added matrix multiplication 3333x33 to math.f90

added some parameters for spectral method to numerics.f90 (tolerance)
changed error message concerning spectral method in IO.f90
corrected calculation of stress BC in mpie_spectral.f90
This commit is contained in:
Martin Diehl 2010-10-13 16:04:44 +00:00
parent 724960686f
commit 3c502561ee
4 changed files with 241 additions and 118 deletions

View File

@ -1062,7 +1062,7 @@ endfunction
case (47)
msg = 'mask consistency violated in spectral loadcase'
case (48)
msg = 'stress symmetry violated in spectral loadcase'
msg = 'Non-positive relative tolerance for defGrad correction'
case (50)
msg = 'Error writing constitutive output description'
case (100)

View File

@ -448,6 +448,27 @@ real(pReal), dimension(4,36), parameter :: math_symOperations = &
endfunction
!**************************************************************************
! matrix multiplication 3333x33 = 33 (double contraction --> ijkl *kl = ij)
!**************************************************************************
pure function math_mul3333xx33(A,B)
use prec, only: pReal, pInt
implicit none
integer(pInt) i,j
real(pReal), dimension(3,3,3,3), intent(in) :: A
real(pReal), dimension(3,3), intent(in) :: B
real(pReal), dimension(3,3) :: C,math_mul3333xx33
do i = 1,3
do j = 1,3
math_mul3333xx33(i,j) = sum(A(i,j,:,:)*B(:,:))
enddo; enddo
return
endfunction
!**************************************************************************
! matrix multiplication 33x33 = 3x3

View File

@ -29,6 +29,7 @@ program mpie_spectral
use IO
use math
use CPFEM, only: CPFEM_general
use numerics, only: relevantStrain, rTol_crystalliteStress, rTol_defgradAvg
implicit none
include 'fftw3.f' !header file for fftw3 (declaring variables). Library file is also needed
@ -60,13 +61,16 @@ program mpie_spectral
integer(pInt), dimension(3) :: resolution
! stress etc.
real(pReal), dimension(3,3) :: pstress, defgradmacro, pstress_av, defgrad_av, temp33_Real
real(pReal), dimension(3,3) :: ones, zeroes, temp33_Real, damper,&
pstress, cstress_av, defgrad_av,&
defgradAim, defgradAimOld, defgradAimCorr, defgradAimCorrPrev,&
mask_stress, mask_defgrad
real(pReal), dimension(3,3,3,3) :: dPdF, c0, s0
real(pReal), dimension(6) :: cstress ! cauchy stress in Mandel notation (not needed)
real(pReal), dimension(6,6) :: dsde
real(pReal), dimension(6) :: cstress ! cauchy stress in Mandel notation
real(pReal), dimension(6,6) :: dsde, c066, s066
real(pReal), dimension(9,9) :: s099
real(pReal), dimension(:,:,:), allocatable :: ddefgrad
real(pReal), dimension(:,:,:,:,:), allocatable :: pstress_field, defgrad, defgradold
real(pReal), dimension(:,:,:,:,:), allocatable :: pstress_field, defgrad, defgradold, cstress_field
! variables storing information for spectral method
complex(pReal), dimension(:,:,:,:,:), allocatable :: workfft
@ -77,28 +81,32 @@ program mpie_spectral
integer(pInt), dimension(3) :: k_s
integer*8, dimension(2,3,3) :: plan_fft
! convergency etc.
real(pReal) error, err_div, sigma0
! convergence etc.
real(pReal) err_div, err_stress, err_defgrad
real(pReal) err_div_tol, err_stress_tol, err_defgrad_tol, sigma0
integer(pInt) itmax, ierr
logical errmatinv
! loop variables etc.
