Merge remote-tracking branch 'origin/development' into cleaning
This commit is contained in:
commit
8ec1014134
2
PRIVATE
2
PRIVATE
|
@ -1 +1 @@
|
|||
Subproject commit c8e12648fd5642f887ddca233f89591120dcf564
|
||||
Subproject commit 25ce39dd0f5bf49dc5c2bec20767d93d2b76d353
|
|
@ -147,11 +147,11 @@ class Colormap(mpl.colors.ListedColormap):
|
|||
|
||||
References
|
||||
----------
|
||||
.. [1] DAMASK colormap theory
|
||||
[1] DAMASK colormap theory
|
||||
https://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf
|
||||
.. [2] DAMASK colormaps first use
|
||||
[2] DAMASK colormaps first use
|
||||
https://doi.org/10.1016/j.ijplas.2012.09.012
|
||||
.. [3] Matplotlib colormaps overview
|
||||
[3] Matplotlib colormaps overview
|
||||
https://matplotlib.org/tutorials/colors/colormaps.html
|
||||
|
||||
"""
|
||||
|
|
|
@ -406,9 +406,9 @@ class Geom:
|
|||
locations (cell centers) are addressed.
|
||||
If given as floats, coordinates are addressed.
|
||||
exponent : numpy.ndarray of shape(3) or float
|
||||
Exponents for the three axis.
|
||||
0 gives octahedron (|x|^(2^0) + |y|^(2^0) + |z|^(2^0) < 1)
|
||||
1 gives a sphere (|x|^(2^1) + |y|^(2^1) + |z|^(2^1) < 1)
|
||||
Exponents for the three axes.
|
||||
0 gives octahedron (ǀxǀ^(2^0) + ǀyǀ^(2^0) + ǀzǀ^(2^0) < 1)
|
||||
1 gives sphere (ǀxǀ^(2^1) + ǀyǀ^(2^1) + ǀzǀ^(2^1) < 1)
|
||||
fill : int, optional
|
||||
Fill value for primitive. Defaults to material.max() + 1.
|
||||
R : damask.Rotation, optional
|
||||
|
|
|
@ -212,7 +212,7 @@ class Rotation:
|
|||
Returns
|
||||
-------
|
||||
q : numpy.ndarray of shape (...,4)
|
||||
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), |q|=1, q_0 ≥ 0.
|
||||
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), ǀqǀ=1, q_0 ≥ 0.
|
||||
|
||||
"""
|
||||
return self.quaternion.copy()
|
||||
|
@ -255,7 +255,7 @@ class Rotation:
|
|||
-------
|
||||
axis_angle : numpy.ndarray of shape (...,4) unless pair == True:
|
||||
tuple containing numpy.ndarray of shapes (...,3) and (...)
|
||||
Axis angle pair: (n_1, n_2, n_3, ω), |n| = 1 and ω ∈ [0,π]
|
||||
Axis angle pair: (n_1, n_2, n_3, ω), ǀnǀ = 1 and ω ∈ [0,π]
|
||||
unless degrees = True: ω ∈ [0,180].
|
||||
|
||||
"""
|
||||
|
@ -290,7 +290,7 @@ class Rotation:
|
|||
-------
|
||||
rho : numpy.ndarray of shape (...,4) unless vector == True:
|
||||
numpy.ndarray of shape (...,3)
|
||||
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], |n| = 1 and ω ∈ [0,π].
|
||||
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω ∈ [0,π].
|
||||
|
||||
"""
|
||||
ro = Rotation._qu2ro(self.quaternion)
|
||||
|
@ -307,7 +307,7 @@ class Rotation:
|
|||
Returns
|
||||
-------
|
||||
h : numpy.ndarray of shape (...,3)
|
||||
Homochoric vector: (h_1, h_2, h_3), |h| < 1/2*π^(2/3).
|
||||
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < 1/2*π^(2/3).
|
||||
|
||||
"""
|
||||
return Rotation._qu2ho(self.quaternion)
|
||||
|
@ -353,7 +353,7 @@ class Rotation:
|
|||
----------
|
||||
q : numpy.ndarray of shape (...,4)
|
||||
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3),
|
||||
|q|=1, q_0 ≥ 0.
|
||||
ǀqǀ=1, q_0 ≥ 0.
|
||||
accept_homomorph : boolean, optional
|
||||
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
|
||||
Defaults to False.
|
||||
|
@ -416,12 +416,12 @@ class Rotation:
|
|||
Parameters
|
||||
----------
|
||||
axis_angle : numpy.ndarray of shape (...,4)
|
||||
Axis angle pair: [n_1, n_2, n_3, ω], |n| = 1 and ω ∈ [0,π]
|
||||
Axis angle pair: [n_1, n_2, n_3, ω], ǀnǀ = 1 and ω ∈ [0,π]
|
||||
unless degrees = True: ω ∈ [0,180].
|
||||
degrees : boolean, optional
|
||||
Angle ω is given in degrees. Defaults to False.
|
||||
normalize: boolean, optional
|
||||
Allow |n| ≠ 1. Defaults to False.
|
||||
Allow ǀnǀ ≠ 1. Defaults to False.
|
||||
P : int ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
|
||||
|
@ -503,9 +503,9 @@ class Rotation:
|
|||
----------
|
||||
rho : numpy.ndarray of shape (...,4)
|
||||
Rodrigues-Frank vector (angle separated from axis).
|
||||
(n_1, n_2, n_3, tan(ω/2)), |n| = 1 and ω ∈ [0,π].
|
||||
(n_1, n_2, n_3, tan(ω/2)), ǀnǀ = 1 and ω ∈ [0,π].
|
||||
normalize : boolean, optional
|
||||
Allow |n| ≠ 1. Defaults to False.
|
||||
Allow ǀnǀ ≠ 1. Defaults to False.
|
||||
P : int ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
|
||||
|
@ -534,7 +534,7 @@ class Rotation:
|
|||
Parameters
|
||||
----------
|
||||
h : numpy.ndarray of shape (...,3)
|
||||
Homochoric vector: (h_1, h_2, h_3), |h| < (3/4*π)^(1/3).
|
||||
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3).
|
||||
P : int ∈ {-1,1}, optional
|
||||
Convention used. Defaults to -1.
|
||||
|
||||
|
|
Loading…
Reference in New Issue