DAMASK_EICMD/python/damask/_orientation.py

977 lines
37 KiB
Python
Raw Normal View History

import inspect
import copy
2022-11-23 02:56:15 +05:30
from typing import Optional, Union, Callable, Dict, Any, Tuple, TypeVar
import numpy as np
2019-05-30 23:32:55 +05:30
from ._typehints import FloatSequence, IntSequence, CrystalFamily, CrystalLattice
2020-03-19 19:49:11 +05:30
from . import Rotation
from . import Crystal
from . import util
from . import tensor
2020-11-15 00:21:15 +05:30
_parameter_doc = \
"""
2021-07-18 19:12:36 +05:30
family : {'triclinic', 'monoclinic', 'orthorhombic', 'tetragonal', 'hexagonal', 'cubic'}, optional.
Name of the crystal family.
2021-12-09 02:34:22 +05:30
Family will be inferred if 'lattice' is given.
2021-07-18 19:12:36 +05:30
lattice : {'aP', 'mP', 'mS', 'oP', 'oS', 'oI', 'oF', 'tP', 'tI', 'hP', 'cP', 'cI', 'cF'}, optional.
Name of the Bravais lattice in Pearson notation.
a : float, optional
Length of lattice parameter 'a'.
b : float, optional
Length of lattice parameter 'b'.
c : float, optional
Length of lattice parameter 'c'.
alpha : float, optional
Angle between b and c lattice basis.
beta : float, optional
Angle between c and a lattice basis.
gamma : float, optional
Angle between a and b lattice basis.
degrees : bool, optional
Angles are given in degrees. Defaults to False.
"""
MyType = TypeVar('MyType', bound='Orientation')
class Orientation(Rotation,Crystal):
2020-03-22 21:33:28 +05:30
"""
Representation of crystallographic orientation as combination of rotation and either crystal family or Bravais lattice.
The crystal family is one of:
- triclinic
- monoclinic
- orthorhombic
- tetragonal
- hexagonal
- cubic
2020-03-22 21:33:28 +05:30
and enables symmetry-related operations such as
"equivalent", "reduced", "disorientation", "IPF_color", or "to_SST".
The Bravais lattice is given in the Pearson notation:
- triclinic
- aP : primitive
2021-07-05 02:55:00 +05:30
- monoclinic
- mP : primitive
- mS : base-centered
- orthorhombic
- oP : primitive
- oS : base-centered
- oI : body-centered
- oF : face-centered
- tetragonal
- tP : primitive
- tI : body-centered
- hexagonal
- hP : primitive
- cubic
- cP : primitive
- cI : body-centered
- cF : face-centered
and inherits the corresponding crystal family.
Specifying a Bravais lattice, compared to just the crystal family,
extends the functionality of Orientation objects to include operations such as
"Schmid", "related", or "to_pole" that require a lattice type and its parameters.
Examples
--------
An array of 3 x 5 random orientations reduced to the fundamental zone of tetragonal symmetry:
2021-07-25 23:01:48 +05:30
>>> import damask
>>> o=damask.Orientation.from_random(shape=(3,5),family='tetragonal').reduced
2020-03-22 21:33:28 +05:30
"""
@util.extend_docstring(extra_parameters=_parameter_doc)
def __init__(self,
rotation: Union[FloatSequence, Rotation] = np.array([1.,0.,0.,0.]),
*,
2022-11-23 02:56:15 +05:30
family: Optional[CrystalFamily] = None,
lattice: Optional[CrystalLattice] = None,
a: Optional[float] = None, b: Optional[float] = None, c: Optional[float] = None,
alpha: Optional[float] = None, beta: Optional[float] = None, gamma: Optional[float] = None,
degrees: bool = False):
2020-03-22 21:33:28 +05:30
"""
New orientation.
2020-03-22 21:33:28 +05:30
Parameters
----------
2023-02-21 20:57:06 +05:30
rotation : list, numpy.ndarray, or Rotation, optional
Unit quaternion in positive real hemisphere.
Use .from_quaternion to perform a sanity check.
Defaults to no rotation.
2020-03-22 21:33:28 +05:30
"""
2021-06-06 23:19:29 +05:30
Rotation.__init__(self,rotation)
Crystal.__init__(self,family=family, lattice=lattice,
2021-06-06 23:19:29 +05:30
a=a,b=b,c=c, alpha=alpha,beta=beta,gamma=gamma, degrees=degrees)
2020-03-22 21:33:28 +05:30
def __repr__(self) -> str:
"""
Return repr(self).