real(pReal) guessmode ! flip-flop to guess defgrad fluctuation field evolution
integer(pInt) i, j, k, l, m, n, p
integer(pInt) loadcase, ielem, iter, calcmode
integer(pInt) loadcase, ielem, iter, calcmode, CPFEM_mode
real(pReal) temperature ! not used, but needed for call to CPFEM_general
!gmsh output
character(len=1024) :: nriter
character(len=1024) :: nrstep
real(pReal), dimension(:,:,:,:), allocatable :: displacement
real(pReal), dimension(:,:,:,:), allocatable :: displacement
!gmsh output
!Initializing
bc_maskvector = ''
unit = 234_pInt
ones = 1.0_pReal
zeroes = 0.0_pReal
N_l = 0_pInt
N_s = 0_pInt
N_t = 0_pInt
@ -107,9 +115,12 @@ program mpie_spectral
resolution = 1_pInt; meshdimension = 0.0_pReal
xi = 0.0_pReal
c0 = 0.0_pReal
err_div_tol = 1.0e-4
err_stress_tol = 1.0e6
err_defgrad_tol = 1.0e-12
error = 1.0e-4_pReal
itmax = 100_pInt
itmax = 50_pInt
temperature = 300.0_pReal
@ -142,7 +153,7 @@ program mpie_spectral
end select
enddo ! count all identifiers to allocate memory and do sanity check
if ((N_l /= N_s).or.(N_s /= N_t).or.(N_t /= N_n)) & ! sanity check
call IO_error(46,ext_msg = path) ! error message for incomplete input file
call IO_error(46,ext_msg = path) !error message for incomplete input file
enddo
@ -232,11 +243,11 @@ program mpie_spectral
do i = 2,6,2
select case (IO_lc(IO_stringValue(line,posMesh,i)))
case('a')
resolution(1) = 2**IO_intValue(line,posMesh,i+1)
resolution(1) = IO_intValue(line,posMesh,i+1)
case('b')
resolution(2) = 2**IO_intValue(line,posMesh,i+1)
resolution(2) = IO_intValue(line,posMesh,i+1)
case('c')
resolution(3) = 2**IO_intValue(line,posMesh,i+1)
resolution(3) = IO_intValue(line,posMesh,i+1)
end select
enddo
end select
@ -254,6 +265,7 @@ program mpie_spectral
allocate (xinormdyad(resolution(1)/2+1,resolution(2),resolution(3),3,3)); xinormdyad = 0.0_pReal
allocate (xi(resolution(1)/2+1,resolution(2),resolution(3),3)); xi = 0.0_pReal
allocate (pstress_field(resolution(1),resolution(2),resolution(3),3,3)); pstress_field = 0.0_pReal
allocate (cstress_field(resolution(1),resolution(2),resolution(3),3,3)); cstress_field = 0.0_pReal
allocate (displacement(resolution(1),resolution(2),resolution(3),3)); displacement = 0.0_pReal
allocate (defgrad(resolution(1),resolution(2),resolution(3),3,3)); defgrad = 0.0_pReal
allocate (defgradold(resolution(1),resolution(2),resolution(3),3,3)); defgradold = 0.0_pReal
@ -271,22 +283,18 @@ program mpie_spectral
prodnn = resolution(1)*resolution(2)*resolution(3)
wgt = 1_pReal/real(prodnn, pReal)
defgradmacro = math_I3
! Initialization of CPFEM_general (= constitutive law) and of deformation gradient field, calculating compliance
defgradAim = math_I3
defgradAimOld = math_I3
defgrad_av = math_I3
! Initialization of CPFEM_general (= constitutive law) and of deformation gradient field
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
defgradold(i,j,k,:,:) = math_I3 !no deformation at the beginning
defgrad(i,j,k,:,:) = math_I3
ielem = ielem +1
call CPFEM_general(2,math_I3,math_I3,temperature,0.0_pReal,ielem,1_pInt,cstress,dsde,pstress,dPdF)
c0 = c0 + dPdF
enddo; enddo; enddo
call math_invert(9, math_plain3333to99(c0),s099,i, errmatinv)
if(errmatinv) call IO_error(45,ext_msg = "problem in c0 inversion") ! todo: change number and add message to io.f90 (and remove No. 48)
s0 = math_plain99to3333(s099) * real(prodnn, pReal)
!calculation of xinormdyad (to calculate gamma_hat) and xi (waves, for proof of equilibrium)
do k = 1, resolution(3)
k_s(3) = k-1
@ -310,7 +318,6 @@ program mpie_spectral
enddo; enddo; enddo
open(539,file='stress-strain.out')
! Initialization done
!*************************************************************
@ -320,37 +327,69 @@ program mpie_spectral
timeinc = bc_timeIncrement(loadcase)/bc_steps(loadcase)
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first step
mask_defgrad = merge(ones,zeroes,bc_mask(:,:,1,loadcase))
mask_stress = merge(ones,zeroes,bc_mask(:,:,2,loadcase))
!*************************************************************
! loop oper steps defined in input file for current loadcase
do steps = 1, bc_steps(loadcase)
!*************************************************************
defgradmacro = defgradmacro& ! update macroscopic displacement gradient (defgrad BC)
+ math_mul33x33(bc_velocityGrad(:,:,loadcase), defgradmacro)*timeinc !todo: correct calculation?
