911_pInt, 919_pInt, 929_pInt, 937_pInt, 941_pInt, &
|
|
|
|
947_pInt, 953_pInt, 967_pInt, 971_pInt, 977_pInt, 983_pInt, 991_pInt, 997_pInt, 1009_pInt, 1013_pInt, &
|
|
|
|
1019_pInt, 1021_pInt, 1031_pInt, 1033_pInt, 1039_pInt, 1049_pInt, 1051_pInt, 1061_pInt, 1063_pInt, 1069_pInt, &
|
|
|
|
1087_pInt, 1091_pInt, 1093_pInt, 1097_pInt, 1103_pInt, 1109_pInt, 1117_pInt, 1123_pInt, 1129_pInt, 1151_pInt, &
|
|
|
|
1153_pInt, 1163_pInt, 1171_pInt, 1181_pInt, 1187_pInt, 1193_pInt, 1201_pInt, 1213_pInt, 1217_pInt, 1223_pInt/)
|
|
|
|
|
|
|
|
npvec(201:300) = (/ &
|
|
|
|
1229_pInt, 1231_pInt, 1237_pInt, 1249_pInt, 1259_pInt, 1277_pInt, 1279_pInt, 1283_pInt, 1289_pInt, 1291_pInt, &
|
|
|
|
1297_pInt, 1301_pInt, 1303_pInt, 1307_pInt, 1319_pInt, 1321_pInt, 1327_pInt, 1361_pInt, 1367_pInt, 1373_pInt, &
|
|
|
|
1381_pInt, 1399_pInt, 1409_pInt, 1423_pInt, 1427_pInt, 1429_pInt, 1433_pInt, 1439_pInt, 1447_pInt, 1451_pInt, &
|
|
|
|
1453_pInt, 1459_pInt, 1471_pInt, 1481_pInt, 1483_pInt, 1487_pInt, 1489_pInt, 1493_pInt, 1499_pInt, 1511_pInt, &
|
|
|
|
1523_pInt, 1531_pInt, 1543_pInt, 1549_pInt, 1553_pInt, 1559_pInt, 1567_pInt, 1571_pInt, 1579_pInt, 1583_pInt, &
|
|
|
|
1597_pInt, 1601_pInt, 1607_pInt, 1609_pInt, 1613_pInt, 1619_pInt, 1621_pInt, 1627_pInt, 1637_pInt, 1657_pInt, &
|
|
|
|
1663_pInt, 1667_pInt, 1669_pInt, 1693_pInt, 1697_pInt, 1699_pInt, 1709_pInt, 1721_pInt, 1723_pInt, 1733_pInt, &
|
|
|
|
1741_pInt, 1747_pInt, 1753_pInt, 1759_pInt, 1777_pInt, 1783_pInt, 1787_pInt, 1789_pInt, 1801_pInt, 1811_pInt, &
|
|
|
|
1823_pInt, 1831_pInt, 1847_pInt, 1861_pInt, 1867_pInt, 1871_pInt, 1873_pInt, 1877_pInt, 1879_pInt, 1889_pInt, &
|
|
|
|
1901_pInt, 1907_pInt, 1913_pInt, 1931_pInt, 1933_pInt, 1949_pInt, 1951_pInt, 1973_pInt, 1979_pInt, 1987_pInt/)
|
|
|
|
|
|
|
|
npvec(301:400) = (/ &
|
|
|
|
1993_pInt, 1997_pInt, 1999_pInt, 2003_pInt, 2011_pInt, 2017_pInt, 2027_pInt, 2029_pInt, 2039_pInt, 2053_pInt, &
|
|
|
|
2063_pInt, 2069_pInt, 2081_pInt, 2083_pInt, 2087_pInt, 2089_pInt, 2099_pInt, 2111_pInt, 2113_pInt, 2129_pInt, &
|
|
|
|
2131_pInt, 2137_pInt, 2141_pInt, 2143_pInt, 2153_pInt, 2161_pInt, 2179_pInt, 2203_pInt, 2207_pInt, 2213_pInt, &
|
|
|
|
2221_pInt, 2237_pInt, 2239_pInt, 2243_pInt, 2251_pInt, 2267_pInt, 2269_pInt, 2273_pInt, 2281_pInt, 2287_pInt, &
|
|
|
|
2293_pInt, 2297_pInt, 2309_pInt, 2311_pInt, 2333_pInt, 2339_pInt, 2341_pInt, 2347_pInt, 2351_pInt, 2357_pInt, &
|
|
|
|
2371_pInt, 2377_pInt, 2381_pInt, 2383_pInt, 2389_pInt, 2393_pInt, 2399_pInt, 2411_pInt, 2417_pInt, 2423_pInt, &
|
|
|
|
2437_pInt, 2441_pInt, 2447_pInt, 2459_pInt, 2467_pInt, 2473_pInt, 2477_pInt, 2503_pInt, 2521_pInt, 2531_pInt, &
|
|
|
|
2539_pInt, 2543_pInt, 2549_pInt, 2551_pInt, 2557_pInt, 2579_pInt, 2591_pInt, 2593_pInt, 2609_pInt, 2617_pInt, &
|
|
|
|
2621_pInt, 2633_pInt, 2647_pInt, 2657_pInt, 2659_pInt, 2663_pInt, 2671_pInt, 2677_pInt, 2683_pInt, 2687_pInt, &
|
|
|
|
2689_pInt, 2693_pInt, 2699_pInt, 2707_pInt, 2711_pInt, 2713_pInt, 2719_pInt, 2729_pInt, 2731_pInt, 2741_pInt/)
|
|
|
|
|
|
|
|
npvec(401:500) = (/ &
|
|
|
|
2749_pInt, 2753_pInt, 2767_pInt, 2777_pInt, 2789_pInt, 2791_pInt, 2797_pInt, 2801_pInt, 2803_pInt, 2819_pInt, &
|
|
|
|
2833_pInt, 2837_pInt, 2843_pInt, 2851_pInt, 2857_pInt, 2861_pInt, 2879_pInt, 2887_pInt, 2897_pInt, 2903_pInt, &
|
|
|
|
2909_pInt, 2917_pInt, 2927_pInt, 2939_pInt, 2953_pInt, 2957_pInt, 2963_pInt, 2969_pInt, 2971_pInt, 2999_pInt, &
|
|
|
|
3001_pInt, 3011_pInt, 3019_pInt, 3023_pInt, 3037_pInt, 3041_pInt, 3049_pInt, 3061_pInt, 3067_pInt, 3079_pInt, &
|
|
|
|
3083_pInt, 3089_pInt, 3109_pInt, 3119_pInt, 3121_pInt, 3137_pInt, 3163_pInt, 3167_pInt, 3169_pInt, 3181_pInt, &
|
|
|
|
3187_pInt, 3191_pInt, 3203_pInt, 3209_pInt, 3217_pInt, 3221_pInt, 3229_pInt, 3251_pInt, 3253_pInt, 3257_pInt, &
|
|
|
|
3259_pInt, 3271_pInt, 3299_pInt, 3301_pInt, 3307_pInt, 3313_pInt, 3319_pInt, 3323_pInt, 3329_pInt, 3331_pInt, &
|
|
|
|
3343_pInt, 3347_pInt, 3359_pInt, 3361_pInt, 3371_pInt, 3373_pInt, 3389_pInt, 3391_pInt, 3407_pInt, 3413_pInt, &
|
|
|
|
3433_pInt, 3449_pInt, 3457_pInt, 3461_pInt, 3463_pInt, 3467_pInt, 3469_pInt, 3491_pInt, 3499_pInt, 3511_pInt, &
|
|
|
|
3517_pInt, 3527_pInt, 3529_pInt, 3533_pInt, 3539_pInt, 3541_pInt, 3547_pInt, 3557_pInt, 3559_pInt, 3571_pInt/)
|
|
|
|
|
|
|
|
npvec(501:600) = (/ &
|
|
|
|
3581_pInt, 3583_pInt, 3593_pInt, 3607_pInt, 3613_pInt, 3617_pInt, 3623_pInt, 3631_pInt, 3637_pInt, 3643_pInt, &
|
|
|
|
3659_pInt, 3671_pInt, 3673_pInt, 3677_pInt, 3691_pInt, 3697_pInt, 3701_pInt, 3709_pInt, 3719_pInt, 3727_pInt, &
|
|
|
|
3733_pInt, 3739_pInt, 3761_pInt, 3767_pInt, 3769_pInt, 3779_pInt, 3793_pInt, 3797_pInt, 3803_pInt, 3821_pInt, &
|
|
|
|
3823_pInt, 3833_pInt, 3847_pInt, 3851_pInt, 3853_pInt, 3863_pInt, 3877_pInt, 3881_pInt, 3889_pInt, 3907_pInt, &
|
|
|
|
3911_pInt, 3917_pInt, 3919_pInt, 3923_pInt, 3929_pInt, 3931_pInt, 3943_pInt, 3947_pInt, 3967_pInt, 3989_pInt, &
|
|
|
|
4001_pInt, 4003_pInt, 4007_pInt, 4013_pInt, 4019_pInt, 4021_pInt, 4027_pInt, 4049_pInt, 4051_pInt, 4057_pInt, &
|
|
|
|
4073_pInt, 4079_pInt, 4091_pInt, 4093_pInt, 4099_pInt, 4111_pInt, 4127_pInt, 4129_pInt, 4133_pInt, 4139_pInt, &
|
|
|
|
4153_pInt, 4157_pInt, 4159_pInt, 4177_pInt, 4201_pInt, 4211_pInt, 4217_pInt, 4219_pInt, 4229_pInt, 4231_pInt, &
|
|
|
|
4241_pInt, 4243_pInt, 4253_pInt, 4259_pInt, 4261_pInt, 4271_pInt, 4273_pInt, 4283_pInt, 4289_pInt, 4297_pInt, &
|
|
|
|
4327_pInt, 4337_pInt, 4339_pInt, 4349_pInt, 4357_pInt, 4363_pInt, 4373_pInt, 4391_pInt, 4397_pInt, 4409_pInt/)
|
|
|
|
|
|
|
|
npvec(601:700) = (/ &
|
|
|
|
4421_pInt, 4423_pInt, 4441_pInt, 4447_pInt, 4451_pInt, 4457_pInt, 4463_pInt, 4481_pInt, 4483_pInt, 4493_pInt, &
|
|
|
|