2023-02-21 20:57:06 +05:30
Give short, human-readable summary.
"""
2022-02-23 19:07:23 +05:30
return util.srepr([Crystal.__repr__(self),
Rotation.__repr__(self)])
def __copy__(self: MyType,
2022-11-23 02:56:15 +05:30
rotation: Union[None, FloatSequence, Rotation] = None) -> MyType:
"""
Return deepcopy(self).
Create deep copy.
"""
dup = copy.deepcopy(self)
if rotation is not None:
dup.quaternion = Rotation(rotation).quaternion
return dup
copy = __copy__
2020-06-30 17:25:09 +05:30
def __eq__(self,
other: object) -> bool:
"""
Return self==other.
Test equality of other.
Parameters
----------
other : Orientation
Orientation to check for equality.
2020-03-22 21:33:28 +05:30
"""
if not isinstance(other, Orientation):
return NotImplemented
2021-06-06 23:19:29 +05:30
matching_type = self.family == other.family and \
self.lattice == other.lattice and \
self.parameters == other.parameters
2021-04-10 11:59:42 +05:30
return np.logical_and(matching_type,super(self.__class__,self.reduced).__eq__(other.reduced))
2021-01-04 02:19:01 +05:30
def __ne__(self,
other: object) -> bool:
2021-01-04 02:19:01 +05:30
"""
Return self!=other.
Test inequality of other.
2021-01-04 02:19:01 +05:30
Parameters
----------
other : Orientation
Orientation to check for equality.
"""
return np.logical_not(self==other) if isinstance(other, Orientation) else NotImplemented
def isclose(self: MyType,
other: MyType,
rtol: float = 1e-5,
atol: float = 1e-8,
equal_nan: bool = True) -> bool:
"""
Report where values are approximately equal to corresponding ones of other Orientation.
Parameters
----------
other : Orientation
Orientation to compare against.
rtol : float, optional
Relative tolerance of equality.
atol : float, optional
Absolute tolerance of equality.
equal_nan : bool, optional
Consider matching NaN values as equal. Defaults to True.
Returns
-------
mask : numpy.ndarray of bool, shape (self.shape)
Mask indicating where corresponding orientations are close.
"""
2021-06-06 23:19:29 +05:30
matching_type = self.family == other.family and \
self.lattice == other.lattice and \
self.parameters == other.parameters
2021-04-10 11:59:42 +05:30
return np.logical_and(matching_type,super(self.__class__,self.reduced).isclose(other.reduced))
def allclose(self: MyType,
other: MyType,
rtol: float = 1e-5,
atol: float = 1e-8,
equal_nan: bool = True) -> bool:
"""
Test whether all values are approximately equal to corresponding ones of other Orientation.
Parameters
----------
other : Orientation
Orientation to compare against.
rtol : float, optional
Relative tolerance of equality.
atol : float, optional
Absolute tolerance of equality.
equal_nan : bool, optional
Consider matching NaN values as equal. Defaults to True.
Returns
-------
answer : bool
Whether all values are close between both orientations.
"""
return bool(np.all(self.isclose(other,rtol,atol,equal_nan)))
def __mul__(self: MyType,
other: Union[Rotation, 'Orientation']) -> MyType:
"""
2022-08-11 00:21:50 +05:30
Return self*other.
Compose with other.
Parameters
----------
2022-08-11 00:21:50 +05:30
other : Rotation or Orientation, shape (self.shape)
Object for composition.
Returns
-------
composition : Orientation
Compound rotation self*other, i.e. first other then self rotation.
"""
if isinstance(other, (Orientation,Rotation)):
return self.copy(Rotation(self.quaternion)*Rotation(other.quaternion))
else:
raise TypeError('use "O@b", i.e. matmul, to apply Orientation "O" to object "b"')
@staticmethod
def _split_kwargs(kwargs: Dict[str, Any],
target: Callable) -> Tuple[Dict[str, Any], ...]:
"""
Separate keyword arguments in 'kwargs' targeted at 'target' from general keyword arguments of Orientation objects.
Parameters
----------
kwargs : dictionary
Contains all **kwargs.
target: method
Function to scan for kwarg signature.
Returns
-------
rot_kwargs: dictionary
Valid keyword arguments of 'target' function of Rotation class.
ori_kwargs: dictionary
Valid keyword arguments of Orientation object.