temp33_Real = defgradAim
defgradAim = defgradAim & ! update macroscopic displacement gradient (defgrad BC)
+ guessmode * mask_stress * (defgradAim - defgradAimOld) &
+ math_mul33x33(bc_velocityGrad(:,:,loadcase), defgradAim)*timeinc
defgradAimOld = temp33_Real
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
temp33_Real = defgrad(i,j,k,:,:)
defgrad(i,j,k,:,:) = defgrad(i,j,k,:,:)& ! old fluctuations as guess for new step, no fluctuations for new loadcase
defgrad(i,j,k,:,:) = defgrad(i,j,k,:,:)& ! old fluctuations as guess for new step, no fluctuations for new loadcase
+ guessmode * (defgrad(i,j,k,:,:) - defgradold(i,j,k,:,:))&
+ (1.0_pReal-guessmode) * math_mul33x33(bc_velocityGrad(:,:,loadcase),defgradold(i,j,k,:,:))*timeinc
defgradold(i,j,k,:,:) = temp33_Real
enddo; enddo; enddo
guessmode = 1_pReal ! keep guessing along former trajectory during same loadcase
calcmode = 1_pInt
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
calcmode = 1_pInt ! start calculation of BC fullfillment
CPFEM_mode = 1_pInt ! winding forward
iter = 0_pInt
err_div= 2_pInt * error
err_stress= 2_pReal * err_stress_tol ! go into loop
defgradAimCorr = 0.0_pReal ! reset damping calculation
damper = ones/10
do k = 1, resolution(3)
k_s(3) = k-1
if(k > resolution(3)/2+1) k_s(3) = k_s(3)-resolution(3)
do j = 1, resolution(2)
k_s(2) = j-1
if(j > resolution(2)/2+1) k_s(2) = k_s(2)-resolution(2)
do i = 1, resolution(1)/2+1
k_s(1) = i-1
xi(i,j,k,3) = 0.0_pReal
if(resolution(3) > 1) xi(i,j,k,3) = real(k_s(3), pReal)/(meshdimension(3)*defgrad_av(3,3))
xi(i,j,k,2) = real(k_s(2), pReal)/(meshdimension(2)*defgrad_av(2,2))
xi(i,j,k,1) = real(k_s(1), pReal)/(meshdimension(1)*defgrad_av(1,1))
if (any(xi(i,j,k,:) /= 0.0_pReal)) then
do l = 1,3; do m = 1,3
xinormdyad(i,j,k, l,m) = xi(i,j,k, l)*xi(i,j,k, m)/sum(xi(i,j,k,:)**2)
enddo; enddo
endif
enddo; enddo; enddo
!*************************************************************
! convergency loop
do while((iter <= itmax).and.(err_div > error))
! convergence loop
do while( iter <= itmax .and. &
(err_div > err_div_tol .or. &
err_stress > err_stress_tol .or. &
err_defgrad > err_defgrad_tol))
iter = iter + 1
print '(A,I5.5,tr2,A,I5.5)', ' Step = ',steps,'Iteration = ',iter
!*************************************************************
err_div = 0.0_pReal; sigma0 = 0.0_pReal
pstress_av = 0.0_pReal; defgrad_av = 0.0_pReal
!*************************************************************
! Calculate stress field for current deformation gradient using CPFEM_general
print *, 'Update Stress Field'
print *, 'Update Stress Field (constitutive evaluation P(F))'
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
@ -358,93 +397,140 @@ program mpie_spectral
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
enddo; enddo; enddo
c0 = 0.0_pReal
cstress_av = 0.0_pReal
c0 = 0.0_pReal; c066 = 0.0_pReal
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(calcmode,& ! first element in first iteration retains calcMode 1, others get 2 (saves winding forward effort)
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1, others get 2 (saves winding forward effort)
defgradold(i,j,k,:,:), defgrad(i,j,k,:,:),&