4507_pInt, 4513_pInt, 4517_pInt, 4519_pInt, 4523_pInt, 4547_pInt, 4549_pInt, 4561_pInt, 4567_pInt, 4583_pInt, &
|
|
|
|
4591_pInt, 4597_pInt, 4603_pInt, 4621_pInt, 4637_pInt, 4639_pInt, 4643_pInt, 4649_pInt, 4651_pInt, 4657_pInt, &
|
|
|
|
4663_pInt, 4673_pInt, 4679_pInt, 4691_pInt, 4703_pInt, 4721_pInt, 4723_pInt, 4729_pInt, 4733_pInt, 4751_pInt, &
|
|
|
|
4759_pInt, 4783_pInt, 4787_pInt, 4789_pInt, 4793_pInt, 4799_pInt, 4801_pInt, 4813_pInt, 4817_pInt, 4831_pInt, &
|
|
|
|
4861_pInt, 4871_pInt, 4877_pInt, 4889_pInt, 4903_pInt, 4909_pInt, 4919_pInt, 4931_pInt, 4933_pInt, 4937_pInt, &
|
|
|
|
4943_pInt, 4951_pInt, 4957_pInt, 4967_pInt, 4969_pInt, 4973_pInt, 4987_pInt, 4993_pInt, 4999_pInt, 5003_pInt, &
|
|
|
|
5009_pInt, 5011_pInt, 5021_pInt, 5023_pInt, 5039_pInt, 5051_pInt, 5059_pInt, 5077_pInt, 5081_pInt, 5087_pInt, &
|
|
|
|
5099_pInt, 5101_pInt, 5107_pInt, 5113_pInt, 5119_pInt, 5147_pInt, 5153_pInt, 5167_pInt, 5171_pInt, 5179_pInt, &
|
|
|
|
5189_pInt, 5197_pInt, 5209_pInt, 5227_pInt, 5231_pInt, 5233_pInt, 5237_pInt, 5261_pInt, 5273_pInt, 5279_pInt/)
|
|
|
|
|
|
|
|
npvec(701:800) = (/ &
|
|
|
|
5281_pInt, 5297_pInt, 5303_pInt, 5309_pInt, 5323_pInt, 5333_pInt, 5347_pInt, 5351_pInt, 5381_pInt, 5387_pInt, &
|
|
|
|
5393_pInt, 5399_pInt, 5407_pInt, 5413_pInt, 5417_pInt, 5419_pInt, 5431_pInt, 5437_pInt, 5441_pInt, 5443_pInt, &
|
|
|
|
5449_pInt, 5471_pInt, 5477_pInt, 5479_pInt, 5483_pInt, 5501_pInt, 5503_pInt, 5507_pInt, 5519_pInt, 5521_pInt, &
|
|
|
|
5527_pInt, 5531_pInt, 5557_pInt, 5563_pInt, 5569_pInt, 5573_pInt, 5581_pInt, 5591_pInt, 5623_pInt, 5639_pInt, &
|
|
|
|
5641_pInt, 5647_pInt, 5651_pInt, 5653_pInt, 5657_pInt, 5659_pInt, 5669_pInt, 5683_pInt, 5689_pInt, 5693_pInt, &
|
|
|
|
5701_pInt, 5711_pInt, 5717_pInt, 5737_pInt, 5741_pInt, 5743_pInt, 5749_pInt, 5779_pInt, 5783_pInt, 5791_pInt, &
|
|
|
|
5801_pInt, 5807_pInt, 5813_pInt, 5821_pInt, 5827_pInt, 5839_pInt, 5843_pInt, 5849_pInt, 5851_pInt, 5857_pInt, &
|
|
|
|
5861_pInt, 5867_pInt, 5869_pInt, 5879_pInt, 5881_pInt, 5897_pInt, 5903_pInt, 5923_pInt, 5927_pInt, 5939_pInt, &
|
|
|
|
5953_pInt, 5981_pInt, 5987_pInt, 6007_pInt, 6011_pInt, 6029_pInt, 6037_pInt, 6043_pInt, 6047_pInt, 6053_pInt, &
|
|
|
|
6067_pInt, 6073_pInt, 6079_pInt, 6089_pInt, 6091_pInt, 6101_pInt, 6113_pInt, 6121_pInt, 6131_pInt, 6133_pInt/)
|
|
|
|
|
|
|
|
npvec(801:900) = (/ &
|
|
|
|
6143_pInt, 6151_pInt, 6163_pInt, 6173_pInt, 6197_pInt, 6199_pInt, 6203_pInt, 6211_pInt, 6217_pInt, 6221_pInt, &
|
|
|
|
6229_pInt, 6247_pInt, 6257_pInt, 6263_pInt, 6269_pInt, 6271_pInt, 6277_pInt, 6287_pInt, 6299_pInt, 6301_pInt, &
|
|
|
|
6311_pInt, 6317_pInt, 6323_pInt, 6329_pInt, 6337_pInt, 6343_pInt, 6353_pInt, 6359_pInt, 6361_pInt, 6367_pInt, &
|
|
|
|
6373_pInt, 6379_pInt, 6389_pInt, 6397_pInt, 6421_pInt, 6427_pInt, 6449_pInt, 6451_pInt, 6469_pInt, 6473_pInt, &
|
|
|
|
6481_pInt, 6491_pInt, 6521_pInt, 6529_pInt, 6547_pInt, 6551_pInt, 6553_pInt, 6563_pInt, 6569_pInt, 6571_pInt, &
|
|
|
|
6577_pInt, 6581_pInt, 6599_pInt, 6607_pInt, 6619_pInt, 6637_pInt, 6653_pInt, 6659_pInt, 6661_pInt, 6673_pInt, &
|
|
|
|
6679_pInt, 6689_pInt, 6691_pInt, 6701_pInt, 6703_pInt, 6709_pInt, 6719_pInt, 6733_pInt, 6737_pInt, 6761_pInt, &
|
|
|
|
6763_pInt, 6779_pInt, 6781_pInt, 6791_pInt, 6793_pInt, 6803_pInt, 6823_pInt, 6827_pInt, 6829_pInt, 6833_pInt, &
|
|
|
|
6841_pInt, 6857_pInt, 6863_pInt, 6869_pInt, 6871_pInt, 6883_pInt, 6899_pInt, 6907_pInt, 6911_pInt, 6917_pInt, &
|
|
|
|
6947_pInt, 6949_pInt, 6959_pInt, 6961_pInt, 6967_pInt, 6971_pInt, 6977_pInt, 6983_pInt, 6991_pInt, 6997_pInt/)
|
|
|
|
|
|
|
|
npvec(901:1000) = (/ &
|
|
|
|
7001_pInt, 7013_pInt, 7019_pInt, 7027_pInt, 7039_pInt, 7043_pInt, 7057_pInt, 7069_pInt, 7079_pInt, 7103_pInt, &
|
|
|
|
7109_pInt, 7121_pInt, 7127_pInt, 7129_pInt, 7151_pInt, 7159_pInt, 7177_pInt, 7187_pInt, 7193_pInt, 7207_pInt, &
|
|
|
|
7211_pInt, 7213_pInt, 7219_pInt, 7229_pInt, 7237_pInt, 7243_pInt, 7247_pInt, 7253_pInt, 7283_pInt, 7297_pInt, &
|
|
|
|
7307_pInt, 7309_pInt, 7321_pInt, 7331_pInt, 7333_pInt, 7349_pInt, 7351_pInt, 7369_pInt, 7393_pInt, 7411_pInt, &
|
|
|
|
7417_pInt, 7433_pInt, 7451_pInt, 7457_pInt, 7459_pInt, 7477_pInt, 7481_pInt, 7487_pInt, 7489_pInt, 7499_pInt, &
|
|
|
|
7507_pInt, 7517_pInt, 7523_pInt, 7529_pInt, 7537_pInt, 7541_pInt, 7547_pInt, 7549_pInt, 7559_pInt, 7561_pInt, &
|
|
|
|
7573_pInt, 7577_pInt, 7583_pInt, 7589_pInt, 7591_pInt, 7603_pInt, 7607_pInt, 7621_pInt, 7639_pInt, 7643_pInt, &
|
|
|
|
7649_pInt, 7669_pInt, 7673_pInt, 7681_pInt, 7687_pInt, 7691_pInt, 7699_pInt, 7703_pInt, 7717_pInt, 7723_pInt, &
|
|
|
|
7727_pInt, 7741_pInt, 7753_pInt, 7757_pInt, 7759_pInt, 7789_pInt, 7793_pInt, 7817_pInt, 7823_pInt, 7829_pInt, &
|
|
|
|
7841_pInt, 7853_pInt, 7867_pInt, 7873_pInt, 7877_pInt, 7879_pInt, 7883_pInt, 7901_pInt, 7907_pInt, 7919_pInt/)
|
|
|
|
|
|
|
|
npvec(1001:1100) = (/ &
|
|
|
|
7927_pInt, 7933_pInt, 7937_pInt, 7949_pInt, 7951_pInt, 7963_pInt, 7993_pInt, 8009_pInt, 8011_pInt, 8017_pInt, &
|
|
|
|
8039_pInt, 8053_pInt, 8059_pInt, 8069_pInt, 8081_pInt, 8087_pInt, 8089_pInt, 8093_pInt, 8101_pInt, 8111_pInt, &
|
|
|
|
8117_pInt, 8123_pInt, 8147_pInt, 8161_pInt, 8167_pInt, 8171_pInt, 8179_pInt, 8191_pInt, 8209_pInt, 8219_pInt, &
|
|
|
|
8221_pInt, 8231_pInt, 8233_pInt, 8237_pInt, 8243_pInt, 8263_pInt, 8269_pInt, 8273_pInt, 8287_pInt, 8291_pInt, &
|
|
|
|
8293_pInt, 8297_pInt, 8311_pInt, 8317_pInt, 8329_pInt, 8353_pInt, 8363_pInt, 8369_pInt, 8377_pInt, 8387_pInt, &
|
|
|
|
8389_pInt, 8419_pInt, 8423_pInt, 8429_pInt, 8431_pInt, 8443_pInt, 8447_pInt, 8461_pInt, 8467_pInt, 8501_pInt, &
|
|
|
|
8513_pInt, 8521_pInt, 8527_pInt, 8537_pInt, 8539_pInt, 8543_pInt, 8563_pInt, 8573_pInt, 8581_pInt, 8597_pInt, &
|
|
|
|
8599_pInt, 8609_pInt, 8623_pInt, 8627_pInt, 8629_pInt, 8641_pInt, 8647_pInt, 8663_pInt, 8669_pInt, 8677_pInt, &
