[skip sc] first draft
This commit is contained in:
parent
1c10459a5a
commit
fb286af354
|
@ -1,11 +1,8 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
import sys
|
||||
from optparse import OptionParser
|
||||
|
||||
import numpy as np
|
||||
|
||||
import damask
|
||||
|
||||
|
||||
|
@ -37,53 +34,9 @@ parser.set_defaults(defgrad = 'f',
|
|||
|
||||
(options,filenames) = parser.parse_args()
|
||||
|
||||
# --- loop over input files -------------------------------------------------------------------------
|
||||
|
||||
if filenames == []: filenames = [None]
|
||||
|
||||
for name in filenames:
|
||||
try:
|
||||
table = damask.ASCIItable(name = name, buffered = False)
|
||||
except:
|
||||
continue
|
||||
damask.util.report(scriptName,name)
|
||||
|
||||
# ------------------------------------------ read header ------------------------------------------
|
||||
|
||||
table.head_read()
|
||||
|
||||
# ------------------------------------------ sanity checks ----------------------------------------
|
||||
|
||||
errors = []
|
||||
column = {}
|
||||
|
||||
for tensor in [options.defgrad,options.stress]:
|
||||
dim = table.label_dimension(tensor)
|
||||
if dim < 0: errors.append('column {} not found.'.format(tensor))
|
||||
elif dim != 9: errors.append('column {} is not a tensor.'.format(tensor))
|
||||
else:
|
||||
column[tensor] = table.label_index(tensor)
|
||||
|
||||
if errors != []:
|
||||
damask.util.croak(errors)
|
||||
table.close(dismiss = True)
|
||||
continue
|
||||
|
||||
# ------------------------------------------ assemble header --------------------------------------
|
||||
|
||||
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
||||
table.labels_append(['{}_Cauchy'.format(i+1) for i in range(9)]) # extend ASCII header with new labels
|
||||
table.head_write()
|
||||
|
||||
# ------------------------------------------ process data ------------------------------------------
|
||||
|
||||
outputAlive = True
|
||||
while outputAlive and table.data_read(): # read next data line of ASCII table
|
||||
F = np.array(list(map(float,table.data[column[options.defgrad]:column[options.defgrad]+9])),'d').reshape(3,3)
|
||||
P = np.array(list(map(float,table.data[column[options.stress ]:column[options.stress ]+9])),'d').reshape(3,3)
|
||||
table.data_append(list(1.0/np.linalg.det(F)*np.dot(P,F.T).reshape(9))) # [Cauchy] = (1/det(F)) * [P].[F_transpose]
|
||||
outputAlive = table.data_write() # output processed line
|
||||
|
||||
# ------------------------------------------ output finalization -----------------------------------
|
||||
|
||||
table.close() # close input ASCII table (works for stdin)
|
||||
table = damask.Table(name)
|
||||
table.add_array('Cauchy',damask.mechanics.Cauchy(table.get_array(options.defgrad).reshape(-1,3,3),
|
||||
table.get_array(options.stress).reshape(-1,3,3)).reshape(-1,9),
|
||||
scriptID)
|
||||
table.to_ASCII()
|
||||
|
|
|
@ -9,6 +9,7 @@ name = 'damask'
|
|||
# classes
|
||||
from .environment import Environment # noqa
|
||||
from .asciitable import ASCIItable # noqa
|
||||
from .table import Table # noqa
|
||||
|
||||
from .config import Material # noqa
|
||||
from .colormaps import Colormap, Color # noqa
|
||||
|
|
|
@ -0,0 +1,77 @@
|
|||
import re
|
||||
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
class Table():
|
||||
"""Read and write to ASCII tables"""
|
||||
|
||||
def __init__(self,name):
|
||||
self.name = name
|
||||
with open(self.name) as f:
|
||||
header,keyword = f.readline().split()
|
||||
if keyword == 'header':
|
||||
header = int(header)
|
||||
else:
|
||||
raise Exception
|
||||
self.comments = [f.readline()[:-1] for i in range(header-1)]
|
||||
labels_raw = f.readline().split()
|
||||
self.data = pd.read_csv(f,delim_whitespace=True,header=None)
|
||||
|
||||
labels_repeated = [l.split('_',1)[1] if '_' in l else l for l in labels_raw]
|
||||
self.data.rename(columns=dict(zip([l for l in self.data.columns],labels_repeated)),inplace=True)
|
||||
|
||||
self.shape = {}
|
||||
for l in labels_raw:
|
||||
tensor_column = re.search(':.*?_',l)
|
||||
if tensor_column:
|
||||
my_shape = tensor_column.group()[1:-1].split('x')
|
||||
self.shape[l.split('_',1)[1]] = tuple([int(d) for d in my_shape])
|
||||
else:
|
||||
vector_column = re.match('.*?_',l)
|
||||
if vector_column:
|
||||
self.shape[l.split('_',1)[1]] = (int(l.split('_',1)[0]),)
|
||||
else:
|
||||
self.shape[l]=(1,)
|
||||
|
||||
self.labels = list(dict.fromkeys(labels_repeated))
|
||||
|
||||
|
||||
def get_array(self,label):
|
||||
return self.data[label].to_numpy().reshape((-1,)+self.shape[label])
|
||||
|
||||
|
||||
def add_array(self,label,array,info):
|
||||
if np.product(array.shape[1:],dtype=int) == 1:
|
||||
self.comments.append('{}: {}'.format(label,info))
|
||||
|
||||
else:
|
||||
self.comments.append('{} {}: {}'.format(label,array.shape[1:],info))
|
||||
|
||||
self.shape[label] = array.shape[1:]
|
||||
self.labels.append(label)
|
||||
size = np.product(array.shape[1:])
|
||||
new_data = pd.DataFrame(data=array.reshape(-1,size),
|
||||
columns=[label for l in range(size)])
|
||||
self.data = pd.concat([self.data,new_data],axis=1)
|
||||
|
||||
|
||||
def to_ASCII(self,name=None):
|
||||
labels = []
|
||||
for l in self.labels:
|
||||
if(self.shape[l] == (1,)):
|
||||
labels.append('{}'.format(l))
|
||||
elif(len(self.shape[l]) == 1):
|
||||
labels+=['{}_{}'.format(i+1,l)\
|
||||
for i in range(self.shape[l][0])]
|
||||
else:
|
||||
labels+=['{}:{}_{}'.format(i+1,'x'.join([str(d) for d in self.shape[l]]),l)\
|
||||
for i in range(np.product(self.shape[l]))]
|
||||
|
||||
header = ['{} header'.format(len(self.comments)+1)]\
|
||||
+ self.comments\
|
||||
+ [' '.join(labels)]
|
||||
|
||||
with open(name if name is not None else self.name,'w') as f:
|
||||
for line in header: f.write(line+'\n')
|
||||
self.data.to_csv(f,sep=' ',index=False,header=False)
|
Loading…
Reference in New Issue