"""
kws: Tuple[Dict[str, Any], ...] = ()
for t in (target,Orientation.__init__):
kws += ({key: kwargs[key] for key in set(inspect.signature(t).parameters) & set(kwargs)},)
invalid_keys = set(kwargs)-(set(kws[0])|set(kws[1]))
if invalid_keys:
raise TypeError(f"{inspect.stack()[1][3]}() got an unexpected keyword argument '{invalid_keys.pop()}'")
return kws
@classmethod
@util.extend_docstring(Rotation.from_random,
extra_parameters=_parameter_doc)
def from_random(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_random)
return cls(rotation=Rotation.from_random(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_quaternion,
extra_parameters=_parameter_doc)
def from_quaternion(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_quaternion)
return cls(rotation=Rotation.from_quaternion(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_Euler_angles,
extra_parameters=_parameter_doc)
def from_Euler_angles(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_Euler_angles)
return cls(rotation=Rotation.from_Euler_angles(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_axis_angle,
extra_parameters=_parameter_doc)
def from_axis_angle(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_axis_angle)
return cls(rotation=Rotation.from_axis_angle(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_basis,
extra_parameters=_parameter_doc)
def from_basis(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_basis)
return cls(rotation=Rotation.from_basis(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_matrix,
extra_parameters=_parameter_doc)
def from_matrix(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_matrix)
return cls(rotation=Rotation.from_matrix(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_Rodrigues_vector,
extra_parameters=_parameter_doc)
def from_Rodrigues_vector(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_Rodrigues_vector)
return cls(rotation=Rotation.from_Rodrigues_vector(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_homochoric,
extra_parameters=_parameter_doc)
def from_homochoric(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_homochoric)
return cls(rotation=Rotation.from_homochoric(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_cubochoric,
extra_parameters=_parameter_doc)
def from_cubochoric(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_cubochoric)
return cls(rotation=Rotation.from_cubochoric(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_spherical_component,
extra_parameters=_parameter_doc)
def from_spherical_component(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_spherical_component)
return cls(rotation=Rotation.from_spherical_component(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(Rotation.from_fiber_component,
extra_parameters=_parameter_doc)
def from_fiber_component(cls, **kwargs) -> 'Orientation':
kwargs_rot,kwargs_ori = Orientation._split_kwargs(kwargs,Rotation.from_fiber_component)
return cls(rotation=Rotation.from_fiber_component(**kwargs_rot),**kwargs_ori)
@classmethod
@util.extend_docstring(extra_parameters=_parameter_doc)
def from_directions(cls,
uvw: FloatSequence,
hkl: FloatSequence,
**kwargs) -> 'Orientation':
2020-03-22 21:33:28 +05:30
"""
Initialize orientation object from two crystallographic directions.
2020-03-22 21:33:28 +05:30
Parameters
----------
uvw : numpy.ndarray, shape (...,3)
Lattice direction aligned with lab frame x-direction.
hkl : numpy.ndarray, shape (...,3)
Lattice plane normal aligned with lab frame z-direction.
2020-03-22 21:33:28 +05:30
Returns
-------
new : damask.Orientation
"""
o = cls(**kwargs)
2021-06-06 23:19:29 +05:30
x = o.to_frame(uvw=uvw)
z = o.to_frame(hkl=hkl)
om = np.stack([x,np.cross(z,x),z],axis=-2)
return o.copy(Rotation.from_matrix(tensor.transpose(om/np.linalg.norm(om,axis=-1,keepdims=True))))
2020-03-22 21:33:28 +05:30
2019-10-23 03:01:27 +05:30
@property
def equivalent(self: MyType) -> MyType:
"""
Orientations that are symmetrically equivalent.
One dimension (length corresponds to number of symmetrically equivalent orientations)
2020-07-01 04:07:02 +05:30
is added to the left of the Rotation array.
"""
2021-06-06 23:19:29 +05:30
sym_ops = self.symmetry_operations
o = sym_ops.broadcast_to(sym_ops.shape+self.shape,mode='right')
return self.copy(o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'))
@property
def reduced(self: MyType) -> MyType:
"""Select symmetrically equivalent orientation that falls into fundamental zone according to symmetry."""
eq = self.equivalent
ok = eq.in_FZ
ok &= np.cumsum(ok,axis=0) == 1
loc = np.where(ok)
sort = 0 if len(loc) == 1 else np.lexsort(loc[:0:-1])
return eq[ok][sort].reshape(self.shape)
@property
def in_FZ(self) -> Union[np.bool_, np.ndarray]:
"""
Check whether orientation falls into fundamental zone of own symmetry.