|
|
|
|
8681_pInt, 8689_pInt, 8693_pInt, 8699_pInt, 8707_pInt, 8713_pInt, 8719_pInt, 8731_pInt, 8737_pInt, 8741_pInt, &
|
|
|
|
8747_pInt, 8753_pInt, 8761_pInt, 8779_pInt, 8783_pInt, 8803_pInt, 8807_pInt, 8819_pInt, 8821_pInt, 8831_pInt/)
|
|
|
|
|
|
|
|
npvec(1101:1200) = (/ &
|
|
|
|
8837_pInt, 8839_pInt, 8849_pInt, 8861_pInt, 8863_pInt, 8867_pInt, 8887_pInt, 8893_pInt, 8923_pInt, 8929_pInt, &
|
|
|
|
8933_pInt, 8941_pInt, 8951_pInt, 8963_pInt, 8969_pInt, 8971_pInt, 8999_pInt, 9001_pInt, 9007_pInt, 9011_pInt, &
|
|
|
|
9013_pInt, 9029_pInt, 9041_pInt, 9043_pInt, 9049_pInt, 9059_pInt, 9067_pInt, 9091_pInt, 9103_pInt, 9109_pInt, &
|
|
|
|
9127_pInt, 9133_pInt, 9137_pInt, 9151_pInt, 9157_pInt, 9161_pInt, 9173_pInt, 9181_pInt, 9187_pInt, 9199_pInt, &
|
|
|
|
9203_pInt, 9209_pInt, 9221_pInt, 9227_pInt, 9239_pInt, 9241_pInt, 9257_pInt, 9277_pInt, 9281_pInt, 9283_pInt, &
|
|
|
|
9293_pInt, 9311_pInt, 9319_pInt, 9323_pInt, 9337_pInt, 9341_pInt, 9343_pInt, 9349_pInt, 9371_pInt, 9377_pInt, &
|
|
|
|
9391_pInt, 9397_pInt, 9403_pInt, 9413_pInt, 9419_pInt, 9421_pInt, 9431_pInt, 9433_pInt, 9437_pInt, 9439_pInt, &
|
|
|
|
9461_pInt, 9463_pInt, 9467_pInt, 9473_pInt, 9479_pInt, 9491_pInt, 9497_pInt, 9511_pInt, 9521_pInt, 9533_pInt, &
|
|
|
|
9539_pInt, 9547_pInt, 9551_pInt, 9587_pInt, 9601_pInt, 9613_pInt, 9619_pInt, 9623_pInt, 9629_pInt, 9631_pInt, &
|
|
|
|
9643_pInt, 9649_pInt, 9661_pInt, 9677_pInt, 9679_pInt, 9689_pInt, 9697_pInt, 9719_pInt, 9721_pInt, 9733_pInt/)
|
|
|
|
|
|
|
|
npvec(1201:1300) = (/ &
|
|
|
|
9739_pInt, 9743_pInt, 9749_pInt, 9767_pInt, 9769_pInt, 9781_pInt, 9787_pInt, 9791_pInt, 9803_pInt, 9811_pInt, &
|
|
|
|
9817_pInt, 9829_pInt, 9833_pInt, 9839_pInt, 9851_pInt, 9857_pInt, 9859_pInt, 9871_pInt, 9883_pInt, 9887_pInt, &
|
|
|
|
9901_pInt, 9907_pInt, 9923_pInt, 9929_pInt, 9931_pInt, 9941_pInt, 9949_pInt, 9967_pInt, 9973_pInt,10007_pInt, &
|
|
|
|
10009_pInt,10037_pInt,10039_pInt,10061_pInt,10067_pInt,10069_pInt,10079_pInt,10091_pInt,10093_pInt,10099_pInt, &
|
|
|
|
10103_pInt,10111_pInt,10133_pInt,10139_pInt,10141_pInt,10151_pInt,10159_pInt,10163_pInt,10169_pInt,10177_pInt, &
|
|
|
|
10181_pInt,10193_pInt,10211_pInt,10223_pInt,10243_pInt,10247_pInt,10253_pInt,10259_pInt,10267_pInt,10271_pInt, &
|
|
|
|
10273_pInt,10289_pInt,10301_pInt,10303_pInt,10313_pInt,10321_pInt,10331_pInt,10333_pInt,10337_pInt,10343_pInt, &
|
|
|
|
10357_pInt,10369_pInt,10391_pInt,10399_pInt,10427_pInt,10429_pInt,10433_pInt,10453_pInt,10457_pInt,10459_pInt, &
|
|
|
|
10463_pInt,10477_pInt,10487_pInt,10499_pInt,10501_pInt,10513_pInt,10529_pInt,10531_pInt,10559_pInt,10567_pInt, &
|
|
|
|
10589_pInt,10597_pInt,10601_pInt,10607_pInt,10613_pInt,10627_pInt,10631_pInt,10639_pInt,10651_pInt,10657_pInt/)
|
|
|
|
|
|
|
|
npvec(1301:1400) = (/ &
|
|
|
|
10663_pInt,10667_pInt,10687_pInt,10691_pInt,10709_pInt,10711_pInt,10723_pInt,10729_pInt,10733_pInt,10739_pInt, &
|
|
|
|
10753_pInt,10771_pInt,10781_pInt,10789_pInt,10799_pInt,10831_pInt,10837_pInt,10847_pInt,10853_pInt,10859_pInt, &
|
|
|
|
10861_pInt,10867_pInt,10883_pInt,10889_pInt,10891_pInt,10903_pInt,10909_pInt,19037_pInt,10939_pInt,10949_pInt, &
|
|
|
|
10957_pInt,10973_pInt,10979_pInt,10987_pInt,10993_pInt,11003_pInt,11027_pInt,11047_pInt,11057_pInt,11059_pInt, &
|
|
|
|
11069_pInt,11071_pInt,11083_pInt,11087_pInt,11093_pInt,11113_pInt,11117_pInt,11119_pInt,11131_pInt,11149_pInt, &
|
|
|
|
11159_pInt,11161_pInt,11171_pInt,11173_pInt,11177_pInt,11197_pInt,11213_pInt,11239_pInt,11243_pInt,11251_pInt, &
|
|
|
|
11257_pInt,11261_pInt,11273_pInt,11279_pInt,11287_pInt,11299_pInt,11311_pInt,11317_pInt,11321_pInt,11329_pInt, &
|
|
|
|
11351_pInt,11353_pInt,11369_pInt,11383_pInt,11393_pInt,11399_pInt,11411_pInt,11423_pInt,11437_pInt,11443_pInt, &
|
|
|
|
11447_pInt,11467_pInt,11471_pInt,11483_pInt,11489_pInt,11491_pInt,11497_pInt,11503_pInt,11519_pInt,11527_pInt, &
|
|
|
|
11549_pInt,11551_pInt,11579_pInt,11587_pInt,11593_pInt,11597_pInt,11617_pInt,11621_pInt,11633_pInt,11657_pInt/)
|
|
|
|
|
|
|
|
npvec(1401:1500) = (/ &
|
|
|
|
11677_pInt,11681_pInt,11689_pInt,11699_pInt,11701_pInt,11717_pInt,11719_pInt,11731_pInt,11743_pInt,11777_pInt, &
|
|
|
|
11779_pInt,11783_pInt,11789_pInt,11801_pInt,11807_pInt,11813_pInt,11821_pInt,11827_pInt,11831_pInt,11833_pInt, &
|
|
|
|
11839_pInt,11863_pInt,11867_pInt,11887_pInt,11897_pInt,11903_pInt,11909_pInt,11923_pInt,11927_pInt,11933_pInt, &
|
|
|
|
11939_pInt,11941_pInt,11953_pInt,11959_pInt,11969_pInt,11971_pInt,11981_pInt,11987_pInt,12007_pInt,12011_pInt, &
|
|
|
|
12037_pInt,12041_pInt,12043_pInt,12049_pInt,12071_pInt,12073_pInt,12097_pInt,12101_pInt,12107_pInt,12109_pInt, &
|
|
|
|
12113_pInt,12119_pInt,12143_pInt,12149_pInt,12157_pInt,12161_pInt,12163_pInt,12197_pInt,12203_pInt,12211_pInt, &
|
|
|
|
12227_pInt,12239_pInt,12241_pInt,12251_pInt,12253_pInt,12263_pInt,12269_pInt,12277_pInt,12281_pInt,12289_pInt, &
|
|
|
|
12301_pInt,12323_pInt,12329_pInt,12343_pInt,12347_pInt,12373_pInt,12377_pInt,12379_pInt,12391_pInt,12401_pInt, &
|
|
|
|
12409_pInt,12413_pInt,12421_pInt,12433_pInt,12437_pInt,12451_pInt,12457_pInt,12473_pInt,12479_pInt,12487_pInt, &
|
|
|
|
12491_pInt,12497_pInt,12503_pInt,12511_pInt,12517_pInt,12527_pInt,12539_pInt,12541_pInt,12547_pInt,12553_pInt/)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
endif
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
if(n == -1_pInt) then
|
2007-03-20 19:25:22 +05:30
|
|
|
prime = prime_max
|
2011-12-01 17:31:13 +05:30
|
|
|
else if (n == 0_pInt) then
|
|
|
|
prime = 1_pInt
|
|
|
|
else if (n <= prime_max) then
|
2007-03-20 19:25:22 +05:30
|
|
|
prime = npvec(n)
|
2011-12-01 17:31:13 +05:30
|
|
|
else ! why not use io_error here?
