diff --git a/PRIVATE b/PRIVATE index c8e12648f..25ce39dd0 160000 --- a/PRIVATE +++ b/PRIVATE @@ -1 +1 @@ -Subproject commit c8e12648fd5642f887ddca233f89591120dcf564 +Subproject commit 25ce39dd0f5bf49dc5c2bec20767d93d2b76d353 diff --git a/python/damask/_colormap.py b/python/damask/_colormap.py index fa7d36ec2..6803f4c60 100644 --- a/python/damask/_colormap.py +++ b/python/damask/_colormap.py @@ -147,12 +147,12 @@ class Colormap(mpl.colors.ListedColormap): References ---------- - .. [1] DAMASK colormap theory - https://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf - .. [2] DAMASK colormaps first use - https://doi.org/10.1016/j.ijplas.2012.09.012 - .. [3] Matplotlib colormaps overview - https://matplotlib.org/tutorials/colors/colormaps.html + [1] DAMASK colormap theory + https://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf + [2] DAMASK colormaps first use + https://doi.org/10.1016/j.ijplas.2012.09.012 + [3] Matplotlib colormaps overview + https://matplotlib.org/tutorials/colors/colormaps.html """ print('DAMASK colormaps') diff --git a/python/damask/_geom.py b/python/damask/_geom.py index 50d4e2b33..6a7bc3c0e 100644 --- a/python/damask/_geom.py +++ b/python/damask/_geom.py @@ -406,9 +406,9 @@ class Geom: locations (cell centers) are addressed. If given as floats, coordinates are addressed. exponent : numpy.ndarray of shape(3) or float - Exponents for the three axis. - 0 gives octahedron (|x|^(2^0) + |y|^(2^0) + |z|^(2^0) < 1) - 1 gives a sphere (|x|^(2^1) + |y|^(2^1) + |z|^(2^1) < 1) + Exponents for the three axes. + 0 gives octahedron (ǀxǀ^(2^0) + ǀyǀ^(2^0) + ǀzǀ^(2^0) < 1) + 1 gives sphere (ǀxǀ^(2^1) + ǀyǀ^(2^1) + ǀzǀ^(2^1) < 1) fill : int, optional Fill value for primitive. Defaults to material.max() + 1. R : damask.Rotation, optional diff --git a/python/damask/_rotation.py b/python/damask/_rotation.py index d9237c7e2..363dbfce8 100644 --- a/python/damask/_rotation.py +++ b/python/damask/_rotation.py @@ -212,7 +212,7 @@ class Rotation: Returns ------- q : numpy.ndarray of shape (...,4) - Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), |q|=1, q_0 ≥ 0. + Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), ǀqǀ=1, q_0 ≥ 0. """ return self.quaternion.copy() @@ -255,7 +255,7 @@ class Rotation: ------- axis_angle : numpy.ndarray of shape (...,4) unless pair == True: tuple containing numpy.ndarray of shapes (...,3) and (...) - Axis angle pair: (n_1, n_2, n_3, ω), |n| = 1 and ω ∈ [0,π] + Axis angle pair: (n_1, n_2, n_3, ω), ǀnǀ = 1 and ω ∈ [0,π] unless degrees = True: ω ∈ [0,180]. """ @@ -290,7 +290,7 @@ class Rotation: ------- rho : numpy.ndarray of shape (...,4) unless vector == True: numpy.ndarray of shape (...,3) - Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], |n| = 1 and ω ∈ [0,π]. + Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω ∈ [0,π]. """ ro = Rotation._qu2ro(self.quaternion) @@ -307,7 +307,7 @@ class Rotation: Returns ------- h : numpy.ndarray of shape (...,3) - Homochoric vector: (h_1, h_2, h_3), |h| < 1/2*π^(2/3). + Homochoric vector: (h_1, h_2, h_3), ǀhǀ < 1/2*π^(2/3). """ return Rotation._qu2ho(self.quaternion) @@ -353,7 +353,7 @@ class Rotation: ---------- q : numpy.ndarray of shape (...,4) Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), - |q|=1, q_0 ≥ 0. + ǀqǀ=1, q_0 ≥ 0. accept_homomorph : boolean, optional Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere). Defaults to False. @@ -416,12 +416,12 @@ class Rotation: Parameters ---------- axis_angle : numpy.ndarray of shape (...,4) - Axis angle pair: [n_1, n_2, n_3, ω], |n| = 1 and ω ∈ [0,π] + Axis angle pair: [n_1, n_2, n_3, ω], ǀnǀ = 1 and ω ∈ [0,π] unless degrees = True: ω ∈ [0,180]. degrees : boolean, optional Angle ω is given in degrees. Defaults to False. normalize: boolean, optional - Allow |n| ≠ 1. Defaults to False. + Allow ǀnǀ ≠ 1. Defaults to False. P : int ∈ {-1,1}, optional Convention used. Defaults to -1. @@ -503,9 +503,9 @@ class Rotation: ---------- rho : numpy.ndarray of shape (...,4) Rodrigues-Frank vector (angle separated from axis). - (n_1, n_2, n_3, tan(ω/2)), |n| = 1 and ω ∈ [0,π]. + (n_1, n_2, n_3, tan(ω/2)), ǀnǀ = 1 and ω ∈ [0,π]. normalize : boolean, optional - Allow |n| ≠ 1. Defaults to False. + Allow ǀnǀ ≠ 1. Defaults to False. P : int ∈ {-1,1}, optional Convention used. Defaults to -1. @@ -534,7 +534,7 @@ class Rotation: Parameters ---------- h : numpy.ndarray of shape (...,3) - Homochoric vector: (h_1, h_2, h_3), |h| < (3/4*π)^(1/3). + Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3). P : int ∈ {-1,1}, optional Convention used. Defaults to -1.