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
calcmode = 2
CPFEM_mode = 2
c0 = c0 + dPdF
c066 = c066 + dsde
pstress_field(i,j,k,:,:) = pstress
pstress_av = pstress_av + pstress ! average stress
cstress_field(i,j,k,:,:) = math_mandel6to33(cstress)
cstress_av = cstress_av + math_mandel6to33(cstress) ! average stress
enddo; enddo; enddo
pstress_av = pstress_av*wgt ! do the weighting of average stress
c0 = c0 * wgt
! Update gamma_hat with new reference stiffness
if((iter==1).and.(any(c0>0.1))) then ! for perfect plasticity inversion is not possible, criteria is just a first guess
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1
temp33_Real = 0.0_pReal
do l = 1,3; do m = 1,3; do n = 1,3; do p = 1,3
temp33_Real(l,m) = temp33_Real(l,m) + c0(l,n,m,p) * xinormdyad(i,j,k, n,p)
enddo; enddo; enddo; enddo
temp33_Real = math_inv3x3(temp33_Real)
do l=1,3; do m=1,3; do n=1,3; do p=1,3
gamma_hat(i,j,k, l,m,n,p) = - temp33_Real(l,n) * xinormdyad(i,j,k, m,p)
enddo; enddo; enddo; enddo
enddo; enddo; enddo
print *, 'Gamma hat updated'
endif
! Using the spectral method to calculate the change of deformation gradient, check divergence of stress field in fourier space
print *, 'Update Deformation Gradient Field'
do m = 1,3; do n = 1,3
call dfftw_execute_dft_r2c(plan_fft(1,m,n), pstress_field(:,:,:,m,n),workfft(:,:,:,m,n))
if(n==3) sigma0 = max(sigma0, sum(abs(workfft(1,1,1,m,:)))) ! L infinity Norm of stress tensor
enddo; enddo
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1
err_div = err_div + (maxval(abs(math_mul33x3_complex(workfft(i,j,k,:,:),xi(i,j,k,:))))) ! L infinity Norm of div(stress)
temp33_Complex = 0.0_pReal
do m = 1,3; do n = 1,3
temp33_Complex(m,n) = sum(gamma_hat(i,j,k,m,n,:,:) * workfft(i,j,k,:,:))
enddo; enddo
workfft(i,j,k,:,:) = temp33_Complex(:,:)
enddo; enddo; enddo
err_div = err_div/real((prodnn/resolution(1)*(resolution(1)/2+1)), pReal)/sigma0 !weighting of error
do m = 1,3; do n = 1,3
call dfftw_execute_dft_c2r(plan_fft(2,m,n), workfft(:,:,:,m,n),ddefgrad(:,:,:))
ddefgrad = ddefgrad * wgt
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + ddefgrad
enddo; enddo
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
defgrad_av = defgrad_av + defgrad(i,j,k,:,:)
enddo; enddo; enddo
defgrad_av = defgrad_av * wgt ! weight by number of FP
do m = 1,3; do n = 1,3
if(bc_mask(m,n,1,loadcase)) then ! adjust defgrad to fulfill displacement BC (defgradmacro)
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + (defgradmacro(m,n)-defgrad_av(m,n))
else ! adjust defgrad to fulfill stress BC
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + sum( s0(m,n,:,:)*(bc_stress(:,:,loadcase)-pstress_av(:,:)), &
mask = bc_mask(:,:,2,loadcase) )
cstress_av = cstress_av*wgt ! do the weighting of average stress
err_stress = maxval(abs(mask_stress * (cstress_av - bc_stress(:,:,loadcase))))
err_stress_tol = maxval(abs(cstress_av))/100.0_pReal !accecpt one % of error
print '(2(a,E8.2))', ' error stress ',err_stress,' Tol. = ', err_stress_tol
! Update gamma_hat with new reference stiffness, calculate new compliance
if(iter == 1) then
c0 = c0 * wgt
c066 = c066 * wgt
call math_invert(9, math_plain3333to99(c0), s099, i, errmatinv)
errmatinv = .true.
