added comments (doxygen conform) to phenopowerlaw, added warning on specifying h0_sliptwin as it has no effect

This commit is contained in:
Martin Diehl 2012-10-11 14:49:12 +00:00
parent c783aa1265
commit 324dfda5a2
3 changed files with 255 additions and 327 deletions

View File

@ -1518,6 +1518,8 @@ subroutine IO_warning(warning_ID,e,i,g,ext_msg)
msg = 'Found Spectral solver parameter '
case (41_pInt)
msg = 'Found PETSc solver parameter '
case (42_pInt)
msg = 'parameter has no effect '
case (47_pInt)
msg = 'No valid parameter for FFTW given, using FFTW_PATIENT'
case (101_pInt)

View File

@ -164,7 +164,7 @@ twin_c 0
twin_d 0
twin_e 0
h0_slipslip 75e6
h0_sliptwin 0
#h0_sliptwin 0 no effect
h0_twinslip 0
h0_twintwin 0
interaction_slipslip 1 1 1.4 1.4 1.4 1.4

View File

@ -16,60 +16,13 @@
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##############################################################
!* $Id$
!*****************************************************
!* Module: CONSTITUTIVE_PHENOPOWERLAW *
!*****************************************************
!* contains: *
!* - constitutive equations *
!* - parameters definition *
!*****************************************************
![Alu]
!plasticity phenopowerlaw
!(output) resistance_slip
!(output) shearrate_slip
!(output) resolvedstress_slip
!(output) totalshear
!(output) resistance_twin
!(output) shearrate_twin
!(output) resolvedstress_twin
!(output) totalvolfrac
!lattice_structure hex
!covera_ratio 1.587
!Nslip 3 3 6 12 # per family
!Ntwin 6 6 6 6 # per family
!
!c11 162.2e9
!c12 91.8e9
!c13 68.8e9
!c33 180.5e9
!c44 46.7e9
!
!gdot0_slip 0.001
!n_slip 50
!tau0_slip 65e6 22e6 52e6 50e6 # per family
!tausat_slip 80e6 180e6 140e6 140e6 # per family
!a_slip 1
!gdot0_twin 0.001
!n_twin 50
!tau0_twin 52e6 52e6 52e6 52e6 # per family
!s_pr 50e6 # push-up stress for slip saturation due to twinning
!twin_b 2
!twin_C 25
!twin_d 0.1
!twin_e 0.1
!h0_slipslip 10e6
!h0_sliptwin 0
!h0_twinslip 625e6
!h0_twintwin 400e6
!interaction_slipslip 5.5 5.5 1.0 52.0 5.5 5.5 1.0 52.0 27.5 0.2 72.8 1.0 72.8 72.8 27.5 1.1 1.4 5.5 7.7 7.7
!interaction_sliptwin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
!interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
!interaction_twintwin 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10
!relevantResistance 1
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief phenomenological crystal plasticity formulation using a powerlaw fitting
!--------------------------------------------------------------------------------------------------
module constitutive_phenopowerlaw
use prec, only: pReal,pInt
@ -82,62 +35,63 @@ module constitutive_phenopowerlaw
integer(pInt), dimension(:), allocatable, public :: &
constitutive_phenopowerlaw_sizeDotState, &
constitutive_phenopowerlaw_sizeState, &
constitutive_phenopowerlaw_sizePostResults, & ! cumulative size of post results
constitutive_phenopowerlaw_sizePostResults, & !< cumulative size of post results
constitutive_phenopowerlaw_structure
integer(pInt), dimension(:), allocatable, private :: &
constitutive_phenopowerlaw_Noutput, & ! number of outputs per instance of this constitution
constitutive_phenopowerlaw_totalNslip, & ! no. of slip system used in simulation
constitutive_phenopowerlaw_totalNtwin ! no. of twin system used in simulation
constitutive_phenopowerlaw_Noutput, & !< number of outputs per instance of this constitution
constitutive_phenopowerlaw_totalNslip, & !< no. of slip system used in simulation
constitutive_phenopowerlaw_totalNtwin !< no. of twin system used in simulation
integer(pInt), dimension(:,:), allocatable, target, public :: &
constitutive_phenopowerlaw_sizePostResult ! size of each post result output
constitutive_phenopowerlaw_sizePostResult !< size of each post result output
integer(pInt), dimension(:,:), allocatable, private :: &
