ensures that at least one orientation in the FZ is found

This commit is contained in:
Martin Diehl 2021-02-09 23:34:51 +01:00
parent d5c98bbf62
commit 4bcbcb34d0
2 changed files with 23 additions and 12 deletions

View File

@ -481,26 +481,26 @@ class Orientation(Rotation):
if self.family is None:
raise ValueError('Missing crystal symmetry')
rho_abs = np.abs(self.as_Rodrigues_vector(compact=True))
rho_abs = np.abs(self.as_Rodrigues_vector(compact=True))*(1.-1.e-9)
with np.errstate(invalid='ignore'):
# using '*'/prod for 'and'
if self.family == 'cubic':
return (np.prod(np.sqrt(2)-1. >= rho_abs,axis=-1) *
(1. >= np.sum(rho_abs,axis=-1))).astype(np.bool)
(1. >= np.sum(rho_abs,axis=-1))).astype(bool)
elif self.family == 'hexagonal':
return (np.prod(1. >= rho_abs,axis=-1) *
(2. >= np.sqrt(3)*rho_abs[...,0] + rho_abs[...,1]) *
(2. >= np.sqrt(3)*rho_abs[...,1] + rho_abs[...,0]) *
(2. >= np.sqrt(3) + rho_abs[...,2])).astype(np.bool)
(2. >= np.sqrt(3) + rho_abs[...,2])).astype(bool)
elif self.family == 'tetragonal':
return (np.prod(1. >= rho_abs[...,:2],axis=-1) *
(np.sqrt(2) >= rho_abs[...,0] + rho_abs[...,1]) *
(np.sqrt(2) >= rho_abs[...,2] + 1.)).astype(np.bool)
(np.sqrt(2) >= rho_abs[...,2] + 1.)).astype(bool)
elif self.family == 'orthorhombic':
return (np.prod(1. >= rho_abs,axis=-1)).astype(np.bool)
return (np.prod(1. >= rho_abs,axis=-1)).astype(bool)
elif self.family == 'monoclinic':
return (1. >= rho_abs[...,1]).astype(np.bool)
return (1. >= rho_abs[...,1]).astype(bool)
else:
return np.all(np.isfinite(rho_abs),axis=-1)
@ -524,28 +524,28 @@ class Orientation(Rotation):
if self.family is None:
raise ValueError('Missing crystal symmetry')
rho = self.as_Rodrigues_vector(compact=True)
rho = self.as_Rodrigues_vector(compact=True)*(1.0-1.0e-9)
with np.errstate(invalid='ignore'):
if self.family == 'cubic':
return ((rho[...,0] >= rho[...,1]) &
(rho[...,1] >= rho[...,2]) &
(rho[...,2] >= 0)).astype(np.bool)
(rho[...,2] >= 0)).astype(bool)
elif self.family == 'hexagonal':
return ((rho[...,0] >= rho[...,1]*np.sqrt(3)) &
(rho[...,1] >= 0) &
(rho[...,2] >= 0)).astype(np.bool)
(rho[...,2] >= 0)).astype(bool)
elif self.family == 'tetragonal':
return ((rho[...,0] >= rho[...,1]) &
(rho[...,1] >= 0) &
(rho[...,2] >= 0)).astype(np.bool)
(rho[...,2] >= 0)).astype(bool)
elif self.family == 'orthorhombic':
return ((rho[...,0] >= 0) &
(rho[...,1] >= 0) &
(rho[...,2] >= 0)).astype(np.bool)
(rho[...,2] >= 0)).astype(bool)
elif self.family == 'monoclinic':
return ((rho[...,1] >= 0) &
(rho[...,2] >= 0)).astype(np.bool)
(rho[...,2] >= 0)).astype(bool)
else:
return np.ones_like(rho[...,0],dtype=bool)

View File

@ -7,6 +7,7 @@ from damask import Orientation
from damask import Table
from damask import lattice
from damask import util
from damask import grid_filters
@pytest.fixture
@ -220,6 +221,16 @@ class TestOrientation:
o = Orientation.from_random(lattice=lattice,shape=shape)
for r, theO in zip(o.reduced.flatten(),o.flatten()):
assert r == theO.reduced
@pytest.mark.parametrize('lattice',Orientation.crystal_families)
def test_reduced_corner_cases(self,lattice):
# test whether there is always a sym-eq rotation that falls into the FZ
N = np.random.randint(10,40)
size = np.ones(3)*np.pi**(2./3.)
grid = grid_filters.coordinates0_node([N+1,N+1,N+1],size,-size*.5)
evenly_distributed = Orientation.from_cubochoric(c=grid[:-2,:-2,:-2],lattice=lattice)
assert evenly_distributed.shape == evenly_distributed.reduced.shape
@pytest.mark.parametrize('lattice',Orientation.crystal_families)
@pytest.mark.parametrize('shape',[(1),(2,3),(4,3,2)])