|
|
|
|
prime = 0_pInt
|
2008-07-09 01:08:22 +05:30
|
|
|
!$OMP CRITICAL (write2out)
|
2011-12-01 17:31:13 +05:30
|
|
|
write (6, '(a)') ' '
|
|
|
|
write (6, '(a)') 'PRIME - Fatal error!'
|
|
|
|
write (6, '(a,i6)') ' Illegal prime index N = ', n
|
|
|
|
write (6, '(a,i6)') ' N must be between 0 and PRIME_MAX = ', prime_max
|
2007-03-20 19:25:22 +05:30
|
|
|
call flush(6)
|
2008-07-09 01:08:22 +05:30
|
|
|
!$OMP END CRITICAL (write2out)
|
2007-03-20 19:25:22 +05:30
|
|
|
stop
|
|
|
|
end if
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction prime
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! volume of tetrahedron given by four vertices
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
pure function math_volTetrahedron(v1,v2,v3,v4)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal) math_volTetrahedron
|
|
|
|
real(pReal), dimension (3), intent(in) :: v1,v2,v3,v4
|
|
|
|
real(pReal), dimension (3,3) :: m
|
2007-03-20 19:25:22 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
m(1:3,1) = v1-v2
|
|
|
|
m(1:3,2) = v2-v3
|
|
|
|
m(1:3,3) = v3-v4
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
math_volTetrahedron = math_det3x3(m)/6.0_pReal
|
|
|
|
|
2011-08-01 15:41:32 +05:30
|
|
|
endfunction math_volTetrahedron
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! rotate 3x3 tensor forward
|
|
|
|
!**************************************************************************
|
|
|
|
pure function math_rotate_forward3x3(tensor,rot_tensor)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3) :: math_rotate_forward3x3
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
|
|
|
|
|
|
|
math_rotate_forward3x3 = math_mul33x33(rot_tensor,&
|
|
|
|
math_mul33x33(tensor,math_transpose3x3(rot_tensor)))
|
|
|
|
|
|
|
|
endfunction math_rotate_forward3x3
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
|
|
|
! rotate 3x3 tensor backward
|
|
|
|
!**************************************************************************
|
|
|
|
pure function math_rotate_backward3x3(tensor,rot_tensor)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3) :: math_rotate_backward3x3
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
|
|
|
|
|
|
|
math_rotate_backward3x3 = math_mul33x33(math_transpose3x3(rot_tensor),&
|
|
|
|
math_mul33x33(tensor,rot_tensor))
|
|
|
|
|
|
|
|
endfunction math_rotate_backward3x3
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
2011-10-25 19:08:24 +05:30
|
|
|
! rotate 3x3x3x3 tensor
|
|
|
|
! C'_ijkl=g_im*g_jn*g_ko*g_lp*C_mnop
|
2011-10-24 23:56:34 +05:30
|
|
|
!**************************************************************************
|
|
|
|
pure function math_rotate_forward3x3x3x3(tensor,rot_tensor)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3,3,3) :: math_rotate_forward3x3x3x3
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: rot_tensor
|
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: tensor
|
2011-10-25 19:08:24 +05:30
|
|
|
integer(pInt) :: i,j,k,l,m,n,o,p
|
2011-10-24 23:56:34 +05:30
|
|
|
|
2011-10-25 19:08:24 +05:30
|
|
|
math_rotate_forward3x3x3x3= 0.0_pReal
|
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
do i = 1_pInt,3_pInt; do j = 1_pInt,3_pInt; do k = 1_pInt,3_pInt; do l = 1_pInt,3_pInt
|
|
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt; do p = 1_pInt,3_pInt
|
2011-10-25 19:08:24 +05:30
|
|
|
math_rotate_forward3x3x3x3(i,j,k,l) = tensor(i,j,k,l)+rot_tensor(m,i)*rot_tensor(n,j)*&
|
|
|
|
rot_tensor(o,k)*rot_tensor(p,l)*tensor(m,n,o,p)
|
|
|
|
enddo; enddo; enddo; enddo; enddo; enddo; enddo; enddo
|
2011-10-24 23:56:34 +05:30
|
|
|
|
|
|
|
endfunction math_rotate_forward3x3x3x3
|
2009-01-20 00:40:58 +05:30
|
|
|
|
2011-12-01 17:31:13 +05:30
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Functions below are taken from the old postprocessingMath.f90
|
|
|
|
! mostly they are used in combination with f2py to build fortran
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
|
|
|
|
! put the next two funtions into mesh?