Returns
-------
in : numpy.ndarray of bool, shape (self.shape)
2022-01-13 03:43:38 +05:30
Whether Rodrigues-Frank vector falls into fundamental zone.
Notes
-----
Fundamental zones in Rodrigues space are point-symmetric around origin.
References
----------
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
https://doi.org/10.1107/S0108767391006864
"""
rho_abs = np.abs(self.as_Rodrigues_vector(compact=True))*(1.-1.e-9)
with np.errstate(invalid='ignore'):
# using '*'/prod for 'and'
if self.family == 'cubic':
return (np.prod(np.sqrt(2)-1. >= rho_abs,axis=-1) *
(1. >= np.sum(rho_abs,axis=-1))).astype(bool)
2023-02-21 20:57:06 +05:30
if self.family == 'hexagonal':
return (np.prod(1. >= rho_abs,axis=-1) *
(2. >= np.sqrt(3)*rho_abs[...,0] + rho_abs[...,1]) *
(2. >= np.sqrt(3)*rho_abs[...,1] + rho_abs[...,0]) *
(2. >= np.sqrt(3) + rho_abs[...,2])).astype(bool)
2023-02-21 20:57:06 +05:30
if self.family == 'tetragonal':
return (np.prod(1. >= rho_abs[...,:2],axis=-1) *
(np.sqrt(2) >= rho_abs[...,0] + rho_abs[...,1]) *
(np.sqrt(2) >= rho_abs[...,2] + 1.)).astype(bool)
2023-02-21 20:57:06 +05:30
if self.family == 'orthorhombic':
return (np.prod(1. >= rho_abs,axis=-1)).astype(bool)
2023-02-21 20:57:06 +05:30
if self.family == 'monoclinic':
return np.logical_or( 1. >= rho_abs[...,1],
np.isnan(rho_abs[...,1]))
2023-02-21 20:57:06 +05:30
if self.family == 'triclinic':
return np.ones(rho_abs.shape[:-1]).astype(bool)
2023-02-21 20:57:06 +05:30
raise TypeError(f'unknown symmetry "{self.family}"')
@property
def in_disorientation_FZ(self) -> np.ndarray:
"""
Check whether orientation falls into fundamental zone of disorientations.
Returns
-------
in : numpy.ndarray of bool, shape (self.shape)
2022-01-13 03:43:38 +05:30
Whether Rodrigues-Frank vector falls into disorientation FZ.
References
----------
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
https://doi.org/10.1107/S0108767391006864
"""
rho = self.as_Rodrigues_vector(compact=True)*(1.0-1.0e-9)
with np.errstate(invalid='ignore'):
if self.family == 'cubic':
return ((rho[...,0] >= rho[...,1]) &
(rho[...,1] >= rho[...,2]) &
(rho[...,2] >= 0)).astype(bool)
2023-02-21 20:57:06 +05:30
if self.family == 'hexagonal':
return ((rho[...,0] >= rho[...,1]*np.sqrt(3)) &
(rho[...,1] >= 0) &
(rho[...,2] >= 0)).astype(bool)
2023-02-21 20:57:06 +05:30
if self.family == 'tetragonal':
return ((rho[...,0] >= rho[...,1]) &
(rho[...,1] >= 0) &
(rho[...,2] >= 0)).astype(bool)
2023-02-21 20:57:06 +05:30
if self.family == 'orthorhombic':
return ((rho[...,0] >= 0) &
(rho[...,1] >= 0) &
(rho[...,2] >= 0)).astype(bool)
2023-02-21 20:57:06 +05:30
if self.family == 'monoclinic':
return ((rho[...,1] >= 0) &
(rho[...,2] >= 0)).astype(bool)
2023-02-21 20:57:06 +05:30
return np.ones_like(rho[...,0],dtype=bool)
def disorientation(self,
other: 'Orientation',
return_operators: bool = False) -> object:
"""
2023-02-21 20:57:06 +05:30
Calculate disorientation between self and given other orientation.
Parameters
----------
other : Orientation
Orientation to calculate disorientation for.
Shape of other blends with shape of own rotation array.
2023-02-21 20:57:06 +05:30
For example, shapes of (2,3) for own rotations
and (3,2) for other's result in (2,3,2) disorientations.
return_operators : bool, optional
2023-02-21 20:57:06 +05:30
Return index pair of symmetrically equivalent orientations
that result in disorientation axis falling into FZ.
Defaults to False.
