DAMASK_EICMD/python/damask/_table.py

381 lines
11 KiB
Python
Raw Normal View History

2019-10-31 15:15:34 +05:30
import re
2020-09-14 10:34:01 +05:30
import copy
2019-10-31 15:15:34 +05:30
import pandas as pd
import numpy as np
from . import util
2020-03-13 05:00:49 +05:30
class Table:
"""Store spreadsheet-like data."""
2020-03-13 05:00:49 +05:30
2019-12-05 09:30:26 +05:30
def __init__(self,data,shapes,comments=None):
"""
2019-12-05 09:30:26 +05:30
New spreadsheet.
2020-03-13 05:00:49 +05:30
Parameters
----------
data : numpy.ndarray or pandas.DataFrame
Data. Column labels from a pandas.DataFrame will be replaced.
2019-12-05 09:30:26 +05:30
shapes : dict with str:tuple pairs
2020-03-13 05:00:49 +05:30
Shapes of the columns. Example 'F':(3,3) for a deformation gradient.
comments : str or iterable of str, optional
2019-12-05 09:30:26 +05:30
Additional, human-readable information.
2020-03-13 05:00:49 +05:30
"""
comments_ = [comments] if isinstance(comments,str) else comments
self.comments = [] if comments_ is None else [c for c in comments_]
self.data = pd.DataFrame(data=data)
self.shapes = { k:(v,) if isinstance(v,(np.int,int)) else v for k,v in shapes.items() }
self._label_uniform()
2020-09-14 10:34:01 +05:30
def __copy__(self):
"""Copy Table."""
return copy.deepcopy(self)
def copy(self):
"""Copy Table."""
return self.__copy__()
def _label_discrete(self):
"""Label data individually, e.g. v v v ==> 1_v 2_v 3_v."""
labels = []
for label,shape in self.shapes.items():
size = int(np.prod(shape))
labels += [('' if size == 1 else f'{i+1}_')+label for i in range(size)]
self.data.columns = labels
2020-03-13 05:00:49 +05:30
def _label_uniform(self):
"""Label data uniformly, e.g. 1_v 2_v 3_v ==> v v v."""
2019-12-05 19:35:50 +05:30
labels = []
for label,shape in self.shapes.items():
labels += [label] * int(np.prod(shape))
self.data.columns = labels
2020-03-18 18:19:53 +05:30
def _add_comment(self,label,shape,info):
2020-03-21 15:37:21 +05:30
if info is not None:
2020-08-25 02:58:26 +05:30
specific = f'{label}{" "+str(shape) if np.prod(shape,dtype=int) > 1 else ""}: {info}'
general = util.execution_stamp('Table')
self.comments.append(f'{specific} / {general}')
2020-03-13 05:00:49 +05:30
@staticmethod
def load_ASCII(fname):
"""
Create table from ASCII file.
In legacy style, the first line indicates the number of
subsequent header lines as "N header", with the last header line being
interpreted as column labels.
Alternatively, initial comments are marked by '#', with the first non-comment line
containing the column labels.
2019-12-05 09:30:26 +05:30
Vector data column labels are indicated by '1_v, 2_v, ..., n_v'.
Tensor data column labels are indicated by '3x3:1_T, 3x3:2_T, ..., 3x3:9_T'.
Parameters
----------
fname : file, str, or pathlib.Path
Filename or file for reading.
"""
try:
f = open(fname)
except TypeError:
f = fname
f.seek(0)
try:
2020-01-26 14:47:27 +05:30
N_comment_lines,keyword = f.readline().strip().split(maxsplit=1)
if keyword != 'header':
raise ValueError
2020-01-20 17:36:32 +05:30
else:
comments = [f.readline().strip() for i in range(1,int(N_comment_lines))]
2020-01-20 17:36:32 +05:30
labels = f.readline().split()
except ValueError:
f.seek(0)
comments = []
line = f.readline().strip()
while line.startswith('#'):
2020-01-20 17:36:32 +05:30
comments.append(line.lstrip('#').strip())
line = f.readline().strip()
labels = line.split()
2020-03-13 05:00:49 +05:30
2019-12-05 09:30:26 +05:30
shapes = {}
for label in labels:
tensor_column = re.search(r'[0-9,x]*?:[0-9]*?_',label)
if tensor_column:
my_shape = tensor_column.group().split(':',1)[0].split('x')
2019-12-05 09:30:26 +05:30
shapes[label.split('_',1)[1]] = tuple([int(d) for d in my_shape])
2019-10-31 15:15:34 +05:30
else:
vector_column = re.match(r'[0-9]*?_',label)
if vector_column:
2019-12-05 09:30:26 +05:30
shapes[label.split('_',1)[1]] = (int(label.split('_',1)[0]),)
2019-10-31 15:15:34 +05:30
else:
2019-12-05 19:35:50 +05:30
shapes[label] = (1,)
2020-03-13 05:00:49 +05:30
data = pd.read_csv(f,names=list(range(len(labels))),sep=r'\s+')
2019-12-05 19:35:50 +05:30
2019-12-05 10:15:27 +05:30
return Table(data,shapes,comments)
@staticmethod
def load_ang(fname):
"""
Create table from TSL ang file.