|
|
|
|
function mesh_location(idx,resolution)
|
|
|
|
! small helper functions for indexing
|
|
|
|
! CAREFULL, index and location runs from 0 to N-1 (python style)
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: idx
|
|
|
|
integer(pInt), intent(in), dimension(3) :: resolution
|
|
|
|
integer(pInt), dimension(3) :: mesh_location
|
|
|
|
mesh_location = (/modulo(idx/ resolution(3) / resolution(2),resolution(1)), &
|
|
|
|
modulo(idx/ resolution(3), resolution(2)), &
|
|
|
|
modulo(idx, resolution(3))/)
|
|
|
|
|
|
|
|
end function mesh_location
|
|
|
|
|
|
|
|
|
|
|
|
function mesh_index(location,resolution)
|
|
|
|
! small helper functions for indexing
|
|
|
|
! CAREFULL, index and location runs from 0 to N-1 (python style)
|
|
|
|
integer(pInt), intent(in), dimension(3) :: resolution, location
|
|
|
|
integer(pInt) :: mesh_index
|
|
|
|
|
|
|
|
mesh_index = modulo(location(3), resolution(3)) +&
|
|
|
|
(modulo(location(2), resolution(2)))*resolution(3) +&
|
|
|
|
(modulo(location(1), resolution(1)))*resolution(3)*resolution(2)
|
|
|
|
|
|
|
|
end function mesh_index
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine volume_compare(res,geomdim,defgrad,nodes,volume_mismatch)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to calculate the mismatch between volume of reconstructed (compatible
|
|
|
|
! cube and determinant of defgrad at the FP
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3,3) :: defgrad
|
|
|
|
real(pReal), intent(in), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1), res(2), res(3)) :: volume_mismatch
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(8,3) :: coords
|
|
|
|
integer(pInt) i,j,k
|
|
|
|
real(pReal) vol_initial
|
|
|
|
|
|
|
|
print*, 'Calculating volume mismatch'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
|
|
|
|
vol_initial = geomdim(1)*geomdim(2)*geomdim(3)/(real(res(1)*res(2)*res(3), pReal))
|
|
|
|
do k = 1_pInt,res(3)
|
|
|
|
do j = 1_pInt,res(2)
|
|
|
|
do i = 1_pInt,res(1)
|
|
|
|
coords(1,1:3) = nodes(i, j, k ,1:3)
|
|
|
|
coords(2,1:3) = nodes(i+1_pInt,j, k ,1:3)
|
|
|
|
coords(3,1:3) = nodes(i+1_pInt,j+1_pInt,k ,1:3)
|
|
|
|
coords(4,1:3) = nodes(i, j+1_pInt,k ,1:3)
|
|
|
|
coords(5,1:3) = nodes(i, j, k+1_pInt,1:3)
|
|
|
|
coords(6,1:3) = nodes(i+1_pInt,j, k+1_pInt,1:3)
|
|
|
|
coords(7,1:3) = nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3)
|
|
|
|
coords(8,1:3) = nodes(i, j+1_pInt,k+1_pInt,1:3)
|
|
|
|
volume_mismatch(i,j,k) = abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(8,1:3),coords(4,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(8,1:3),coords(5,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(3,1:3),coords(4,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(1,1:3),coords(3,1:3),coords(2,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(5,1:3),coords(2,1:3),coords(6,1:3))) &
|
|
|
|
+ abs(math_volTetrahedron(coords(7,1:3),coords(5,1:3),coords(2,1:3),coords(1,1:3)))
|
|
|
|
volume_mismatch(i,j,k) = volume_mismatch(i,j,k)/math_det3x3(defgrad(i,j,k,1:3,1:3))
|
|
|
|
enddo; enddo; enddo
|
|
|
|
volume_mismatch = volume_mismatch/vol_initial
|
|
|
|
|
|
|
|
end subroutine volume_compare
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine shape_compare(res,geomdim,defgrad,nodes,centroids,shape_mismatch)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to calculate the mismatch between the vectors from the central point to
|
|
|
|
! the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
|
|
|
|
! the initial volume element with the current deformation gradient
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3,3) :: defgrad
|
|
|
|
real(pReal), intent(in), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3) :: centroids
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1), res(2), res(3)) :: shape_mismatch
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(8,3) :: coords_initial
|
|
|
|
integer(pInt) i,j,k
|
|
|
|
|
|
|
|
print*, 'Calculating shape mismatch'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
|
|
|
|
coords_initial(1,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(2,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(3,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(4,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
-geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(5,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(6,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
-geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(7,1:3) = (/+geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
coords_initial(8,1:3) = (/-geomdim(1)/2.0_pReal/real(res(1),pReal),&
|
|
|
|
+geomdim(2)/2.0_pReal/real(res(2),pReal),&
|
|
|
|
+geomdim(3)/2.0_pReal/real(res(3),pReal)/)
|
|
|
|
do i=1_pInt,8_pInt
|
|
|
|
enddo
|
|
|
|
do k = 1_pInt,res(3)
|
|
|
|
do j = 1_pInt,res(2)
|
|
|
|
do i = 1_pInt,res(1)
|
|
|
|
shape_mismatch(i,j,k) = &
|
|
|
|
sqrt(sum((nodes(i, j, k, 1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(1,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i+1_pInt,j, k, 1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(2,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i+1_pInt,j+1_pInt,k, 1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(3,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i, j+1_pInt,k, 1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(4,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i, j, k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(5,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i+1_pInt,j, k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(6,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(7,1:3)))**2.0_pReal))&
|
|
|
|
+ sqrt(sum((nodes(i, j+1_pInt,k+1_pInt,1:3) - centroids(i,j,k,1:3)&
|
|
|
|
- matmul(defgrad(i,j,k,1:3,1:3), coords_initial(8,1:3)))**2.0_pReal))
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine shape_compare
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine mesh_regular_grid(res,geomdim,defgrad_av,centroids,nodes)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to build mesh of (distoreted) cubes for given coordinates (= center of the cubes)
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2), res(3), 3) :: centroids
|
|
|
|
! output variables
|
|
|
|
real(pReal),intent(out), dimension(res(1)+1_pInt,res(2)+1_pInt,res(3)+1_pInt,3) :: nodes
|
|
|
|
! variables with dimension depending on input
|
|
|
|
real(pReal), dimension(res(1)+2_pInt,res(2)+2_pInt,res(3)+2_pInt,3) :: wrappedCentroids
|
|
|
|
! other variables
|
|
|
|
integer(pInt) :: i,j,k,n
|
|
|
|
integer(pInt), dimension(3) :: diag = 0_pInt , shift = 0_pInt, lookup = 0_pInt, me
|
|
|
|
integer(pInt), dimension(3,8) :: neighbor = reshape((/ &
|
|
|
|
0_pInt, 0_pInt, 0_pInt, &
|
|
|
|
1_pInt, 0_pInt, 0_pInt, &
|
|
|
|
1_pInt, 1_pInt, 0_pInt, &
|
|
|
|
0_pInt, 1_pInt, 0_pInt, &
|
|
|
|
0_pInt, 0_pInt, 1_pInt, &
|
|
|
|
1_pInt, 0_pInt, 1_pInt, &
|
|
|
|
1_pInt, 1_pInt, 1_pInt, &
|
|
|
|
0_pInt, 1_pInt, 1_pInt &
|
|
|
|
/), &
|
|
|
|
(/3,8/))
|
|
|
|
print*, 'Meshing cubes around centroids'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
|
|
|
|
nodes = 0.0_pReal
|
|
|
|
wrappedCentroids = 0.0_pReal
|
|
|
|
wrappedCentroids(2_pInt:res(1)+1_pInt,2_pInt:res(2)+1_pInt,2_pInt:res(3)+1_pInt,1:3) = centroids
|
|
|
|
|
|
|
|
do k = 0_pInt,res(3)+1_pInt
|
|
|
|
do j = 0_pInt,res(2)+1_pInt
|
|
|
|
do i = 0_pInt,res(1)+1_pInt
|
|
|
|
if (k==0_pInt .or. k==res(3)+1_pInt .or. & ! z skin
|
|
|
|
j==0_pInt .or. j==res(2)+1_pInt .or. & ! y skin
|
|
|
|
i==0_pInt .or. i==res(1)+1_pInt ) then ! x skin
|
|
|
|
me = (/i,j,k/) ! me on skin
|
|
|
|
shift = sign(abs(res+diag-2_pInt*me)/(res+diag),res+diag-2_pInt*me)
|
|
|
|
lookup = me-diag+shift*res
|
|
|
|
wrappedCentroids(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = centroids(lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt,1:3) - &
|
|
|
|
matmul(defgrad_av, shift*geomdim)
|
|
|
|
endif
|
|
|
|
enddo; enddo; enddo
|
|
|
|
do k = 0_pInt,res(3)
|
|
|
|
do j = 0_pInt,res(2)
|
|
|
|
do i = 0_pInt,res(1)
|
|
|
|
do n = 1_pInt,8_pInt
|
|
|
|
nodes(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = nodes(i+1_pInt,j+1_pInt,k+1_pInt,3) + wrappedCentroids(i+1_pInt+neighbor(1_pInt,n), &