Returns
-------
disorientation : Orientation
Disorientation between self and other.
operators : numpy.ndarray of int, shape (...,2), conditional
Index of symmetrically equivalent orientation that rotated vector to the SST.
Notes
-----
Requires same crystal family for both orientations.
Examples
--------
Disorientation between two specific orientations of hexagonal symmetry:
>>> import damask
>>> a = damask.Orientation.from_Euler_angles(phi=[123,32,21],degrees=True,family='hexagonal')
>>> b = damask.Orientation.from_Euler_angles(phi=[104,11,87],degrees=True,family='hexagonal')
>>> a.disorientation(b)
Crystal family hexagonal
Quaternion: (real=0.976, imag=<+0.189, +0.018, +0.103>)
Matrix:
[[ 0.97831006 0.20710935 0.00389135]
[-0.19363288 0.90765544 0.37238141]
[ 0.07359167 -0.36505797 0.92807163]]
Bunge Eulers / deg: (11.40, 21.86, 0.60)
Plot a sample from the Mackenzie distribution.
>>> import matplotlib.pyplot as plt
>>> import damask
>>> N = 10000
>>> a = damask.Orientation.from_random(shape=N,family='cubic')
>>> b = damask.Orientation.from_random(shape=N,family='cubic')
2023-02-21 20:57:06 +05:30
>>> n,omega = a.disorientation(b).as_axis_angle(degrees=True,pair=True)
>>> plt.hist(omega,25)
>>> plt.show()
"""
# For extension to cases with differing symmetry see
# https://doi.org/10.1107/S0021889808016373 and https://doi.org/10.1107/S0108767391006864
if self.family != other.family:
raise NotImplementedError('disorientation between different crystal families')
blend = util.shapeblender(self.shape,other.shape)
s = self.equivalent
o = other.equivalent
2022-02-13 15:11:10 +05:30
s_ = s.reshape((s.shape[0],1)+ self.shape).broadcast_to((s.shape[0],o.shape[0])+blend,mode='right')
o_ = o.reshape((1,o.shape[0])+other.shape).broadcast_to((s.shape[0],o.shape[0])+blend,mode='right')
r_ = s_.misorientation(o_)
_r = ~r_
forward = r_.in_FZ & r_.in_disorientation_FZ
reverse = _r.in_FZ & _r.in_disorientation_FZ
ok = forward | reverse
ok &= (np.cumsum(ok.reshape((-1,)+ok.shape[2:]),axis=0) == 1).reshape(ok.shape)
r = np.where(np.any(forward[...,np.newaxis],axis=(0,1),keepdims=True),
r_.quaternion,
_r.quaternion)
loc = np.where(ok)
sort = 0 if len(loc) == 2 else np.lexsort(loc[:1:-1])
quat = r[ok][sort].reshape(blend+(4,))
return (
(self.copy(rotation=quat),
(np.vstack(loc[:2]).T)[sort].reshape(blend+(2,)))
if return_operators else
self.copy(rotation=quat)
)
def average(self,
2022-11-23 02:56:15 +05:30
weights: Optional[FloatSequence] = None,
return_cloud: bool = False):
"""
Return orientation average over last dimension.
Parameters
----------
weights : numpy.ndarray, shape (self.shape), optional
Relative weights of orientations.
2023-02-21 20:57:06 +05:30
Defaults to equal weights.
return_cloud : bool, optional
2022-12-06 04:59:03 +05:30
Return the specific (symmetrically equivalent) orientations that were averaged.
Defaults to False.
Returns
-------
average : Orientation
Weighted average of original Orientation field.
cloud : Orientations, conditional
2022-12-06 04:59:03 +05:30
Symmetrically equivalent version of each orientation that were actually used in averaging.
References
----------
2021-03-18 20:06:40 +05:30
J.C. Glez and J. Driver, Journal of Applied Crystallography 34:280-288, 2001
https://doi.org/10.1107/S0021889801003077
"""
2020-06-30 17:25:09 +05:30
eq = self.equivalent
m = eq.misorientation(self[...,0].reshape((1,)+self.shape[:-1]+(1,)) # type: ignore
.broadcast_to(eq.shape)).as_axis_angle()[...,3] # type: ignore
r = Rotation(np.squeeze(np.take_along_axis(eq.quaternion,
np.argmin(m,axis=0)[np.newaxis,...,np.newaxis],
axis=0),
axis=0))
return ((self.copy(Rotation(r).average(weights)),self.copy(Rotation(r))) if return_cloud else
self.copy(Rotation(r).average(weights))
)
def to_SST(self,
vector: FloatSequence,
proper: bool = False,
return_operators: bool = False) -> np.ndarray:
"""
2022-12-06 04:59:03 +05:30
Rotate lab frame vector to ensure it falls into (improper or proper) standard stereographic triangle of crystal symmetry.