A valid TSL ang file needs to contains the following columns:
* Euler angles (Bunge notation) in radians, 3 floats, label 'eu'.
* Spatial position in meters, 2 floats, label 'pos'.
* Image quality, 1 float, label 'IQ'.
* Confidence index, 1 float, label 'CI'.
* Phase ID, 1 int, label 'ID'.
* SEM signal, 1 float, label 'intensity'.
* Fit, 1 float, label 'fit'.
Parameters
----------
fname : file, str, or pathlib.Path
Filename or file for reading.
"""
try:
f = open(fname)
except TypeError:
f = fname
f.seek(0)
2020-03-13 05:00:49 +05:30
content = f.readlines()
2020-08-25 02:58:26 +05:30
comments = [util.execution_stamp('Table','from_ang')]
for line in content:
if line.startswith('#'):
comments.append(line.strip())
else:
break
2020-03-13 05:00:49 +05:30
data = np.loadtxt(content)
shapes = {'eu':3, 'pos':2, 'IQ':1, 'CI':1, 'ID':1, 'intensity':1, 'fit':1}
remainder = data.shape[1]-sum(shapes.values())
if remainder > 0: # 3.8 can do: if (remainder := data.shape[1]-sum(shapes.values())) > 0
shapes['unknown'] = remainder
return Table(data,shapes,comments)
2020-01-08 20:04:21 +05:30
@property
2019-12-05 10:40:27 +05:30
def labels(self):
return list(self.shapes.keys())
def get(self,label):
"""
2019-12-05 10:40:27 +05:30
Get column data.
Parameters
----------
label : str
2019-12-05 10:40:27 +05:30
Column label.
"""
if re.match(r'[0-9]*?_',label):
idx,key = label.split('_',1)
2020-03-17 16:52:48 +05:30
data = self.data[key].to_numpy()[:,int(idx)-1].reshape(-1,1)
2020-03-13 05:00:49 +05:30
else:
data = self.data[label].to_numpy().reshape((-1,)+self.shapes[label])
return data.astype(type(data.flatten()[0]))
2019-12-05 19:35:50 +05:30
2019-10-31 15:15:34 +05:30
2019-12-05 10:40:27 +05:30
def set(self,label,data,info=None):
"""
2019-12-05 10:40:27 +05:30
Set column data.
Parameters
----------
label : str
2019-12-05 10:40:27 +05:30
Column label.
data : np.ndarray
New data.
2019-12-05 10:40:27 +05:30
info : str, optional
Human-readable information about the new data.
"""
2020-09-14 10:34:01 +05:30
dup = self.copy()
dup._add_comment(label,data.shape[1:],info)
if re.match(r'[0-9]*?_',label):
idx,key = label.split('_',1)
2020-09-14 10:34:01 +05:30
iloc = dup.data.columns.get_loc(key).tolist().index(True) + int(idx) -1
dup.data.iloc[:,iloc] = data
2020-03-13 05:00:49 +05:30
else:
2020-09-14 10:34:01 +05:30
dup.data[label] = data.reshape(dup.data[label].shape)
return dup
2019-12-05 19:35:50 +05:30
2019-12-05 10:40:27 +05:30
def add(self,label,data,info=None):
"""
2019-12-05 10:40:27 +05:30
Add column data.
Parameters
----------
label : str
2019-12-05 10:40:27 +05:30
Column label.
data : np.ndarray
Modified data.
info : str, optional
Human-readable information about the modified data.
"""
2020-09-14 10:34:01 +05:30
dup = self.copy()
dup._add_comment(label,data.shape[1:],info)
2020-09-14 10:34:01 +05:30
dup.shapes[label] = data.shape[1:] if len(data.shape) > 1 else (1,)
size = np.prod(data.shape[1:],dtype=int)
new = pd.DataFrame(data=data.reshape(-1,size),
columns=[label]*size,
)
2020-09-14 10:34:01 +05:30
new.index = dup.data.index
dup.data = pd.concat([dup.data,new],axis=1)
return dup
2019-12-05 19:35:50 +05:30
2019-12-05 10:40:27 +05:30
2019-12-05 11:20:06 +05:30
def delete(self,label):
"""
Delete column data.