constitutive_phenopowerlaw_Nslip, & ! active number of slip systems per family
constitutive_phenopowerlaw_Ntwin ! active number of twin systems per family
constitutive_phenopowerlaw_Nslip, & !< active number of slip systems per family (input parameter, per family)
constitutive_phenopowerlaw_Ntwin !< active number of twin systems per family (input parameter, per family)
character(len=64), dimension(:,:), allocatable, target, public :: &
constitutive_phenopowerlaw_output ! name of each post result output
constitutive_phenopowerlaw_output !< name of each post result output
character(len=32), dimension(:), allocatable, private :: &
constitutive_phenopowerlaw_structureName
real(pReal), dimension(:), allocatable, private :: &
constitutive_phenopowerlaw_CoverA, &
constitutive_phenopowerlaw_C11, &
constitutive_phenopowerlaw_C12, &
constitutive_phenopowerlaw_C13, &
constitutive_phenopowerlaw_C33, &
constitutive_phenopowerlaw_C44, &
constitutive_phenopowerlaw_gdot0_slip, &
constitutive_phenopowerlaw_n_slip, &
constitutive_phenopowerlaw_n_twin, &
constitutive_phenopowerlaw_gdot0_twin
constitutive_phenopowerlaw_CoverA, & !< c/a of the crystal (input parameter)
constitutive_phenopowerlaw_C11, & !< component 11 of the stiffness matrix (input parameter)
constitutive_phenopowerlaw_C12, & !< component 12 of the stiffness matrix (input parameter)
constitutive_phenopowerlaw_C13, & !< component 13 of the stiffness matrix (input parameter)
constitutive_phenopowerlaw_C33, & !< component 33 of the stiffness matrix (input parameter)
constitutive_phenopowerlaw_C44, & !< component 44 of the stiffness matrix (input parameter)
constitutive_phenopowerlaw_gdot0_slip, & !< reference shear strain rate for slip (input parameter)
constitutive_phenopowerlaw_gdot0_twin, & !< reference shear strain rate for twin (input parameter)
constitutive_phenopowerlaw_n_slip, & !< (inverse?) of the stress exponent for slip (input parameter)
constitutive_phenopowerlaw_n_twin !< (inverse?) of the stress exponent for twin (input parameter)
real(pReal), dimension(:,:), allocatable, private :: &
constitutive_phenopowerlaw_tau0_slip, &
constitutive_phenopowerlaw_tausat_slip, &
constitutive_phenopowerlaw_tau0_twin
constitutive_phenopowerlaw_tau0_slip, & !< initial critical shear stress for slip (input parameter, per family)
constitutive_phenopowerlaw_tau0_twin, & !< initial critical shear stress for twin (input parameter, per family)
constitutive_phenopowerlaw_tausat_slip !< maximum critical shear stress for slip (input parameter, per family)
real(pReal), dimension(:), allocatable, private :: &
constitutive_phenopowerlaw_spr, &
constitutive_phenopowerlaw_spr, & !< push-up factor for slip saturation due to twinning
constitutive_phenopowerlaw_twinB, &
constitutive_phenopowerlaw_twinC, &
constitutive_phenopowerlaw_twinD, &
constitutive_phenopowerlaw_twinE, &
constitutive_phenopowerlaw_h0_slipslip, &
constitutive_phenopowerlaw_h0_sliptwin, &
constitutive_phenopowerlaw_h0_twinslip, &
constitutive_phenopowerlaw_h0_twintwin, &
constitutive_phenopowerlaw_h0_slipslip, & !< reference hardening slip - slip (input parameter)
constitutive_phenopowerlaw_h0_sliptwin, & !< reference hardening slip - twin (input parameter, no effect at the moment)
constitutive_phenopowerlaw_h0_twinslip, & !< reference hardening twin - slip (input parameter)
constitutive_phenopowerlaw_h0_twintwin, & !< reference hardening twin - twin (input parameter)
constitutive_phenopowerlaw_a_slip, &
constitutive_phenopowerlaw_aTolResistance
real(pReal), dimension(:,:), allocatable, private :: &
constitutive_phenopowerlaw_interaction_slipslip, &
constitutive_phenopowerlaw_interaction_sliptwin, &
constitutive_phenopowerlaw_interaction_twinslip, &
constitutive_phenopowerlaw_interaction_twintwin
constitutive_phenopowerlaw_interaction_slipslip, & !< interaction factors slip - slip (input parameter)
