Merge branch 'fix-docstrings-for-sphinx' into 'development'

corrected Sphinx warnings

See merge request damask/DAMASK!234
This commit is contained in:
Vitesh 2020-09-27 16:28:40 +02:00
commit 818974ee46
4 changed files with 20 additions and 20 deletions

@ -1 +1 @@
Subproject commit dc568df60e36b659d9a1f84ac93fd4abb1b8fe3c
Subproject commit 68837540cab7435d8e2a06ae4c74e069e9386f35

View File

@ -147,12 +147,12 @@ class Colormap(mpl.colors.ListedColormap):
References
----------
.. [1] DAMASK colormap theory
https://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf
.. [2] DAMASK colormaps first use
https://doi.org/10.1016/j.ijplas.2012.09.012
.. [3] Matplotlib colormaps overview
https://matplotlib.org/tutorials/colors/colormaps.html
[1] DAMASK colormap theory
https://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf
[2] DAMASK colormaps first use
https://doi.org/10.1016/j.ijplas.2012.09.012
[3] Matplotlib colormaps overview
https://matplotlib.org/tutorials/colors/colormaps.html
"""
print('DAMASK colormaps')

View File

@ -406,9 +406,9 @@ class Geom:
locations (cell centers) are addressed.
If given as floats, coordinates are addressed.
exponent : numpy.ndarray of shape(3) or float
Exponents for the three axis.
0 gives octahedron (|x|^(2^0) + |y|^(2^0) + |z|^(2^0) < 1)
1 gives a sphere (|x|^(2^1) + |y|^(2^1) + |z|^(2^1) < 1)
Exponents for the three axes.
0 gives octahedron (ǀxǀ^(2^0) + ǀyǀ^(2^0) + ǀzǀ^(2^0) < 1)
1 gives sphere (ǀxǀ^(2^1) + ǀyǀ^(2^1) + ǀzǀ^(2^1) < 1)
fill : int, optional
Fill value for primitive. Defaults to material.max() + 1.
R : damask.Rotation, optional

View File

@ -212,7 +212,7 @@ class Rotation:
Returns
-------
q : numpy.ndarray of shape (...,4)
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), |q|=1, q_0 0.
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), ǀqǀ=1, q_0 0.
"""
return self.quaternion.copy()
@ -255,7 +255,7 @@ class Rotation:
-------
axis_angle : numpy.ndarray of shape (...,4) unless pair == True:
tuple containing numpy.ndarray of shapes (...,3) and (...)
Axis angle pair: (n_1, n_2, n_3, ω), |n| = 1 and ω [0,π]
Axis angle pair: (n_1, n_2, n_3, ω), ǀnǀ = 1 and ω [0,π]
unless degrees = True: ω [0,180].
"""
@ -290,7 +290,7 @@ class Rotation:
-------
rho : numpy.ndarray of shape (...,4) unless vector == True:
numpy.ndarray of shape (...,3)
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], |n| = 1 and ω [0,π].
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω [0,π].
"""
ro = Rotation._qu2ro(self.quaternion)
@ -307,7 +307,7 @@ class Rotation:
Returns
-------
h : numpy.ndarray of shape (...,3)
Homochoric vector: (h_1, h_2, h_3), |h| < 1/2*π^(2/3).
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < 1/2*π^(2/3).
"""
return Rotation._qu2ho(self.quaternion)
@ -353,7 +353,7 @@ class Rotation:
----------
q : numpy.ndarray of shape (...,4)
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3),
|q|=1, q_0 0.
ǀqǀ=1, q_0 0.
accept_homomorph : boolean, optional
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
Defaults to False.
@ -416,12 +416,12 @@ class Rotation:
Parameters
----------
axis_angle : numpy.ndarray of shape (...,4)
Axis angle pair: [n_1, n_2, n_3, ω], |n| = 1 and ω [0,π]
Axis angle pair: [n_1, n_2, n_3, ω], ǀnǀ = 1 and ω [0,π]
unless degrees = True: ω [0,180].
degrees : boolean, optional
Angle ω is given in degrees. Defaults to False.
normalize: boolean, optional
Allow |n| 1. Defaults to False.
Allow ǀnǀ 1. Defaults to False.
P : int {-1,1}, optional
Convention used. Defaults to -1.
@ -503,9 +503,9 @@ class Rotation:
----------
rho : numpy.ndarray of shape (...,4)
Rodrigues-Frank vector (angle separated from axis).
(n_1, n_2, n_3, tan(ω/2)), |n| = 1 and ω [0,π].
(n_1, n_2, n_3, tan(ω/2)), ǀnǀ = 1 and ω [0,π].
normalize : boolean, optional
Allow |n| 1. Defaults to False.
Allow ǀnǀ 1. Defaults to False.
P : int {-1,1}, optional
Convention used. Defaults to -1.
@ -534,7 +534,7 @@ class Rotation:
Parameters
----------
h : numpy.ndarray of shape (...,3)
Homochoric vector: (h_1, h_2, h_3), |h| < (3/4*π)^(1/3).
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3).
P : int {-1,1}, optional
Convention used. Defaults to -1.