new function in IO to print integers without leading zeros, implemented it at some places in the new spectral solver (reporting still needs some serious polishing)
updated preprocessing for documentation to handle precision correctly
also introduced check for inversion into DAMASK_spectral_Utilities.f90 for the stress BC calculation. This part is further improved by using 5% of the reference stiffness to avoid trouble in the fully plastic regime (where the stiffness is underestimated)
Test for Marc 2010 is updated because the new inversion give slightly different results near 0 (order of e-13)
f2py functions remaining in math.f90 now uses assumed size arrays in order to have simpler interfaces. This is only working with python 2.7!
changed python pre- and postprocessing scripts.
If you encounter any problems whith core modules, try to remove the old core.so in the lib/damask
Mainly affected modules are IO and mesh. Most of the changes in mesh result from reordering the functions when grouping them depending on their solver.
Further advantage is that FE solver do not need FFTW and kdtree2 anymore. The include files for these two libraries moved to DAMASKROO/lib now as I figured out how to use a include path in the Makefile.
Put all the files I got when testing compilation with abaqus in a folder which to become the abaqus compilation test.
changed order of arrays in nearest neighbor search to make it fortran fast
constitutive.f90 and homogenization.f90 write state size out during initialization
setup/setup_processing.py is using byterecl to be compatible with binary files written out by solver
new concept of DAMASK for Python: Now using also IO.f90, debug.f90 etc. instead of mimicing their necessary function. This needs DAMASK_python.f90 and DAMASK_python_interface.f90 (At the moment more or less copies of respective spectral files).
polished and renamed the scripts for converging ang files
renamed voronoi_randomSeeding.py to spectral_randomSeeding.py
removed cut_off parameter for damask_spectral
removed outpot of derived divergence measures and added RMS output in brackets
added comments and options to the makefile
added compiler switches for gfortran and ifort to check for standard conformity
old gnu compilers <4.4 are not longer supported because they don't provide the c binding for fftw
additional output in DAMASK_spectral_interface.f90
132 character cut off in constitutive_nonlocal.f90
rounding error in math.f90 complex number initialization (1.0_pReal)*2.0_pReal*pi
new $DAMASK_NUM_THREADS warning in numerics.f90 / IO.f90
polishing in DAMASK_spectral.f90
renamed some math functions, so that we have a universal naming scheme: for matrix multiplications use an "x" (e.g. math_mul33x3); don't use the "x" to describe the shape of the tensor that the function is applied to (e.g. math_invert33 instead of math_invert3x3)
-removed to long lines
-restructured f2py modules and merged make_DAMASK2Python into setup processing
-setup_code.py now sets library path in makefile and asks for compile switches for spectral code
-substituted \ in format strings with $
restructured DAMASK_spectral:
-more logical output and structure of code
-better input for spectral debug parameters
made convergence independent of size and resolution,
polishing output in DAMASK_spectral.f90
added function to compute eigenvalues without eigenvectors and function to convert a 3x3 logical to a 9 vector in math.f90
removed obsolete variable in numerics.f90
corrected calculation of stress BC condition. Depending on given BC, the stiffness matrix is reduced and than inversed. Then it is filled with zeros and used for the calculation of the correct change of deformation gradient. All calculation is done using dP/dF
* damper initialized with one
* inversion of Mandelized stiffness tensor does not work, have to use plain tensor
* new functions in math that allow for conversion between Mandel and Plain tensors
0 : only version infos and all from "hypela2"/"umat"
1 : basic outputs from "CPFEM.f90", basic output from initialization routines, debug_info
2 : extensive outputs from "CPFEM.f90", extensive output from initialization routines
3 : basic outputs from "homogenization.f90"
4 : extensive outputs from "homogenization.f90"
5 : basic outputs from "crystallite.f90"
6 : extensive outputs from "crystallite.f90"
7 : basic outputs from the constitutive files
8 : extensive outputs from the constitutive files
If verbosity is equal to zero, all counters in debug are not set during calculation (e.g. debug_StressLoopDistribution or debug_cumDotStateTicks). This might speed up parallel calculation, because all these need critical statements which extremely slow down parallel computation.
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
Now it is possible to compile a single precision spectral solver/crystal plasticity by replacing mesh.f90 and prec.f90 with mesh_single.f90 and prec_single.f90.
For the spectral method, just call "make precision=single" instead of "make". Use "make clean" evertime you switch precision
added some parameters for spectral method to numerics.f90 (tolerance)
changed error message concerning spectral method in IO.f90
corrected calculation of stress BC in mpie_spectral.f90
mpie_spectral.f90 uses both functions
math_Plain99to3333 is used for inversion of c0
math_mul33x3_complex is used for equilibrium check in fourier space
also did some cleaning up on mpie_spectral.f90
beware that crystallite output "orientation" now by default returns the orientation as quaternion. if you want euler angles instead, you have to add "eulerangles" as a crystallite output in your material.config file (see material.config template).
for input of orientations in the texture block of the material.config you still have to specify the rotation in terms of euler angles, quaternions are not yet supported for input.