Parameters
----------
vector : numpy.ndarray, shape (...,3)
Lab frame vector to align with crystal frame direction.
Shape of vector blends with shape of own rotation array.
For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.
proper : bool, optional
Consider only vectors with z >= 0, hence combine two neighboring SSTs.
Defaults to False.
return_operators : bool, optional
Return the symmetrically equivalent orientation that rotated vector to SST.
Defaults to False.
Returns
-------
vector_SST : numpy.ndarray, shape (...,3)
Rotated vector falling into SST.
2022-12-06 04:59:03 +05:30
operator : numpy.ndarray of int, shape (...), conditional
Index of symmetrically equivalent orientation that rotated vector to SST.
"""
vector_ = np.array(vector,float)
if vector_.shape[-1] != 3:
raise ValueError('input is not a field of three-dimensional vectors')
eq = self.equivalent
blend = util.shapeblender(eq.shape,vector_.shape[:-1])
2022-02-13 15:11:10 +05:30
poles = eq.broadcast_to(blend,mode='right') @ np.broadcast_to(vector_,blend+(3,))
ok = self.in_SST(poles,proper=proper)
ok &= np.cumsum(ok,axis=0) == 1
loc = np.where(ok)
sort = 0 if len(loc) == 1 else np.lexsort(loc[:0:-1])
return (
(poles[ok][sort].reshape(blend[1:]+(3,)), (np.vstack(loc[:1]).T)[sort].reshape(blend[1:]))
if return_operators else
poles[ok][sort].reshape(blend[1:]+(3,))
)
def in_SST(self,
vector: FloatSequence,
proper: bool = False) -> Union[np.bool_, np.ndarray]:
"""
Check whether given crystal frame vector falls into standard stereographic triangle of own symmetry.
Parameters
----------
vector : numpy.ndarray, shape (...,3)
Vector to check.
proper : bool, optional
Consider only vectors with z >= 0, hence combine two neighboring SSTs.
Defaults to False.
Returns
-------
2022-01-13 03:43:38 +05:30
in : numpy.ndarray, shape (...)
Whether vector falls into SST.
"""
vector_ = np.array(vector,float)
if vector_.shape[-1] != 3:
raise ValueError('input is not a field of three-dimensional vectors')
2021-07-18 20:09:52 +05:30
if self.standard_triangle is None: # direct exit for no symmetry
return np.ones_like(vector_[...,0],bool)
if proper:
components_proper = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['proper'], vector_.shape+(3,)),
vector_), 12)
components_improper = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
vector_), 12)
return np.all(components_proper >= 0.0,axis=-1) \
| np.all(components_improper >= 0.0,axis=-1)
else:
components = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
return np.all(components >= 0.0,axis=-1)
def IPF_color(self,
vector: FloatSequence,
in_SST: bool = True,
proper: bool = False) -> np.ndarray:
"""
2022-12-06 04:59:03 +05:30
Map lab frame vector to RGB color within standard stereographic triangle of own symmetry.
Parameters
----------
vector : numpy.ndarray, shape (...,3)
2022-12-06 04:59:03 +05:30
Lab frame vector to colorize.
Shape of vector blends with shape of own rotation array.
For example, a rotation array of shape (3,2) and a vector array of shape (2,4) result in (3,2,4) outputs.
in_SST : bool, optional
Consider symmetrically equivalent orientations such that poles are located in SST.
Defaults to True.
proper : bool, optional
Consider only vectors with z >= 0, hence combine two neighboring SSTs (with mirrored colors).
Defaults to False.
Returns
-------
rgb : numpy.ndarray, shape (...,3)
RGB array of IPF colors.
Examples
--------
2022-12-06 04:59:03 +05:30
Inverse pole figure color of the e_3 lab direction for a
crystal in "Cube" orientation with cubic symmetry:
2021-07-25 23:01:48 +05:30
>>> import damask
>>> o = damask.Orientation(family='cubic')
>>> o.IPF_color([0,0,1])
array([1., 0., 0.])