constitutive_phenopowerlaw_interaction_sliptwin, & !< interaction factors slip - twin (input parameter)
constitutive_phenopowerlaw_interaction_twinslip, & !< interaction factors twin - slip (input parameter)
constitutive_phenopowerlaw_interaction_twintwin !< interaction factors twin - twin (input parameter)
real(pReal), dimension(:,:,:), allocatable, private :: &
constitutive_phenopowerlaw_hardeningMatrix_slipslip, &
@ -160,11 +114,11 @@ module constitutive_phenopowerlaw
contains
!--------------------------------------------------------------------------------------------------
!> @brief reading in parameters from material config and doing consistency checks
!--------------------------------------------------------------------------------------------------
subroutine constitutive_phenopowerlaw_init(myFile)
!**************************************
!* Module initialization *
!**************************************
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: math_Mandel3333to66, &
math_Voigt66to3333
use IO
@ -291,101 +245,103 @@ subroutine constitutive_phenopowerlaw_init(myFile)
rewind(myFile)
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
read(myFile,'(a1024)',END=100) line
enddo
do ! read thru sections of phase part
do ! read thru sections of phase part
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt ! advance section counter
cycle ! skip to next line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt ! advance section counter
cycle ! skip to next line
endif
if (section > 0_pInt .and. phase_plasticity(section) == constitutive_phenopowerlaw_label) then ! one of my sections
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
if (section > 0_pInt .and. phase_plasticity(section) == constitutive_phenopowerlaw_label) then ! one of my sections
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('plasticity','elasticity')
cycle
case ('(output)')
constitutive_phenopowerlaw_Noutput(i) = constitutive_phenopowerlaw_Noutput(i) + 1_pInt
constitutive_phenopowerlaw_output(constitutive_phenopowerlaw_Noutput(i),i) = IO_lc(IO_stringValue(line,positions,2_pInt))
constitutive_phenopowerlaw_output(constitutive_phenopowerlaw_Noutput(i),i) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
case ('lattice_structure')
constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
case ('covera_ratio')
constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2_pInt)
case ('c11')
constitutive_phenopowerlaw_C11(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_C11(i) = IO_floatValue(line,positions,2_pInt)
case ('c12')
constitutive_phenopowerlaw_C12(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_C12(i) = IO_floatValue(line,positions,2_pInt)
case ('c13')
constitutive_phenopowerlaw_C13(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_C13(i) = IO_floatValue(line,positions,2_pInt)
case ('c33')
constitutive_phenopowerlaw_C33(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_C33(i) = IO_floatValue(line,positions,2_pInt)
case ('c44')
constitutive_phenopowerlaw_C44(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_C44(i) = IO_floatValue(line,positions,2_pInt)
case ('nslip')
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j)
case ('gdot0_slip')
constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2_pInt)
case ('n_slip')
constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2_pInt)
case ('tau0_slip')
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('tausat_slip')
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('a_slip', 'w0_slip')
constitutive_phenopowerlaw_a_slip(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_a_slip(i) = IO_floatValue(line,positions,2_pInt)
case ('ntwin')
forall (j = 1_pInt:lattice_maxNtwinFamily)&
constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNtwinFamily)&
constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j)
case ('gdot0_twin')
constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2_pInt)