|
|
|
|
j+1_pInt+neighbor(2,n), &
|
|
|
|
k+1_pInt+neighbor(3,n),1:3)
|
|
|
|
enddo; enddo; enddo; enddo
|
|
|
|
nodes = nodes/8.0_pReal
|
|
|
|
|
|
|
|
end subroutine mesh_regular_grid
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine deformed_linear(res,geomdim,defgrad_av,defgrad,coord_avgCorner)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to calculate coordinates in current configuration for given defgrad
|
|
|
|
! using linear interpolation (blurres out high frequency defomation)
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
|
|
real(pReal), intent(in), dimension( res(1),res(2),res(3),3,3) :: defgrad
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension( res(1),res(2),res(3),3) :: coord_avgCorner
|
|
|
|
! variables with dimension depending on input
|
|
|
|
real(pReal), dimension(8,6,res(1),res(2),res(3),3) :: coord
|
|
|
|
real(pReal), dimension( 8,res(1),res(2),res(3),3) :: coord_avgOrder
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(3) :: myStep, fones = 1.0_pReal, parameter_coords, negative, positive
|
|
|
|
integer(pInt), dimension(3) :: rear, init, ones = 1_pInt, oppo, me
|
|
|
|
integer(pInt) i, j, k, s, o
|
|
|
|
integer(pInt), dimension(3,8) :: corner = reshape((/ &
|
|
|
|
0_pInt, 0_pInt, 0_pInt,&
|
|
|
|
1_pInt, 0_pInt, 0_pInt,&
|
|
|
|
1_pInt, 1_pInt, 0_pInt,&
|
|
|
|
0_pInt, 1_pInt, 0_pInt,&
|
|
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
|
|
0_pInt, 1_pInt, 1_pInt,&
|
|
|
|
0_pInt, 0_pInt, 1_pInt,&
|
|
|
|
1_pInt, 0_pInt, 1_pInt &
|
|
|
|
/), &
|
|
|
|
(/3,8/))
|
|
|
|
integer(pInt), dimension(3,8) :: step = reshape((/ &
|
|
|
|
1_pInt, 1_pInt, 1_pInt,&
|
|
|
|
-1_pInt, 1_pInt, 1_pInt,&
|
|
|
|
-1_pInt,-1_pInt, 1_pInt,&
|
|
|
|
1_pInt,-1_pInt, 1_pInt,&
|
|
|
|
-1_pInt,-1_pInt,-1_pInt,&
|
|
|
|
1_pInt,-1_pInt,-1_pInt,&
|
|
|
|
1_pInt, 1_pInt,-1_pInt,&
|
|
|
|
-1_pInt, 1_pInt,-1_pInt &
|
|
|
|
/), &
|
|
|
|
(/3,8/))
|
|
|
|
integer(pInt), dimension(3,6) :: order = reshape((/ &
|
|
|
|
1_pInt, 2_pInt, 3_pInt,&
|
|
|
|
1_pInt, 3_pInt, 2_pInt,&
|
|
|
|
2_pInt, 1_pInt, 3_pInt,&
|
|
|
|
2_pInt, 3_pInt, 1_pInt,&
|
|
|
|
3_pInt, 1_pInt, 2_pInt,&
|
|
|
|
3_pInt, 2_pInt, 1_pInt &
|
|
|
|
/), &
|
|
|
|
(/3,6/))
|
|
|
|
|
|
|
|
print*, 'Restore geometry using linear integration'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
|
|
|
|
coord_avgOrder = 0.0_pReal
|
|
|
|
|
|
|
|
do s = 0_pInt, 7_pInt ! corners (from 0 to 7)
|
|
|
|
init = corner(:,s+1_pInt)*(res-ones) +ones
|
|
|
|
oppo = corner(:,mod((s+4_pInt),8_pInt)+1_pInt)*(res-ones) +ones
|
|
|
|
do o=1_pInt,6_pInt ! orders (from 1 to 6)
|
|
|
|
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s+1_pInt)
|
|
|
|
rear(order(2,o)) = init(order(2,o))
|
|
|
|
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s+1_pInt)
|
|
|
|
rear(order(1,o)) = init(order(1,o))
|
|
|
|
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s+1_pInt)
|
|
|
|
me(order(1,o)) = i
|
|
|
|
me(order(2,o)) = j
|
|
|
|
me(order(3,o)) = k
|
|
|
|
if ( (me(1)==init(1)).and.(me(2)==init(2)).and. (me(3)==init(3)) ) then
|
|
|
|
coord(s+1_pInt,o,me(1),me(2),me(3),1:3) = geomdim * (matmul(defgrad_av,corner(1:3,s+1)) + &
|
|
|
|
matmul(defgrad(me(1),me(2),me(3),1:3,1:3),0.5*step(1:3,s+1_pInt)/res))
|
|
|
|
|
|
|
|
else
|
|
|
|
myStep = (me-rear)*geomdim/res
|
|
|
|
coord(s+1_pInt,o,me(1),me(2),me(3),1:3) = coord(s+1_pInt,o,rear(1),rear(2),rear(3),1:3) + &
|
|
|
|
0.5*matmul(defgrad(me(1),me(2),me(3),1:3,1:3) + &
|
|
|
|
defgrad(rear(1),rear(2),rear(3),1:3,1:3),myStep)
|
|
|
|
endif
|
|
|
|
rear = me
|
|
|
|
enddo; enddo; enddo; enddo
|
|
|
|
do i = 1_pInt,6_pInt
|
|
|
|
coord_avgOrder(s+1_pInt,1:res(1),1:res(2),1:res(3),1:3) = coord_avgOrder(s+1_pInt, 1:res(1),1:res(2),1:res(3),1:3)&
|
|
|
|
+ coord(s+1_pInt,i,1:res(1),1:res(2),1:res(3),1:3)/6.0
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
|
|
|
|
do k = 0_pInt, res(3)-1_pInt
|
|
|
|
do j = 0_pInt, res(2)-1_pInt
|
|
|
|
do i = 0_pInt, res(1)-1_pInt
|
|
|
|
parameter_coords = (2.0_pReal*(/real(i,pReal)+0.0_pReal,real(j,pReal)+0.0_pReal,real(k,pReal)+0.0_pReal/)&
|
|
|
|
-real(res,pReal)+fones)/(real(res,pReal)-fones)
|
|
|
|
positive = fones + parameter_coords
|
|
|
|
negative = fones - parameter_coords
|
|
|
|
coord_avgCorner(i+1_pInt,j+1_pInt,k+1_pInt,1:3)&
|
|
|
|
=(coord_avgOrder(1,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*negative(2)*negative(3)&
|
|
|
|
+ coord_avgOrder(2,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*negative(2)*negative(3)&
|
|
|
|
+ coord_avgOrder(3,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*positive(2)*negative(3)&
|
|
|
|
+ coord_avgOrder(4,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*positive(2)*negative(3)&
|
|
|
|
+ coord_avgOrder(5,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*positive(2)*positive(3)&
|
|
|
|
+ coord_avgOrder(6,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*positive(2)*positive(3)&
|
|
|
|
+ coord_avgOrder(7,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *negative(1)*negative(2)*positive(3)&
|
|
|
|
+ coord_avgOrder(8,i+1_pInt,j+1_pInt,k+1_pInt,1:3) *positive(1)*negative(2)*positive(3))*0.125
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine deformed_linear
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine deformed_fft(res,geomdim,defgrad_av,scaling,defgrad,coords)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! Routine to calculate coordinates in current configuration for given defgrad
|
|
|
|
! using integration in Fourier space (more accurate than deformed(...))
|
|
|
|
!
|
|
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(3,3) :: defgrad_av
|
|
|
|
real(pReal), intent(in) :: scaling
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),3,3) :: defgrad
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),3) :: coords
|
|
|
|
! variables with dimension depending on input
|
|
|
|
complex(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3) :: coords_fft
|
|
|
|
complex(pReal), dimension(res(1), res(2),res(3),3,3) :: defgrad_fft
|
|
|
|
! other variables
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
integer(pInt), dimension(3) :: k_s
|
|
|
|
real(pReal), dimension(3) :: step, offset_coords
|
|
|
|
integer*8, dimension(2) :: plan_fft
|
|
|
|
|
|
|
|
print*, 'Restore geometry using FFT-based integration'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
|
|
|
|
call dfftw_set_timelimit(fftw_timelimit)
|
|
|
|
call dfftw_plan_many_dft(plan_fft(1),3,(/res(1),res(2),res(3)/),9,&
|
|
|
|
defgrad_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),&
|
|
|
|
defgrad_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),-1,fftw_planner_flag) ! -1 = FFTW_FORWARD
|
|
|
|
call dfftw_plan_many_dft_c2r(plan_fft(2),3,(/res(1),res(2),res(3)/),3,&
|
|
|
|
coords_fft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),&
|
|
|
|
coords, (/res(1), res(2),res(3)/),1, res(1)* res(2)*res(3),fftw_planner_flag)
|
|
|
|
|
|
|
|
coords_fft = 0.0
|
|
|
|
defgrad_fft = defgrad ! cannot do memory efficient r2c transform as input field is destroyed during plan creation
|
|
|
|
|
|
|
|
step = geomdim/real(res, pReal)
|
|
|
|
|
|
|
|
call dfftw_execute_dft(plan_fft(1), defgrad_fft, defgrad_fft)
|
|
|
|
|
|
|
|
do k = 1_pInt, res(3)
|
|
|
|
k_s(3) = k-1_pInt
|
|
|
|
if(k > res(3)/2_pInt+1_pInt) k_s(3) = k_s(3)-res(3)
|
|
|
|
do j = 1_pInt, res(2)
|
|
|
|
k_s(2) = j-1_pInt
|
|
|
|
if(j > res(2)/2_pInt+1_pInt) k_s(2) = k_s(2)-res(2)
|
|
|
|
do i = 1_pInt, res(1)/2_pInt+1_pInt
|
|
|
|
k_s(1) = i-1_pInt
|
|
|
|
if(i/=1_pInt) coords_fft(i,j,k,1:3) = coords_fft(i,j,k,1:3)&
|
|
|
|
+ defgrad_fft(i,j,k,1:3,1)*geomdim(1)/(real(k_s(1),pReal)*cmplx(0.0_pReal,1.0_pReal)*pi*2.0_pReal)
|
|
|
|
if(j/=1_pInt) coords_fft(i,j,k,1:3) = coords_fft(i,j,k,1:3)&
|
|
|
|
+ defgrad_fft(i,j,k,1:3,2)*geomdim(2)/(real(k_s(2),pReal)*cmplx(0.0_pReal,1.0_pReal)*pi*2.0_pReal)
|
|
|
|
if(k/=1_pInt) coords_fft(i,j,k,1:3) = coords_fft(i,j,k,1:3)&
|
|
|
|
+ defgrad_fft(i,j,k,1:3,3)*geomdim(3)/(real(k_s(3),pReal)*cmplx(0.0_pReal,1.0_pReal)*pi*2.0_pReal)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
call dfftw_execute_dft_c2r(plan_fft(2), coords_fft, coords)
|
|
|
|
coords = coords/real(res(1)*res(2)*res(3))