Sample standard triangle for hexagonal symmetry:
>>> import damask
>>> from matplotlib import pyplot as plt
2022-12-06 04:59:03 +05:30
>>> lab = [0,0,1]
>>> o = damask.Orientation.from_random(shape=500000,family='hexagonal')
2022-12-06 04:59:03 +05:30
>>> coord = damask.util.project_equal_area(o.to_SST(lab))
>>> color = o.IPF_color(lab)
>>> plt.scatter(coord[:,0],coord[:,1],color=color,s=.06)
>>> plt.axis('scaled')
>>> plt.show()
"""
if np.array(vector).shape[-1] != 3:
raise ValueError('input is not a field of three-dimensional vectors')
vector_ = self.to_SST(vector,proper) if in_SST else \
self @ np.broadcast_to(vector,self.shape+(3,))
2021-07-18 20:09:52 +05:30
if self.standard_triangle is None: # direct exit for no symmetry
return np.zeros_like(vector_)
if proper:
components_proper = np.around(np.einsum('...ji,...i',
np.broadcast_to(self.standard_triangle['proper'], vector_.shape+(3,)),
vector_), 12)
components_improper = np.around(np.einsum('...ji,...i',
2021-07-18 20:09:52 +05:30
np.broadcast_to(self.standard_triangle['improper'], vector_.shape+(3,)),
vector_), 12)
in_SST_ = np.all(components_proper >= 0.0,axis=-1) \
| np.all(components_improper >= 0.0,axis=-1)
components = np.where((in_SST_ & np.all(components_proper >= 0.0,axis=-1))[...,np.newaxis],
components_proper,components_improper)
else:
components = np.around(np.einsum('...ji,...i',
2021-07-18 20:09:52 +05:30
np.broadcast_to(self .standard_triangle['improper'], vector_.shape+(3,)),
np.block([vector_[...,:2],np.abs(vector_[...,2:3])])), 12)
in_SST_ = np.all(components >= 0.0,axis=-1)
with np.errstate(invalid='ignore',divide='ignore'):
rgb = (components/np.linalg.norm(components,axis=-1,keepdims=True))**(1./3.) # smoothen color ramps
rgb = np.clip(rgb,0.,1.) # clip intensity
rgb /= np.max(rgb,axis=-1,keepdims=True) # normalize to (HS)V = 1
rgb[np.broadcast_to(~in_SST_[...,np.newaxis],rgb.shape)] = 0.0
return rgb
2021-07-13 03:44:13 +05:30
####################################################################################################
# functions that require lattice, not just family
def to_pole(self, *,
2022-11-23 02:56:15 +05:30
uvw: Optional[FloatSequence] = None,
hkl: Optional[FloatSequence] = None,
2022-05-11 18:25:55 +05:30
with_symmetry: bool = False,
normalize: bool = True) -> np.ndarray:
"""
Calculate lab frame vector along lattice direction [uvw] or plane normal (hkl).
Parameters
----------
uvw|hkl : numpy.ndarray, shape (...,3)
Miller indices of crystallographic direction or plane normal.
Shape of vector blends with shape of own rotation array.
2022-05-13 13:23:44 +05:30
For example, a rotation array of shape (3,2) and a vector
array of shape (2,4) result in (3,2,4) outputs.
with_symmetry : bool, optional
Calculate all N symmetrically equivalent vectors.
2022-05-11 18:25:55 +05:30
Defaults to False.
normalize : bool, optional
Normalize output vector.
Defaults to True.
Returns
-------
vector : numpy.ndarray, shape (...,3) or (...,N,3)
2022-05-13 13:23:44 +05:30
Lab frame vector (or vectors if with_symmetry) along
[uvw] direction or (hkl) plane normal.
"""
2021-06-06 23:19:29 +05:30
v = self.to_frame(uvw=uvw,hkl=hkl)
blend = util.shapeblender(self.shape,v.shape[:-1])
2022-05-11 18:25:55 +05:30
if normalize:
v /= np.linalg.norm(v,axis=-1,keepdims=len(v.shape)>1)
2021-06-02 12:58:27 +05:30
if with_symmetry:
2021-07-18 21:33:36 +05:30
sym_ops = self.symmetry_operations
shape = v.shape[:-1]+sym_ops.shape
blend += sym_ops.shape
v = sym_ops.broadcast_to(shape) \
@ np.broadcast_to(v.reshape(util.shapeshifter(v.shape,shape+(3,))),shape+(3,))
2022-02-13 15:11:10 +05:30
return ~(self.broadcast_to(blend))@ np.broadcast_to(v,blend+(3,))
def Schmid(self, *,
2022-11-23 02:56:15 +05:30
N_slip: Optional[IntSequence] = None,
N_twin: Optional[IntSequence] = None) -> np.ndarray:
u"""
2021-08-04 21:15:25 +05:30
Calculate Schmid matrix P = d n in the lab frame for selected deformation systems.