if(errmatinv) then
call math_invert(6, c066, s066,i, errmatinv)
if(errmatinv) then
print *, 'Compliance not updated'
else
s0 = math_mandel66to3333(s066)
endif
else
s0 = math_plain99to3333(s099)
endif
enddo; enddo
print '(2(a,E8.2))', ' Error = ',err_div,' Tol. = ', error
print '(A)', '-----------------------------------'
if(errmatinv == .false.) then
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1
temp33_Real = 0.0_pReal
do l = 1,3; do m = 1,3; do n = 1,3; do p = 1,3
temp33_Real(l,m) = temp33_Real(l,m) + c0(l,n,m,p) * xinormdyad(i,j,k, n,p)
enddo; enddo; enddo; enddo
temp33_Real = math_inv3x3(temp33_Real)
do l=1,3; do m=1,3; do n=1,3; do p=1,3
gamma_hat(i,j,k, l,m,n,p) = - temp33_Real(l,n) * xinormdyad(i,j,k, m,p)
enddo; enddo; enddo; enddo
enddo; enddo; enddo
print *, 'Gamma hat updated'
endif
endif
select case (calcmode)
case (0) ! Using the spectral method to calculate the change of deformation gradient, check divergence of stress field in fourier space
print *, 'Calculating equilibrium using spectral method'
err_div = 0.0_pReal; sigma0 = 0.0_pReal
do m = 1,3; do n = 1,3
call dfftw_execute_dft_r2c(plan_fft(1,m,n), cstress_field(:,:,:,m,n),workfft(:,:,:,m,n))
if(n==3) sigma0 = max(sigma0, sum(abs(workfft(1,1,1,m,:)))) ! L infinity Norm of stress tensor
enddo; enddo
if(iter==1) err_div=2*error ! at least two iterations to fulfill BC
enddo ! end looping when convergency is achieved
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1
err_div = err_div + (maxval(abs(math_mul33x3_complex(workfft(i,j,k,:,:),xi(i,j,k,:))))) ! L infinity Norm of div(stress)
temp33_Complex = 0.0_pReal
do m = 1,3; do n = 1,3
temp33_Complex(m,n) = sum(gamma_hat(i,j,k,m,n,:,:) * workfft(i,j,k,:,:))
enddo; enddo
workfft(i,j,k,:,:) = temp33_Complex(:,:)
enddo; enddo; enddo
write(539,'(E12.6,a,E12.6)'),defgrad_av(3,3)-1,' ',pstress_av(3,3)
print '(A,3(E10.4,tr2))', ' ', defgrad_av(1,:)
print '(A,3(E10.4,tr2))', ' Deformation Gradient: ', defgrad_av(2,:)
print '(A,3(E10.4,tr2))', ' ', defgrad_av(3,:)
err_div = err_div/real((prodnn/resolution(1)*(resolution(1)/2+1)), pReal)/sigma0 !weighting of error
do m = 1,3; do n = 1,3
call dfftw_execute_dft_c2r(plan_fft(2,m,n), workfft(:,:,:,m,n),ddefgrad(:,:,:))
ddefgrad = ddefgrad * wgt
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + ddefgrad
enddo; enddo
print '(2(a,E8.2))', ' error divergence ',err_div,' Tol. = ', err_div_tol
if(err_div < err_div_tol) then ! change to calculation of BCs, reset damper etc.