Parameters
----------
label : str
Column label.
"""
2020-09-14 10:34:01 +05:30
dup = self.copy()
dup.data.drop(columns=label,inplace=True)
del dup.shapes[label]
return dup
2019-12-05 11:20:06 +05:30
2019-12-05 19:35:50 +05:30
2020-09-14 10:34:01 +05:30
def rename(self,old,new,info=None):
2019-12-05 11:20:06 +05:30
"""
Rename column data.
Parameters
----------
2020-09-14 10:34:01 +05:30
label_old : str or iterable of str
Old column label(s).
label_new : str or iterable of str
New column label(s).
2019-12-05 11:20:06 +05:30
"""
2020-09-14 10:34:01 +05:30
dup = self.copy()
columns = dict(zip([old] if isinstance(old,str) else old,
[new] if isinstance(new,str) else new))
dup.data.rename(columns=columns,inplace=True)
dup.comments.append(f'{old} => {new}'+('' if info is None else f': {info}'))
dup.shapes = {(label if label not in columns else columns[label]):dup.shapes[label] for label in dup.shapes}
return dup
2019-12-05 11:20:06 +05:30
2019-12-05 10:40:27 +05:30
2019-12-05 15:17:36 +05:30
def sort_by(self,labels,ascending=True):
"""
Sort table by values of given labels.
2019-12-05 15:17:36 +05:30
Parameters
----------
label : str or list
Column labels for sorting.
ascending : bool or list, optional
2019-12-05 15:17:36 +05:30
Set sort order.
"""
2020-09-14 10:34:01 +05:30
dup = self.copy()
dup._label_discrete()
2020-09-14 10:34:01 +05:30
dup.data.sort_values(labels,axis=0,inplace=True,ascending=ascending)
dup._label_uniform()
2020-09-14 10:34:01 +05:30
dup.comments.append(f'sorted {"ascending" if ascending else "descending"} by {labels}')
return dup
2019-12-05 15:17:36 +05:30
2019-12-05 19:35:50 +05:30
def append(self,other):
"""
2020-01-12 04:44:35 +05:30
Append other table vertically (similar to numpy.vstack).
Requires matching labels/shapes and order.
Parameters
----------
other : Table
Table to append.
"""
if self.shapes != other.shapes or not self.data.columns.equals(other.data.columns):
raise KeyError('Labels or shapes or order do not match')
else:
2020-09-14 10:34:01 +05:30
dup = self.copy()
dup.data = dup.data.append(other.data,ignore_index=True)
return dup
def join(self,other):
"""
2020-01-12 04:44:35 +05:30
Append other table horizontally (similar to numpy.hstack).
Requires matching number of rows and no common labels.
Parameters
----------
other : Table
Table to join.
"""
if set(self.shapes) & set(other.shapes) or self.data.shape[0] != other.data.shape[0]:
raise KeyError('Dublicated keys or row count mismatch')
else:
2020-09-14 10:34:01 +05:30
dup = self.copy()
dup.data = dup.data.join(other.data)
for key in other.shapes:
2020-09-14 10:34:01 +05:30
dup.shapes[key] = other.shapes[key]
return dup
def save_ASCII(table,fname,legacy=False):
"""
Store as plain text file.
Parameters
----------
table : Table object
Table to write.
fname : file, str, or pathlib.Path
2020-03-18 18:19:53 +05:30
Filename or file for writing.
legacy : Boolean, optional
Write table in legacy style, indicating header lines by "N header"
in contrast to using comment sign ('#') at beginning of lines.
"""
seen = set()
labels = []
for l in [x for x in table.data.columns if not (x in seen or seen.add(x))]:
if table.shapes[l] == (1,):
labels.append(f'{l}')
elif len(table.shapes[l]) == 1:
labels += [f'{i+1}_{l}' \
for i in range(table.shapes[l][0])]
else:
labels += [f'{util.srepr(table.shapes[l],"x")}:{i+1}_{l}' \
for i in range(np.prod(table.shapes[l]))]
2019-10-31 15:15:34 +05:30
header = ([f'{len(table.comments)+1} header'] + table.comments) if legacy else \
[f'# {comment}' for comment in table.comments]
try:
f = open(fname,'w')
except TypeError:
f = fname
for line in header + [' '.join(labels)]: f.write(line+'\n')
table.data.to_csv(f,sep=' ',na_rep='nan',index=False,header=False)