Parameters
----------
2022-02-26 22:10:12 +05:30
N_slip|N_twin : '*' or sequence of int
2021-08-08 14:14:38 +05:30
Number of deformation systems per family of the deformation system.
Use '*' to select all.
Returns
-------
P : numpy.ndarray, shape (N,...,3,3)
Schmid matrix for each of the N deformation systems.
Examples
--------
2021-08-08 14:14:38 +05:30
Schmid matrix (in lab frame) of first octahedral slip system of a face-centered
cubic crystal in "Goss" orientation.
>>> import numpy as np
2023-02-21 20:57:06 +05:30
>>> import damask
>>> np.set_printoptions(3,suppress=True,floatmode='fixed')
2021-08-04 21:15:25 +05:30
>>> O = damask.Orientation.from_Euler_angles(phi=[0,45,0],degrees=True,lattice='cF')
>>> O.Schmid(N_slip=[1])
array([[ 0.000, 0.000, 0.000],
[ 0.577, -0.000, 0.816],
[ 0.000, 0.000, 0.000]])
"""
2021-08-04 21:15:25 +05:30
if (N_slip is not None) ^ (N_twin is None):
raise KeyError('specify either "N_slip" or "N_twin"')
2021-08-04 21:15:25 +05:30
kinematics,active = (self.kinematics('slip'),N_slip) if N_twin is None else \
(self.kinematics('twin'),N_twin)
2021-08-08 14:14:38 +05:30
if active == '*': active = [len(a) for a in kinematics['direction']]
2021-08-04 21:15:25 +05:30
if not active:
raise ValueError('Schmid matrix not defined')
2021-08-04 21:15:25 +05:30
d = self.to_frame(uvw=np.vstack([kinematics['direction'][i][:n] for i,n in enumerate(active)]))
p = self.to_frame(hkl=np.vstack([kinematics['plane'][i][:n] for i,n in enumerate(active)]))
2021-07-25 23:01:48 +05:30
P = np.einsum('...i,...j',d/np.linalg.norm(d,axis=1,keepdims=True),
p/np.linalg.norm(p,axis=1,keepdims=True))
shape = P.shape[0:1]+self.shape+(3,3)
return ~self.broadcast_to(shape[:-2]) \
@ np.broadcast_to(P.reshape(util.shapeshifter(P.shape,shape)),shape)
def related(self: MyType,
model: str) -> MyType:
"""
All orientations related to self by given relationship model.
2022-02-26 22:10:12 +05:30
Parameters
----------
model : str
Orientation relationship model selected from self.orientation_relationships.
2022-02-26 22:10:12 +05:30
Returns
-------
2023-02-21 20:57:06 +05:30
rel : Orientation, shape (:,self.shape)
Orientations related to self according to the selected
model for the orientation relationship.
2022-02-26 22:10:12 +05:30
Examples
--------
Face-centered cubic orientations following from a
body-centered cubic crystal in "Cube" orientation according
to the Bain orientation relationship (cI -> cF).
2022-02-26 22:10:12 +05:30
>>> import numpy as np
>>> import damask
>>> np.set_printoptions(3,suppress=True,floatmode='fixed')
>>> damask.Orientation(lattice='cI').related('Bain')
Crystal family: cubic
Bravais lattice: cF
a=1 m, b=1 m, c=1 m
α=90°, β=90°, γ=90°
Quaternions of shape (3,)
[[0.924 0.383 0.000 0.000]
[0.924 0.000 0.383 0.000]
[0.924 0.000 0.000 0.383]]
"""
2021-06-06 23:19:29 +05:30
lattice,o = self.relation_operations(model)
target = Crystal(lattice=lattice)
o = o.broadcast_to(o.shape+self.shape,mode='right')
return Orientation(rotation=o*Rotation(self.quaternion).broadcast_to(o.shape,mode='left'),
lattice=lattice,
2021-06-06 23:19:29 +05:30
b = self.b if target.ratio['b'] is None else self.a*target.ratio['b'],
c = self.c if target.ratio['c'] is None else self.a*target.ratio['c'],
alpha = None if 'alpha' in target.immutable else self.alpha,
beta = None if 'beta' in target.immutable else self.beta,
gamma = None if 'gamma' in target.immutable else self.gamma,
)