introduced 'isotropic' and 'orthorhombic' lattice types to use corresponding symmetries in stiffness tensor. intended to be used with non-crystal plasticity models (j2, constitutive_none with isotropic, cubic or orthotropic elasticity).
added some OMP FLUSH statements were necessary
replaced openmp do by forall construct where possible; this is much safer and perhaps even as fast for small loops
was \dot s_alpha = (1-s_alpha/s_inf)^a h_alphabeta \dot gamma_beta
now \dot s_alpha = h_alphabeta (1-s_beta/s_inf)^a \dot gamma_beta
current form is consistent with the genmat implementation (and appears to make more physical sense). Kalidindi_etal1992 suggested this form, but altered it to the alpha-one in Bachu+Kalidindi1998... By now, it seems that some groups use alpha, others beta approach.
introduced two new absolute tolerance values for "shears" and "twinFrac" (default 1e-6).
added compiler switches for gfortran and ifort to check for standard conformity
old gnu compilers <4.4 are not longer supported because they don't provide the c binding for fftw
* replaced "dble" intrinsic function by "real" with pReal kind in constitutive_nonlocal.f90
* removed useless line breaks in output of state in CPFEM.f90
0 : only version infos and all from "hypela2"/"umat"
1 : basic outputs from "CPFEM.f90", basic output from initialization routines, debug_info
2 : extensive outputs from "CPFEM.f90", extensive output from initialization routines
3 : basic outputs from "homogenization.f90"
4 : extensive outputs from "homogenization.f90"
5 : basic outputs from "crystallite.f90"
6 : extensive outputs from "crystallite.f90"
7 : basic outputs from the constitutive files
8 : extensive outputs from the constitutive files
If verbosity is equal to zero, all counters in debug are not set during calculation (e.g. debug_StressLoopDistribution or debug_cumDotStateTicks). This might speed up parallel calculation, because all these need critical statements which extremely slow down parallel computation.
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
Now it is possible to compile a single precision spectral solver/crystal plasticity by replacing mesh.f90 and prec.f90 with mesh_single.f90 and prec_single.f90.
For the spectral method, just call "make precision=single" instead of "make". Use "make clean" evertime you switch precision
numerics: polishing
mpie_cpfem_marc: polishing
..powerlaw: aware of symmetryType function
crystallite: aware of symmetryType function, smaller leapfrog acceleration
IO: new warning 101
CPFEM: range of odd stress is now -1e15...+1e15, H_sym is used for stiffness