case ('n_twin')
constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2_pInt)
case ('tau0_twin')
forall (j = 1_pInt:lattice_maxNtwinFamily)&
constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNtwinFamily)&
constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('s_pr')
constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2_pInt)
case ('twin_b')
constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2_pInt)
case ('twin_c')
constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2_pInt)
case ('twin_d')
constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2_pInt)
case ('twin_e')
constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2_pInt)
case ('h0_slipslip')
constitutive_phenopowerlaw_h0_slipslip(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_h0_slipslip(i) = IO_floatValue(line,positions,2_pInt)
case ('h0_sliptwin')
constitutive_phenopowerlaw_h0_sliptwin(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_h0_sliptwin(i) = IO_floatValue(line,positions,2_pInt)
call IO_warning(42_pInt,ext_msg=trim(tag)//' ('//constitutive_phenopowerlaw_label//')')
case ('h0_twinslip')
constitutive_phenopowerlaw_h0_twinslip(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_h0_twinslip(i) = IO_floatValue(line,positions,2_pInt)
case ('h0_twintwin')
constitutive_phenopowerlaw_h0_twintwin(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_h0_twintwin(i) = IO_floatValue(line,positions,2_pInt)
case ('atol_resistance')
constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2_pInt)
constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2_pInt)
case ('interaction_slipslip')
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_slipslip(j,i) = IO_floatValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_slipslip(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('interaction_sliptwin')
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_sliptwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_sliptwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('interaction_twinslip')
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_twinslip(j,i) = IO_floatValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_twinslip(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('interaction_twintwin')
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_twintwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_twintwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
case default
call IO_error(210_pInt,ext_msg=tag//' ('//constitutive_phenopowerlaw_label//')')
call IO_error(210_pInt,ext_msg=tag//' ('//constitutive_phenopowerlaw_label//')')
end select
endif
enddo
@ -395,13 +351,13 @@ subroutine constitutive_phenopowerlaw_init(myFile)
constitutive_phenopowerlaw_structure(i) = lattice_initializeStructure(constitutive_phenopowerlaw_structureName(i), & ! get structure
constitutive_phenopowerlaw_CoverA(i))
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i) = &
min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested
min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i))
constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,i) = &
min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested
min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested
constitutive_phenopowerlaw_Ntwin(:,i))
constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether
constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether
constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether
constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether
if (constitutive_phenopowerlaw_structure(i) < 1 ) call IO_error(205_pInt,e=i)
if (any(constitutive_phenopowerlaw_tau0_slip(:,i) < 0.0_pReal .and. &
@ -427,7 +383,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='n_twin (' &
//constitutive_phenopowerlaw_label//')')
if (constitutive_phenopowerlaw_aTolResistance(i) <= 0.0_pReal) &
constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa
constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa
enddo
@ -469,7 +425,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
call IO_error(212_pInt,ext_msg=constitutive_phenopowerlaw_output(o,i)//' ('//constitutive_phenopowerlaw_label//')')
end select
if (mySize > 0_pInt) then ! any meaningful output found
if (mySize > 0_pInt) then ! any meaningful output found
constitutive_phenopowerlaw_sizePostResult(o,i) = mySize
constitutive_phenopowerlaw_sizePostResults(i) = &
constitutive_phenopowerlaw_sizePostResults(i) + mySize
@ -483,7 +439,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
myStructure = constitutive_phenopowerlaw_structure(i)
select case (lattice_symmetryType(myStructure)) ! assign elasticity tensor
select case (lattice_symmetryType(myStructure)) ! assign elasticity tensor
case(1_pInt) ! cubic(s)
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) &
@ -508,13 +464,15 @@ subroutine constitutive_phenopowerlaw_init(myFile)
end select
constitutive_phenopowerlaw_Cslip_66(:,:,i) = &
math_Mandel3333to66(math_Voigt66to3333(constitutive_phenopowerlaw_Cslip_66(:,:,i)))
do f = 1_pInt,lattice_maxNslipFamily ! >>> interaction slip -- X
!--------------------------------------------------------------------------------------------------
! interaction slip -- X
do f = 1_pInt,lattice_maxNslipFamily
index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1_pInt,i))
do j = 1_pInt,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip)
do j = 1_pInt,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip)
do o = 1_pInt,lattice_maxNslipFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i))
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
constitutive_phenopowerlaw_hardeningMatrix_slipslip(index_otherFamily+k,index_myFamily+j,i) = &
constitutive_phenopowerlaw_interaction_slipslip(lattice_interactionSlipSlip( &
sum(lattice_NslipSystem(1:o-1,myStructure))+k, &
@ -524,7 +482,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
do o = 1_pInt,lattice_maxNtwinFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i))
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
constitutive_phenopowerlaw_hardeningMatrix_sliptwin(index_otherFamily+k,index_myFamily+j,i) = &
constitutive_phenopowerlaw_interaction_sliptwin(lattice_interactionSlipTwin( &
sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, &
@ -533,14 +491,16 @@ subroutine constitutive_phenopowerlaw_init(myFile)
enddo; enddo
enddo; enddo
do f = 1_pInt,lattice_maxNtwinFamily ! >>> interaction twin -- X
!--------------------------------------------------------------------------------------------------
! interaction twin -- X
do f = 1_pInt,lattice_maxNtwinFamily
index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1_pInt,i))
do j = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin)
do j = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin)
do o = 1_pInt,lattice_maxNslipFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i))
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
constitutive_phenopowerlaw_hardeningMatrix_twinslip(index_otherFamily+k,index_myFamily+j,i) = &
constitutive_phenopowerlaw_interaction_twinslip(lattice_interactionTwinSlip( &
sum(lattice_NslipSystem(1:o-1_pInt,myStructure))+k, &
@ -550,7 +510,7 @@ subroutine constitutive_phenopowerlaw_init(myFile)
do o = 1_pInt,lattice_maxNtwinFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i))
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
constitutive_phenopowerlaw_hardeningMatrix_twintwin(index_otherFamily+k,index_myFamily+j,i) = &
constitutive_phenopowerlaw_interaction_twintwin(lattice_interactionTwinTwin( &
sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, &
@ -561,18 +521,15 @@ subroutine constitutive_phenopowerlaw_init(myFile)
enddo; enddo
! report to out file...