calcmode = 1
defgradAimCorr = 0.0_pReal
damper = ones/10
endif
case (1) ! adjust defgrad to fulfill BCs s
print*, 'Correcting deformation gradient to fullfill BCs'
defgrad_av = 0.0_pReal
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
defgrad_av = defgrad_av + defgrad(i,j,k,:,:)
enddo; enddo; enddo
defgrad_av = defgrad_av * wgt ! weight by number of FP
defgradAimCorrPrev = defgradAimCorr
defgradAimCorr = -mask_stress * math_mul3333xx33(s0, (mask_stress*(cstress_av - bc_stress(:,:,loadcase))))
do m=1,3; do n =1,3 ! calculate damper (correction is far to strong)
if ( sign(1.0_pReal,defgradAimCorr(m,n))/=sign(1.0_pReal,defgradAimCorrPrev(m,n))) then
damper(m,n) = max(0.0_pReal,damper(m,n)*0.8)
else
damper(m,n) = min(1.0_pReal,damper(m,n) *1.2)
endif
enddo; enddo
defgradAimCorr = mask_Stress*(damper * defgradAimCorr)
defgradAim = defgradAim + defgradAimCorr
do m = 1,3; do n = 1,3
defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + (defgradAim(m,n) - defgrad_av(m,n)) !anticipated target minus current state
enddo; enddo
err_defgrad = maxval(abs(mask_defgrad * (defgrad_av - defgradAim)))
print '(a,/,3(3(f12.7,x)/))', ' defgrad Aim: ',defgradAim(1:3,:)
print '(a,/,3(3(f12.7,x)/))', ' damper: ',damper(1:3,:)
print '(a,/,3(3(f10.4,x)/))', ' Cauchy Stress [MPa]: ',cstress_av(1:3,:)/1.e6
print '(2(a,E8.2))', ' error defgrad ',err_defgrad,' Tol. = ',err_defgrad_tol
print '(2(a,E8.2))', ' error stress ',err_stress,' Tol. = ', err_stress_tol*0.8
if(err_stress < err_stress_tol*0.8) then
calcmode = 0
err_div = 2* err_div_tol
endif
end select
enddo ! end looping when convergency is achieved
write(539,'(E12.6,a,E12.6)'),defgrad_av(3,3)-1,' ', cstress_av(3,3)
print '(a,/,3(3(f12.7,x)/))', ' Deformation Gradient: ',defgrad_av(1:3,:)
print *, ''
print '(A,3(E10.4,tr2))', ' ', pstress_av(1,:)
print '(A,3(E10.4,tr2))', ' Piola-Kirchhoff Stress: ', pstress_av(2,:)
print '(A,3(E10.4,tr2))', ' ', pstress_av(3,:)
print '(a,/,3(3(f10.4,x)/))', ' Cauchy Stress [MPa]: ',cstress_av(1:3,:)/1.e6
print '(A)', '************************************************************'
! Postprocessing (gsmh output)
if(mod(steps-1,10)==0) then
temp33_Real(1,:) = 0.0_pReal; temp33_Real(1,3) = -(real(resolution(3))/meshdimension(3)) ! start just below origin
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
@ -474,8 +560,8 @@ program mpie_spectral
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
write(589, '(I10, 3(tr2, E14.8))'), ielem, displacement(i,j,k,:)
write(588, '(I10, 3(tr2, E14.8))'), ielem, displacement(i,j,k,:)
write(589, '(I10, 3(tr2, E12.6))'), ielem, displacement(i,j,k,:)
write(588, '(I10, 3(tr2, E12.6))'), ielem, displacement(i,j,k,:)
enddo; enddo; enddo
write(589, '(2(A, /), I10)'), '$EndNodes', '$Elements', prodnn
@ -496,14 +582,14 @@ program mpie_spectral
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
write(589, '(i10, 9(tr2, E14.8))'), ielem, pstress_field(i,j,k,:,:)
