parent
a8016d64bb
commit
ca92400c2f
|
@ -6,7 +6,7 @@ import numpy as np
|
|||
class Table():
|
||||
"""Store spreadsheet-like data."""
|
||||
|
||||
def __init__(self,array,headings,comments=None):
|
||||
def __init__(self,array,columns,comments=None):
|
||||
"""
|
||||
New spreadsheet data.
|
||||
|
||||
|
@ -14,8 +14,8 @@ class Table():
|
|||
----------
|
||||
array : numpy.ndarray
|
||||
Data.
|
||||
headings : dict
|
||||
Column headings. Labels as keys and shape as tuple. Example 'F':(3,3) for a deformation gradient.
|
||||
columns : dict
|
||||
Column labels and shape. Example 'F':(3,3) for a deformation gradient.
|
||||
comments : iterable of str, optional
|
||||
Additional, human-readable information
|
||||
|
||||
|
@ -24,8 +24,8 @@ class Table():
|
|||
|
||||
d = {}
|
||||
i = 0
|
||||
for label in headings:
|
||||
for components in range(np.prod(headings[label])):
|
||||
for label in columns:
|
||||
for components in range(np.prod(columns[label])):
|
||||
d[i] = label
|
||||
i+=1
|
||||
|
||||
|
@ -36,7 +36,7 @@ class Table():
|
|||
else:
|
||||
self.comments = [c for c in comments]
|
||||
|
||||
self.headings = headings
|
||||
self.columns = columns
|
||||
|
||||
@staticmethod
|
||||
def from_ASCII(fname):
|
||||
|
@ -46,6 +46,12 @@ class Table():
|
|||
The first line needs to indicate the number of subsequent header lines as 'n header'.
|
||||
Vector data labels are indicated by '1_x, 2_x, ..., n_x'.
|
||||
Tensor data labels are indicated by '3x3:1_x, 3x3:2_x, ..., 3x3:9_x'.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname : file, str, or pathlib.Path
|
||||
Filename or file for reading.
|
||||
|
||||
"""
|
||||
try:
|
||||
f = open(fname)
|
||||
|
@ -60,20 +66,20 @@ class Table():
|
|||
comments = [f.readline()[:-1] for i in range(header-1)]
|
||||
labels = f.readline().split()
|
||||
|
||||
headings = {}
|
||||
columns = {}
|
||||
for label in labels:
|
||||
tensor_column = re.search(r'[0-9,x]*?:[0-9]*?_',label)
|
||||
if tensor_column:
|
||||
my_shape = tensor_column.group().split(':',1)[0].split('x')
|
||||
headings[label.split('_',1)[1]] = tuple([int(d) for d in my_shape])
|
||||
columns[label.split('_',1)[1]] = tuple([int(d) for d in my_shape])
|
||||
else:
|
||||
vector_column = re.match(r'[0-9]*?_',label)
|
||||
if vector_column:
|
||||
headings[label.split('_',1)[1]] = (int(label.split('_',1)[0]),)
|
||||
columns[label.split('_',1)[1]] = (int(label.split('_',1)[0]),)
|
||||
else:
|
||||
headings[label]=(1,)
|
||||
columns[label]=(1,)
|
||||
|
||||
return Table(np.loadtxt(f),headings,comments)
|
||||
return Table(np.loadtxt(f),columns,comments)
|
||||
|
||||
def get_array(self,label):
|
||||
"""Return data as array."""
|
||||
|
@ -81,10 +87,22 @@ class Table():
|
|||
idx,key = label.split('_',1)
|
||||
return self.data[key].to_numpy()[:,int(idx)-1]
|
||||
else:
|
||||
return self.data[label].to_numpy().reshape((-1,)+self.headings[label])
|
||||
return self.data[label].to_numpy().reshape((-1,)+self.columns[label])
|
||||
|
||||
def set_array(self,label,array,info):
|
||||
"""Set data."""
|
||||
"""
|
||||
Modify data in the spreadsheet.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
label : str
|
||||
Label for the new data
|
||||
array : np.ndarray
|
||||
New data
|
||||
info : str
|
||||
Human-readable information about the new data
|
||||
|
||||
"""
|
||||
if np.prod(array.shape[1:],dtype=int) == 1:
|
||||
self.comments.append('{}: {}'.format(label,info))
|
||||
else:
|
||||
|
@ -97,34 +115,56 @@ class Table():
|
|||
else:
|
||||
self.data[label] = array.reshape(self.data[label].shape)
|
||||
|
||||
|
||||
def get_labels(self):
|
||||
"""Return the labels of all columns."""
|
||||
return [label for label in self.headings]
|
||||
return [label for label in self.columns]
|
||||
|
||||
def add_array(self,label,array,info):
|
||||
"""
|
||||
Add data to the spreadsheet.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
label : str
|
||||
Label for the new data
|
||||
array : np.ndarray
|
||||
New data
|
||||
info : str
|
||||
Human-readable information about the new data
|
||||
|
||||
"""
|
||||
if np.prod(array.shape[1:],dtype=int) == 1:
|
||||
self.comments.append('{}: {}'.format(label,info))
|
||||
else:
|
||||
self.comments.append('{} {}: {}'.format(label,array.shape[1:],info))
|
||||
|
||||
self.headings[label] = array.shape[1:] if len(array.shape) > 1 else (1,)
|
||||
self.columns[label] = array.shape[1:] if len(array.shape) > 1 else (1,)
|
||||
size = np.prod(array.shape[1:],dtype=int)
|
||||
new_data = pd.DataFrame(data=array.reshape(-1,size),
|
||||
columns=[label for l in range(size)])
|
||||
self.data = pd.concat([self.data,new_data],axis=1)
|
||||
|
||||
def to_ASCII(self,fname):
|
||||
"""
|
||||
Store as plain text file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname : file, str, or pathlib.Path
|
||||
Filename or file for reading.
|
||||
|
||||
"""
|
||||
|
||||
labels = []
|
||||
for l in self.headings:
|
||||
if(self.headings[l] == (1,)):
|
||||
for l in self.columns:
|
||||
if(self.columns[l] == (1,)):
|
||||
labels.append('{}'.format(l))
|
||||
elif(len(self.headings[l]) == 1):
|
||||
elif(len(self.columns[l]) == 1):
|
||||
labels+=['{}_{}'.format(i+1,l)\
|
||||
for i in range(self.headings[l][0])]
|
||||
for i in range(self.columns[l][0])]
|
||||
else:
|
||||
labels+=['{}:{}_{}'.format(i+1,'x'.join([str(d) for d in self.headings[l]]),l)\
|
||||
for i in range(np.prod(self.headings[l],dtype=int))]
|
||||
labels+=['{}:{}_{}'.format(i+1,'x'.join([str(d) for d in self.columns[l]]),l)\
|
||||
for i in range(np.prod(self.columns[l],dtype=int))]
|
||||
|
||||
header = ['{} header'.format(len(self.comments)+1)]\
|
||||
+ self.comments\
|
||||
|
|
Loading…
Reference in New Issue