enddo
return
end subroutine constitutive_phenopowerlaw_init
!--------------------------------------------------------------------------------------------------
!> @brief initial microstructural state
!--------------------------------------------------------------------------------------------------
function constitutive_phenopowerlaw_stateInit(myInstance)
!*********************************************************************
!* initial microstructural state *
!*********************************************************************
use lattice, only: lattice_maxNslipFamily, lattice_maxNtwinFamily
implicit none
@ -596,74 +553,64 @@ function constitutive_phenopowerlaw_stateInit(myInstance)
sum(constitutive_phenopowerlaw_Ntwin(1:i ,myInstance))) = &
constitutive_phenopowerlaw_tau0_twin(i,myInstance)
enddo
return
end function constitutive_phenopowerlaw_stateInit
!*********************************************************************
!* absolute state tolerance *
!*********************************************************************
!--------------------------------------------------------------------------------------------------
!> @brief absolute state tolerance
!--------------------------------------------------------------------------------------------------
pure function constitutive_phenopowerlaw_aTolState(myInstance)
implicit none
!*** input variables
integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the plasticity
!*** output variables
real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: &
constitutive_phenopowerlaw_aTolState ! relevant state values for the current instance of this plasticity
!*** local variables
implicit none
integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the plasticity
real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: &
constitutive_phenopowerlaw_aTolState ! relevant state values for the current instance of this plasticity
constitutive_phenopowerlaw_aTolState = constitutive_phenopowerlaw_aTolResistance(myInstance)
end function constitutive_phenopowerlaw_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief homogenized elacticity matrix
!--------------------------------------------------------------------------------------------------
function constitutive_phenopowerlaw_homogenizedC(state,ipc,ip,el)
!*********************************************************************
!* homogenized elacticity matrix *
!* INPUT: *
!* - state : state variables *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
use prec, only: p_vec
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
implicit none
integer(pInt), intent(in) :: ipc,ip,el
integer(pInt), intent(in) :: &
ipc, & !component-ID of current integration point
ip, & !current integration point
el !current element
integer(pInt) matID
real(pReal), dimension(6,6) :: constitutive_phenopowerlaw_homogenizedC
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state ! state variables
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
constitutive_phenopowerlaw_homogenizedC = constitutive_phenopowerlaw_Cslip_66(:,:,matID)
return
end function constitutive_phenopowerlaw_homogenizedC
!--------------------------------------------------------------------------------------------------
!> @brief calculate derived quantities from state (dummy subroutine, not used here)
!--------------------------------------------------------------------------------------------------
subroutine constitutive_phenopowerlaw_microstructure(Temperature,state,ipc,ip,el)
!*********************************************************************
!* calculate derived quantities from state (not used here) *
!* INPUT: *
!* - Tp : temperature *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
use prec, only: pReal,pInt,p_vec
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
implicit none
integer(pInt) ipc,ip,el, matID
real(pReal) Temperature
integer(pInt), intent(in) :: &
ipc, & !component-ID of current integration point
ip, & !current integration point
el !current element
integer(pInt) :: matID
real(pReal), intent(in) :: Temperature ! temperature
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
@ -671,18 +618,10 @@ subroutine constitutive_phenopowerlaw_microstructure(Temperature,state,ipc,ip,el
end subroutine constitutive_phenopowerlaw_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,ipc,ip,el)
!*********************************************************************
!* plastic velocity gradient and its tangent *
!* INPUT: *
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
!* - ipc : component-ID at current integration point *
!* - ip : current integration point *
!* - el : current element *
!* OUTPUT: *
!* - Lp : plastic velocity gradient *
!* - dLp_dTstar : derivative of Lp (4th-rank tensor) *
!*********************************************************************
use prec, only: p_vec
use math, only: math_Plain3333to99
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
@ -691,14 +630,17 @@ subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temp
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
implicit none
integer(pInt) ipc,ip,el
integer(pInt), intent(in) :: &
ipc, & ! component-ID at current integration point
ip, & ! current integration point
el ! current element
integer(pInt) matID,nSlip,nTwin,f,i,j,k,l,m,n, structID,index_Gamma,index_F,index_myFamily
real(pReal) Temperature
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
real(pReal), dimension(6) :: Tstar_v
real(pReal), dimension(3,3) :: Lp
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333
real(pReal), dimension(9,9) :: dLp_dTstar
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), dimension(3,3), intent(out) :: Lp ! plastic velocity gradient
real(pReal), dimension(3,3,3,3):: dLp_dTstar3333 ! derivative of Lp (4th-rank tensor)