write(589, '(i10, 9(tr2, E14.8))'), ielem, cstress_field(i,j,k,:,:)
write(588, '(i10, 9(tr2, E14.8))'), ielem, defgrad(i,j,k,:,:) - math_I3
enddo; enddo; enddo
write(589, *), '$EndNodeData'
write(588, *), '$EndNodeData'
close(589); close(588)
endif
enddo ! end looping over steps in current loadcase
enddo ! end looping over loadcases
close(539)

View File

@ -44,9 +44,11 @@ real(pReal) relevantStrain, & ! strain
maxdRelax_RGC, & ! threshold of maximum relaxation vector increment (if exceed this then cutback)
maxVolDiscr_RGC, & ! threshold of maximum volume discrepancy allowed
volDiscrMod_RGC, & ! stiffness of RGC volume discrepancy (zero = without volume discrepancy constraint)
volDiscrPow_RGC ! powerlaw penalty for volume discrepancy
volDiscrPow_RGC, & ! powerlaw penalty for volume discrepancy
!* spectral parameters:
rTol_defgradAvg ! relative tolerance for correction to deformation gradient aim
!* Random seeding parameters: added <<<updated 27.08.2009>>>
!* Random seeding parameters: added <<<updated 27.08.2009>>>
integer(pInt) fixedSeed ! fixed seeding for pseudo-random number generator
CONTAINS
@ -125,7 +127,10 @@ subroutine numerics_init()
maxVolDiscr_RGC = 1.0e-5 ! tolerance for volume discrepancy allowed
volDiscrMod_RGC = 1.0e+12
volDiscrPow_RGC = 5.0
!* spectral parameters:
rTol_defgradAvg = 1.0e-6
!* Random seeding parameters: added <<<updated 27.08.2009>>>
fixedSeed = 0_pInt
@ -218,6 +223,10 @@ subroutine numerics_init()
case ('discrepancypower_rgc')
volDiscrPow_RGC = IO_floatValue(line,positions,2)
!* spectral parameters
case ('rTol_defgradAvg')
rTol_defgradAvg = IO_floatValue(line,positions,2)
!* Random seeding parameters: added <<<updated 27.08.2009>>>
case ('fixed_seed')
fixedSeed = IO_floatValue(line,positions,2)
@ -261,7 +270,7 @@ subroutine numerics_init()
write(6,'(a24,x,i8)') 'nMPstate: ',nMPstate
write(6,*)
!* RGC parameters: added <<<updated 17.12.2009>>>
!* RGC parameters
write(6,'(a24,x,e8.1)') 'aTol_RGC: ',absTol_RGC
write(6,'(a24,x,e8.1)') 'rTol_RGC: ',relTol_RGC
write(6,'(a24,x,e8.1)') 'aMax_RGC: ',absMax_RGC
@ -274,10 +283,14 @@ subroutine numerics_init()
write(6,'(a24,x,e8.1)') 'maxVolDiscrepancy_RGC: ',maxVolDiscr_RGC
write(6,'(a24,x,e8.1)') 'volDiscrepancyMod_RGC: ',volDiscrMod_RGC
write(6,'(a24,x,e8.1)') 'discrepancyPower_RGC: ',volDiscrPow_RGC
write(6,*)
!* spectral parameters
write(6,'(a24,x,e8.1)') 'rTol_defgradAvg: ',rTol_defgradAvg
write(6,*)
!* Random seeding parameters: added <<<updated 27.08.2009>>>
!* Random seeding parameters
write(6,'(a24,x,i8)') 'fixed_seed: ',fixedSeed
write(6,*)
@ -323,7 +336,10 @@ subroutine numerics_init()
if (maxVolDiscr_RGC <= 0.0_pReal) call IO_error(289)
if (volDiscrMod_RGC < 0.0_pReal) call IO_error(289)
if (volDiscrPow_RGC <= 0.0_pReal) call IO_error(289)
!* spectral parameters
if (rTol_defgradAvg <= 0.0_pReal) call IO_error(48)
if (fixedSeed <= 0_pInt) write(6,'(a)') 'Random is random!'
endsubroutine