|
|
|
|
|
|
|
|
offset_coords = matmul(defgrad(1,1,1,1:3,1:3),step/2.0_pReal) - scaling*coords(1,1,1,1:3)
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
coords(i,j,k,1:3) = scaling*coords(i,j,k,1:3) + offset_coords + matmul(defgrad_av,&
|
|
|
|
(/step(1)*real(i-1_pInt,pReal),&
|
|
|
|
step(2)*real(j-1_pInt,pReal),&
|
|
|
|
step(3)*real(k-1_pInt,pReal)/))
|
|
|
|
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine deformed_fft
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine curl_fft(res,geomdim,vec_tens,field,curl_field)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! calculates curl field using differentation in Fourier space
|
|
|
|
! use vec_tens to decide if tensor (3) or vector (1)
|
|
|
|
|
|
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
integer(pInt), intent(in) :: vec_tens
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),3,vec_tens) :: field
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),3,vec_tens) :: curl_field
|
|
|
|
! variables with dimension depending on input
|
|
|
|
complex(pReal), dimension(res(1), res(2),res(3),3,vec_tens) :: field_fft
|
|
|
|
complex(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3,vec_tens) :: curl_field_fft
|
|
|
|
real(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3) :: xi
|
|
|
|
! other variables
|
|
|
|
integer(pInt) i, j, k
|
|
|
|
integer*8 :: plan_fft(2)
|
|
|
|
|
|
|
|
print*, 'Calculating curl of vector/tensor field'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
|
|
|
|
call dfftw_set_timelimit(fftw_timelimit)
|
|
|
|
call dfftw_plan_many_dft(plan_fft(1),3,(/res(1),res(2),res(3)/),vec_tens*3_pInt,&
|
|
|
|
field_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),&
|
|
|
|
field_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),-1,fftw_planner_flag) ! -1 = FFTW_FORWARD
|
|
|
|
call dfftw_plan_many_dft_c2r(plan_fft(2),3,(/res(1),res(2),res(3)/),vec_tens*3_pInt,&
|
|
|
|
curl_field_fft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),&
|
|
|
|
curl_field,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),fftw_planner_flag)
|
|
|
|
|
|
|
|
field_fft = field ! cannot do memory efficient r2c transform as input field is destroyed during plan creation
|
|
|
|
|
|
|
|
call dfftw_execute_dft_r2c(plan_fft(1), field_fft, field_fft)
|
|
|
|
|
|
|
|
do k = 0_pInt, res(3)-1_pInt
|
|
|
|
do j = 0_pInt, res(2)-1_pInt
|
|
|
|
do i = 0_pInt, res(1)/2_pInt
|
|
|
|
xi(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = real((/i,j,k/), pReal)/geomdim
|
|
|
|
if(k==res(3)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,3)= 0.0_pReal ! set highest frequencies to zero
|
|
|
|
if(j==res(2)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,2)= 0.0_pReal
|
|
|
|
if(i==res(1)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,1)= 0.0_pReal
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
do k = 1, res(3)
|
|
|
|
do j = 1, res(2)
|
|
|
|
do i = 1, res(1)/2+1
|
|
|
|
curl_field_fft(i,j,k,1,vec_tens) = sum(field_fft(i,j,k,1,:)*xi(i,j,k,:))
|
|
|
|
if(vec_tens == 3) then
|
|
|
|
curl_field_fft (i,j,k,2,vec_tens) = sum(field_fft(i,j,k,2,:)*xi(i,j,k,:))
|
|
|
|
curl_field_fft(i,j,k,3,vec_tens) = sum(field_fft(i,j,k,3,:)*xi(i,j,k,:))
|
|
|
|
endif
|
|
|
|
enddo; enddo; enddo
|
|
|
|
! divergence_field_fft = divergence_field_fft*img*2.0*pi
|
|
|
|
|
|
|
|
call dfftw_execute_dft_c2r(plan_fft(2), curl_field_fft, curl_field)
|
|
|
|
|
|
|
|
end subroutine curl_fft
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine divergence_fft(res,geomdim,vec_tens,field,divergence_field)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! calculates divergence field using integration in Fourier space
|
|
|
|
! use vec_tens to decide if tensor (3) or vector (1)
|
|
|
|
|
|
|
|
use numerics, only: fftw_timelimit, fftw_planner_flag
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
integer(pInt), intent(in) :: vec_tens
|
|
|
|
real(pReal), intent(in), dimension(res(1), res(2),res(3),vec_tens,3) :: field
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1), res(2),res(3),vec_tens) :: divergence_field
|
|
|
|
! variables with dimension depending on input
|
|
|
|
complex(pReal), dimension(res(1) ,res(2),res(3),vec_tens,3) :: field_fft
|
|
|
|
complex(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),vec_tens) :: divergence_field_fft
|
|
|
|
real(pReal), dimension(res(1)/2_pInt+1_pInt,res(2),res(3),3) :: xi
|
|
|
|
! other variables
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
complex(pReal), parameter :: img = cmplx(0.0_pReal,1.0_pReal)
|
|
|
|
integer*8, dimension(2) :: plan_fft
|
|
|
|
|
|
|
|
call dfftw_set_timelimit(fftw_timelimit)
|
|
|
|
call dfftw_plan_many_dft(plan_fft(1),3,(/res(1),res(2),res(3)/),vec_tens*3_pInt,&
|
|
|
|
field_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),&
|
|
|
|
field_fft,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),-1,fftw_planner_flag) ! -1 = FFTW_FORWARD
|
|
|
|
call dfftw_plan_many_dft_c2r(plan_fft(2),3,(/res(1),res(2),res(3)/),vec_tens,&
|
|
|
|
divergence_field_fft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),&
|
|
|
|
divergence_field,(/res(1),res(2),res(3)/),1,res(1)*res(2)*res(3),fftw_planner_flag)
|
|
|
|
|
|
|
|
print*, 'Calculating divergence of tensor/vector field using FFT'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
|
|
|
|
field_fft = field ! cannot do memory efficient r2c transform as input field is destroyed during plan creation
|
|
|
|
|
|
|
|
call dfftw_execute_dft_r2c(plan_fft(1), field_fft, field_fft)
|
|
|
|
|
|
|
|
! Alternative calculation of discrete frequencies k_s, ordered as in FFTW (wrap around)
|
|
|
|
! do k = 0,res(3)/2 -1
|
|
|
|
! do j = 0,res(2)/2 -1
|
|
|
|
! do i = 0,res(1)/2 -1
|
|
|
|
! xi(1+mod(res(1)-i,res(1)),1+mod(res(2)-j,res(2)),1+mod(res(3)-k,res(3)),:) = (/-i,-j,-k/)/geomdim
|
|
|
|
! xi(1+i, 1+mod(res(2)-j,res(2)),1+mod(res(3)-k,res(3)),:) = (/ i,-j,-k/)/geomdim
|
|
|
|
! xi(1+mod(res(1)-i,res(1)),1+j, 1+mod(res(3)-k,res(3)),:) = (/-i, j,-k/)/geomdim
|
|
|
|
! xi(1+i, 1+j, 1+mod(res(3)-k,res(3)),:) = (/ i, j,-k/)/geomdim
|
|
|
|
! xi(1+mod(res(1)-i,res(1)),1+mod(res(2)-j,res(2)),1+k, :) = (/-i,-j, k/)/geomdim
|
|
|
|
! xi(1+i, 1+mod(res(2)-j,res(2)),1+k, :) = (/ i,-j, k/)/geomdim
|
|
|
|
! xi(1+mod(res(1)-i,res(1)),1+j, 1+k, :) = (/-i, j, k/)/geomdim
|
|
|
|
! xi(1+i, 1+j, 1+k, :) = (/ i, j, k/)/geomdim
|
|
|
|
! xi(1+i, 1+j, 1+k, :) = (/ i, j, k/)/geomdim
|
|
|
|
! xi(1+mod(res(1)-i,res(1)),1+j, 1+k, :) = (/-i, j, k/)/geomdim
|
|
|
|
! xi(1+i, 1+mod(res(2)-j,res(2)),1+k, :) = (/ i,-j, k/)/geomdim
|
|
|
|
! xi(1+mod(res(1)-i,res(1)),1+mod(res(2)-j,res(2)),1+k, :) = (/-i,-j, k/)/geomdim
|
|
|
|
! xi(1+i, 1+j, 1+mod(res(3)-k,res(3)),:) = (/ i, j,-k/)/geomdim
|
|
|
|
! xi(1+mod(res(1)-i,res(1)),1+j, 1+mod(res(3)-k,res(3)),:) = (/-i, j,-k/)/geomdim
|
|
|
|
! xi(1+i, 1+mod(res(2)-j,res(2)),1+mod(res(3)-k,res(3)),:) = (/ i,-j,-k/)/geomdim
|
|
|
|
! xi(1+mod(res(1)-i,res(1)),1+mod(res(2)-j,res(2)),1+mod(res(3)-k,res(3)),:) = (/-i,-j,-k/)/geomdim
|
|
|
|
! enddo; enddo; enddo
|
|
|
|
|
|
|
|
do k = 0_pInt, res(3)-1_pInt
|
|
|
|
do j = 0_pInt, res(2)-1_pInt
|
|
|
|
do i = 0_pInt, res(1)/2_pInt
|
|
|
|
xi(i+1_pInt,j+1_pInt,k+1_pInt,1:3) = (/real(i,pReal),real(j,pReal),real(k,pReal)/)/geomdim
|
|
|
|
if(k==res(3)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,3)= 0.0_pReal ! set highest frequencies to zero
|
|
|
|
if(j==res(2)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,2)= 0.0_pReal
|
|
|
|
if(i==res(1)/2_pInt) xi(i+1_pInt,j+1_pInt,k+1_pInt,1)= 0.0_pReal
|
|
|
|
enddo; enddo; enddo
|
|
|
|
do k = 1_pInt, res(3)
|
|
|
|
do j = 1_pInt, res(2)
|
|
|
|
do i = 1_pInt, res(1)/2_pInt+1_pInt
|
|
|
|
divergence_field_fft(i,j,k,1) = sum(field_fft(i,j,k,1,1:3)*xi(i,j,k,1:3))
|
|
|
|
if(vec_tens == 3_pInt) then
|
|
|
|
divergence_field_fft(i,j,k,2) = sum(field_fft(i,j,k,2,1:3)*xi(i,j,k,1:3))
|
|
|
|
divergence_field_fft(i,j,k,3) = sum(field_fft(i,j,k,3,1:3)*xi(i,j,k,1:3))
|
|
|
|
endif
|
|
|
|
enddo; enddo; enddo
|
|
|
|
divergence_field_fft = divergence_field_fft*img*2.0_pReal*pi
|
|
|
|
|
|
|
|
call dfftw_execute_dft_c2r(plan_fft(2), divergence_field_fft, divergence_field)
|
|
|
|
! why not weighting the divergence field?