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
gdot_slip,dgdot_dtauslip,tau_slip
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
@ -718,21 +660,21 @@ subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temp
dLp_dTstar = 0.0_pReal
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
!* Calculation of Lp
!--------------------------------------------------------------------------------------------------
! Calculation of Lp
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**&
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j))
Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
gdot_slip(j)*lattice_Sslip(1:3,1:3,index_myFamily+i,structID)
!* Calculation of the tangent of Lp
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
if (gdot_slip(j) /= 0.0_pReal) then
dgdot_dtauslip(j) = gdot_slip(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip(j)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
@ -744,22 +686,22 @@ subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temp
enddo
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
!* Calculation of Lp
!--------------------------------------------------------------------------------------------------
! Calculation of Lp
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
constitutive_phenopowerlaw_gdot0_twin(matID)*&
(abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**&
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,structID)
!* Calculation of the tangent of Lp
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
if (gdot_twin(j) /= 0.0_pReal) then
dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(matID)/tau_twin(j)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
@ -772,21 +714,13 @@ subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temp
dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
return
end subroutine constitutive_phenopowerlaw_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief of change of microstructure, evolution of state variable
!--------------------------------------------------------------------------------------------------
function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el)
!*********************************************************************
!* rate of change of microstructure *
!* INPUT: *
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
!* - ipc : component-ID at current integration point *
!* - ip : current integration point *
!* - el : current element *
!* OUTPUT: *
!* - constitutive_dotState : evolution of state variable *
!*********************************************************************
use prec, only: p_vec
use lattice, only: lattice_Sslip_v, lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin
@ -794,11 +728,14 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
implicit none
integer(pInt) ipc,ip,el
integer(pInt), intent(in) :: &
ipc, & !< component-ID at current integration point
ip, & !< current integration point
el !< current element
integer(pInt) matID,nSlip,nTwin,f,i,j, structID,index_Gamma,index_F,index_myFamily
real(pReal) Temperature,c_slipslip,c_sliptwin,c_twinslip,c_twintwin, ssat_offset
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
real(pReal), dimension(6) :: Tstar_v
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
real(pReal), dimension(6), intent(in) :: Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
gdot_slip,tau_slip,h_slipslip,h_sliptwin
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
@ -816,9 +753,9 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
index_F = nSlip + nTwin + 2_pInt
constitutive_phenopowerlaw_dotState = 0.0_pReal
!-- system-independent (nonlinear) prefactors to M_xx matrices
!--------------------------------------------------------------------------------------------------
! system-independent (nonlinear) prefactors to M_xx matrices
c_slipslip = constitutive_phenopowerlaw_h0_slipslip(matID)*&
(1.0_pReal + &
constitutive_phenopowerlaw_twinC(matID)*state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinB(matID))
@ -827,23 +764,23 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
state(ipc,ip,el)%p(index_Gamma)**constitutive_phenopowerlaw_twinE(matID)
c_twintwin = constitutive_phenopowerlaw_h0_twintwin(matID)*&
state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinD(matID)
!-- add system-dependent part and calculate dot gammas
!--------------------------------------------------------------------------------------------------
! add system-dependent part and calculate dot gammas
ssat_offset = constitutive_phenopowerlaw_spr(matID)*sqrt(state(ipc,ip,el)%p(index_F))
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
h_slipslip(j) = c_slipslip*(1.0_pReal-state(ipc,ip,el)%p(j) / & ! system-dependent prefactor for slip--slip interaction
h_slipslip(j) = c_slipslip*(1.0_pReal-state(ipc,ip,el)%p(j) / & ! system-dependent prefactor for slip--slip interaction
(constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset))** &
constitutive_phenopowerlaw_a_slip(matID)
h_sliptwin(j) = c_sliptwin ! no system-dependent part
h_sliptwin(j) = c_sliptwin ! no system-dependent part
!* Calculation of dot gamma
!--------------------------------------------------------------------------------------------------
! Calculation of dot gamma
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**&
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j))
@ -851,15 +788,15 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
enddo
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
h_twinslip(j) = c_twinslip ! no system-dependent parts
h_twinslip(j) = c_twinslip ! no system-dependent parts
h_twintwin(j) = c_twintwin
!* Calculation of dot vol frac
!--------------------------------------------------------------------------------------------------
! Calculation of dot vol frac
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
constitutive_phenopowerlaw_gdot0_twin(matID)*&
@ -868,11 +805,11 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
enddo
enddo
!-- calculate the overall hardening based on above
!--------------------------------------------------------------------------------------------------
! calculate the overall hardening based on above
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j
h_slipslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_slipslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip
@ -883,9 +820,9 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
enddo
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j
h_twinslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_twinslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip
@ -898,9 +835,9 @@ function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el
end function constitutive_phenopowerlaw_dotState
!*********************************************************************
!* (instantaneous) incremental change of microstructure *
!*********************************************************************
!--------------------------------------------------------------------------------------------------
!> @brief (instantaneous) incremental change of microstructure
!--------------------------------------------------------------------------------------------------
function constitutive_phenopowerlaw_deltaState(Tstar_v, Temperature, state, g,ip,el)
use prec, only: pReal, &
@ -914,66 +851,50 @@ use material, only: homogenization_maxNgrains, &
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state ! current microstructural state
state ! current microstructural state
!*** output variables
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
constitutive_phenopowerlaw_deltaState ! change of state variables / microstructure
!*** local variables
constitutive_phenopowerlaw_deltaState ! change of state variables / microstructure
constitutive_phenopowerlaw_deltaState = 0.0_pReal
endfunction
end function constitutive_phenopowerlaw_deltaState
!****************************************************************
!* calculates the rate of change of temperature *
!****************************************************************
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of temperature (dummy function)
!--------------------------------------------------------------------------------------------------
pure function constitutive_phenopowerlaw_dotTemperature(Tstar_v,Temperature,state,ipc,ip,el)
!*** variables and functions from other modules ***!
use prec, only: pReal,pInt,p_vec
use mesh, only: mesh_NcpElems, mesh_maxNips
use material, only: homogenization_maxNgrains
implicit none
!*** input variables ***!
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: Temperature
integer(pInt), intent(in):: ipc, & ! grain number
ip, & ! integration point number
el ! element number
integer(pInt), intent(in):: ipc, & ! grain number
ip, & ! integration point number
el ! element number
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state ! state of the current microstructure
!*** output variables ***!
real(pReal) constitutive_phenopowerlaw_dotTemperature ! rate of change of temparature
real(pReal) constitutive_phenopowerlaw_dotTemperature ! rate of change of temparature
! calculate dotTemperature
constitutive_phenopowerlaw_dotTemperature = 0.0_pReal
end function constitutive_phenopowerlaw_dotTemperature
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,state,ipc,ip,el)
!*********************************************************************
!* return array of constitutive results *
!* INPUT: *
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
!* - dt : current time increment *
!* - ipc : component-ID at current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
use prec, only: pReal,pInt,p_vec
use lattice, only: lattice_Sslip_v,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_NslipSystem,lattice_NtwinSystem
@ -981,9 +902,14 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
use material, only: homogenization_maxNgrains,material_phase,phase_plasticityInstance,phase_Noutput
implicit none
integer(pInt), intent(in) :: ipc,ip,el
real(pReal), intent(in) :: dt,Temperature
real(pReal), dimension(6), intent(in) :: Tstar_v
integer(pInt), intent(in) :: &
ipc, & !component-ID at current integration point
ip, & !current integration point
el !current element
real(pReal), intent(in) :: &
dt, & !current time increment
Temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
integer(pInt) matID,o,f,i,c,nSlip,nTwin,j, structID,index_Gamma,index_F,index_myFamily
real(pReal) tau
@ -1010,9 +936,9 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
case ('shearrate_slip')
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j + 1_pInt
tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,structID))
constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(matID)*&
@ -1023,9 +949,9 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
case ('resolvedstress_slip')
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j + 1_pInt
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
enddo; enddo
@ -1041,9 +967,9 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
case ('shearrate_twin')
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j + 1_pInt
tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
@ -1055,9 +981,9 @@ pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,stat
case ('resolvedstress_twin')
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j + 1_pInt
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
enddo; enddo