|
|
|
|
end subroutine divergence_fft
|
|
|
|
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine divergence_fdm(res,geomdim,vec_tens,order,field,divergence_field)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
! calculates divergence field using FDM with variable accuracy
|
|
|
|
! use vec_tes to decide if tensor (3) or vector (1)
|
|
|
|
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
integer(pInt), intent(in) :: vec_tens
|
|
|
|
integer(pInt), intent(inout) :: order
|
|
|
|
real(pReal), intent(in), dimension(3) :: geomdim
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),vec_tens,3) :: field
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),vec_tens) :: divergence_field
|
|
|
|
! other variables
|
|
|
|
integer(pInt), dimension(6,3) :: coordinates
|
|
|
|
integer(pInt) i, j, k, m, l
|
|
|
|
real(pReal), dimension(4,4), parameter :: FDcoefficient = reshape((/ &
|
|
|
|
1.0_pReal/2.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal,& !from http://en.wikipedia.org/wiki/Finite_difference_coefficients
|
|
|
|
2.0_pReal/3.0_pReal,-1.0_pReal/12.0_pReal, 0.0_pReal, 0.0_pReal,&
|
|
|
|
3.0_pReal/4.0_pReal,-3.0_pReal/20.0_pReal,1.0_pReal/ 60.0_pReal, 0.0_pReal,&
|
|
|
|
4.0_pReal/5.0_pReal,-1.0_pReal/ 5.0_pReal,4.0_pReal/105.0_pReal,-1.0_pReal/280.0_pReal/),&
|
|
|
|
(/4,4/))
|
|
|
|
|
|
|
|
print*, 'Calculating divergence of tensor/vector field using FDM'
|
|
|
|
print '(a,/,e12.5,e12.5,e12.5)', ' Dimension:', geomdim
|
|
|
|
print '(a,/,i5,i5,i5)', ' Resolution:', res
|
|
|
|
|
|
|
|
divergence_field = 0.0_pReal
|
|
|
|
order = order + 1_pInt
|
|
|
|
do k = 0_pInt, res(3)-1_pInt; do j = 0_pInt, res(2)-1_pInt; do i = 0_pInt, res(1)-1_pInt
|
|
|
|
do m = 1_pInt, order
|
|
|
|
coordinates(1,1:3) = mesh_location(mesh_index((/i+m,j,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/)) + (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(2,1:3) = mesh_location(mesh_index((/i-m,j,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/)) + (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(3,1:3) = mesh_location(mesh_index((/i,j+m,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/)) + (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(4,1:3) = mesh_location(mesh_index((/i,j-m,k/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/)) + (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(5,1:3) = mesh_location(mesh_index((/i,j,k+m/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/)) + (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
coordinates(6,1:3) = mesh_location(mesh_index((/i,j,k-m/),(/res(1),res(2),res(3)/)),(/res(1),res(2),res(3)/)) + (/1_pInt,1_pInt,1_pInt/)
|
|
|
|
do l = 1_pInt, vec_tens
|
|
|
|
divergence_field(i+1_pInt,j+1_pInt,k+1_pInt,l) = divergence_field(i+1_pInt,j+1_pInt,k+1_pInt,l) + FDcoefficient(m,order) * &
|
|
|
|
((field(coordinates(1,1),coordinates(1,2),coordinates(1,3),l,1)- &
|
|
|
|
field(coordinates(2,1),coordinates(2,2),coordinates(2,3),l,1))*real(res(1),pReal)/geomdim(1) +&
|
|
|
|
(field(coordinates(3,1),coordinates(3,2),coordinates(3,3),l,2)- &
|
|
|
|
field(coordinates(4,1),coordinates(4,2),coordinates(4,3),l,2))*real(res(2),pReal)/geomdim(2) +&
|
|
|
|
(field(coordinates(5,1),coordinates(5,2),coordinates(5,3),l,3)- &
|
|
|
|
field(coordinates(6,1),coordinates(6,2),coordinates(6,3),l,3))*real(res(3),pReal)/geomdim(3))
|
|
|
|
enddo
|
|
|
|
enddo
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine divergence_fdm
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine tensor_avg(res,tensor,avg)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!calculate average of tensor field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) ::tensor
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(3,3) :: avg
|
|
|
|
! other variables
|
|
|
|
real(pReal) wgt
|
|
|
|
integer(pInt) m,n
|
|
|
|
|
|
|
|
wgt = 1.0_pReal/real(res(1)*res(2)*res(3), pReal)
|
|
|
|
|
|
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
|
|
|
|
avg(m,n) = sum(tensor(1:res(1),1:res(2),1:res(3),m,n)) * wgt
|
|
|
|
enddo; enddo
|
|
|
|
|
|
|
|
end subroutine tensor_avg
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine logstrain_spat(res,defgrad,logstrain_field)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!calculate logarithmic strain in spatial configuration for given defgrad field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: logstrain_field
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(3,3) :: temp33_Real, temp33_Real2
|
|
|
|
real(pReal), dimension(3,3,3) :: eigenvectorbasis
|
|
|
|
real(pReal), dimension(3) :: eigenvalue
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
logical :: errmatinv
|
|
|
|
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
call math_pDecomposition(defgrad(i,j,k,1:3,1:3),temp33_Real2,temp33_Real,errmatinv) !store R in temp33_Real
|
|
|
|
temp33_Real2 = math_inv3x3(temp33_Real)
|
|
|
|
temp33_Real = math_mul33x33(defgrad(i,j,k,1:3,1:3),temp33_Real2) ! v = F o inv(R), store in temp33_Real2
|
|
|
|
call math_spectral1(temp33_Real,eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
|
|
|
eigenvectorbasis(1,1:3,1:3),eigenvectorbasis(2,1:3,1:3),eigenvectorbasis(3,1:3,1:3))
|
|
|
|
eigenvalue = log(sqrt(eigenvalue))
|
|
|
|
logstrain_field(i,j,k,1:3,1:3) = eigenvalue(1)*eigenvectorbasis(1,1:3,1:3)+&
|
|
|
|
eigenvalue(2)*eigenvectorbasis(2,1:3,1:3)+&
|
|
|
|
eigenvalue(3)*eigenvectorbasis(3,1:3,1:3)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine logstrain_spat
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine logstrain_mat(res,defgrad,logstrain_field)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!calculate logarithmic strain in material configuration for given defgrad field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: logstrain_field
|
|
|
|
! other variables
|
|
|
|
real(pReal), dimension(3,3) :: temp33_Real, temp33_Real2
|
|
|
|
real(pReal), dimension(3,3,3) :: eigenvectorbasis
|
|
|
|
real(pReal), dimension(3) :: eigenvalue
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
logical :: errmatinv
|
|
|
|
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
call math_pDecomposition(defgrad(i,j,k,1:3,1:3),temp33_Real,temp33_Real2,errmatinv) !store U in temp33_Real
|
|
|
|
call math_spectral1(temp33_Real,eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
|
|
|
eigenvectorbasis(1,1:3,1:3),eigenvectorbasis(2,1:3,1:3),eigenvectorbasis(3,1:3,1:3))
|
|
|
|
eigenvalue = log(sqrt(eigenvalue))
|
|
|
|
logstrain_field(i,j,k,1:3,1:3) = eigenvalue(1)*eigenvectorbasis(1,1:3,1:3)+&
|
|
|
|
eigenvalue(2)*eigenvectorbasis(2,1:3,1:3)+&
|
|
|
|
eigenvalue(3)*eigenvectorbasis(3,1:3,1:3)
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine logstrain_mat
|
|
|
|
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
subroutine calculate_cauchy(res,defgrad,p_stress,c_stress)
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
!calculate cauchy stress for given PK1 stress and defgrad field
|
|
|
|
!
|
|
|
|
implicit none
|
|
|
|
! input variables
|
|
|
|
integer(pInt), intent(in), dimension(3) :: res
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: defgrad
|
|
|
|
real(pReal), intent(in), dimension(res(1),res(2),res(3),3,3) :: p_stress
|
|
|
|
! output variables
|
|
|
|
real(pReal), intent(out), dimension(res(1),res(2),res(3),3,3) :: c_stress
|
|
|
|
! other variables
|
|
|
|
real(pReal) :: jacobi
|
|
|
|
integer(pInt) :: i, j, k
|
|
|
|
|
|
|
|
c_stress = 0.0_pInt
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
|
|
jacobi = math_det3x3(defgrad(i,j,k,1:3,1:3))
|
|
|
|
c_stress(i,j,k,1:3,1:3) = matmul(p_stress(i,j,k,1:3,1:3),transpose(defgrad(i,j,k,1:3,1:3)))/jacobi
|
|
|
|
enddo; enddo; enddo
|
|
|
|
|
|
|
|
end subroutine calculate_cauchy
|
|
|
|
|
|
|
|
END MODULE math
|