DAMASK_EICMD/code/constitutive_nonlocal.f90

3649 lines
202 KiB
Fortran
Raw Normal View History

! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##############################################################
!* $Id$
!************************************
!* Module: CONSTITUTIVE_NONLOCAL *
!************************************
!* contains: *
!* - constitutive equations *
!* - parameters definition *
!************************************
MODULE constitutive_nonlocal
!* Include other modules
use prec, only: pReal,pInt
implicit none
private
!* Definition of parameters
character (len=*), parameter, public :: &
constitutive_nonlocal_label = 'nonlocal'
character(len=22), dimension(10), parameter, private :: &
constitutive_nonlocal_listBasicStates = (/'rhoSglEdgePosMobile ', &
'rhoSglEdgeNegMobile ', &
'rhoSglScrewPosMobile ', &
'rhoSglScrewNegMobile ', &
'rhoSglEdgePosImmobile ', &
'rhoSglEdgeNegImmobile ', &
'rhoSglScrewPosImmobile', &
'rhoSglScrewNegImmobile', &
'rhoDipEdge ', &
'rhoDipScrew ' /)! list of "basic" microstructural state variables that are independent from other state variables
character(len=16), dimension(3), parameter, private :: &
constitutive_nonlocal_listDependentStates = (/'rhoForest ', &
'tauThreshold ', &
'tauBack ' /) ! list of microstructural state variables that depend on other state variables
character(len=20), dimension(6), parameter, private :: &
constitutive_nonlocal_listOtherStates = (/'velocityEdgePos ', &
'velocityEdgeNeg ', &
'velocityScrewPos ', &
'velocityScrewNeg ', &
'maxDipoleHeightEdge ', &
'maxDipoleHeightScrew' /) ! list of other dependent state variables that are not updated by microstructure
real(pReal), parameter, private :: &
kB = 1.38e-23_pReal ! Physical parameter, Boltzmann constant in J/Kelvin
!* Definition of global variables
integer(pInt), dimension(:), allocatable, public :: &
constitutive_nonlocal_sizeDotState, & ! number of dotStates = number of basic state variables
constitutive_nonlocal_sizeDependentState, & ! number of dependent state variables
constitutive_nonlocal_sizeState, & ! total number of state variables
constitutive_nonlocal_sizePostResults ! cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
constitutive_nonlocal_sizePostResult ! size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
constitutive_nonlocal_output ! name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
constitutive_nonlocal_Noutput ! number of outputs per instance of this plasticity
character(len=32), dimension(:), allocatable, public :: &
constitutive_nonlocal_structureName ! name of the lattice structure
integer(pInt), dimension(:), allocatable, public :: &
constitutive_nonlocal_structure ! number representing the kind of lattice structure
integer(pInt), dimension(:), allocatable, private :: &
constitutive_nonlocal_totalNslip ! total number of active slip systems for each instance
integer(pInt), dimension(:,:), allocatable, private :: &
constitutive_nonlocal_Nslip, & ! number of active slip systems for each family and instance
constitutive_nonlocal_slipFamily, & ! lookup table relating active slip system to slip family for each instance
constitutive_nonlocal_slipSystemLattice, & ! lookup table relating active slip system index to lattice slip system index for each instance
constitutive_nonlocal_colinearSystem ! colinear system to the active slip system (only valid for fcc!)
real(pReal), dimension(:), allocatable, private :: &
constitutive_nonlocal_CoverA, & ! c/a ratio for hex type lattice
constitutive_nonlocal_Gmod, & ! shear modulus
constitutive_nonlocal_nu, & ! poisson's ratio
constitutive_nonlocal_atomicVolume, & ! atomic volume
constitutive_nonlocal_Dsd0, & ! prefactor for self-diffusion coefficient
constitutive_nonlocal_Qsd, & ! activation enthalpy for diffusion
constitutive_nonlocal_aTolRho, & ! absolute tolerance for dislocation density in state integration
constitutive_nonlocal_significantRho, & ! density considered significant
constitutive_nonlocal_significantN, & ! number of dislocations considered significant
constitutive_nonlocal_R, & ! cutoff radius for dislocation stress
constitutive_nonlocal_doublekinkwidth, & ! width of a doubkle kink in multiples of the burgers vector length b
constitutive_nonlocal_solidSolutionEnergy, & ! activation energy for solid solution in J
constitutive_nonlocal_solidSolutionSize, & ! solid solution obstacle size in multiples of the burgers vector length
constitutive_nonlocal_solidSolutionConcentration, & ! concentration of solid solution in atomic parts
constitutive_nonlocal_p, & ! parameter for kinetic law (Kocks,Argon,Ashby)
constitutive_nonlocal_q, & ! parameter for kinetic law (Kocks,Argon,Ashby)
constitutive_nonlocal_viscosity, & ! viscosity for dislocation glide in Pa s
constitutive_nonlocal_fattack, & ! attack frequency in Hz
constitutive_nonlocal_vmax, & ! maximum allowed velocity
constitutive_nonlocal_rhoSglScatter, & ! standard deviation of scatter in initial dislocation density
constitutive_nonlocal_surfaceTransmissivity, & ! transmissivity at free surface
constitutive_nonlocal_grainboundaryTransmissivity, & ! transmissivity at grain boundary (identified by different texture)
constitutive_nonlocal_CFLfactor, & ! safety factor for CFL flux condition
constitutive_nonlocal_fEdgeMultiplication, & ! factor that determines how much edge dislocations contribute to multiplication (0...1)
constitutive_nonlocal_rhoSglRandom, &
constitutive_nonlocal_rhoSglRandomBinning, &
constitutive_nonlocal_linetensionEffect, &
constitutive_nonlocal_edgeJogFactor
real(pReal), dimension(:,:), allocatable, private :: &
constitutive_nonlocal_rhoSglEdgePos0, & ! initial edge_pos dislocation density per slip system for each family and instance
constitutive_nonlocal_rhoSglEdgeNeg0, & ! initial edge_neg dislocation density per slip system for each family and instance
constitutive_nonlocal_rhoSglScrewPos0, & ! initial screw_pos dislocation density per slip system for each family and instance
constitutive_nonlocal_rhoSglScrewNeg0, & ! initial screw_neg dislocation density per slip system for each family and instance
constitutive_nonlocal_rhoDipEdge0, & ! initial edge dipole dislocation density per slip system for each family and instance
constitutive_nonlocal_rhoDipScrew0, & ! initial screw dipole dislocation density per slip system for each family and instance
constitutive_nonlocal_lambda0PerSlipFamily, & ! mean free path prefactor for each family and instance
constitutive_nonlocal_lambda0, & ! mean free path prefactor for each slip system and instance
constitutive_nonlocal_burgersPerSlipFamily, & ! absolute length of burgers vector [m] for each family and instance
constitutive_nonlocal_burgers, & ! absolute length of burgers vector [m] for each slip system and instance
constitutive_nonlocal_interactionSlipSlip ! coefficients for slip-slip interaction for each interaction type and instance
real(pReal), dimension(:,:,:), allocatable, private :: &
constitutive_nonlocal_Cslip_66, & ! elasticity matrix in Mandel notation for each instance
constitutive_nonlocal_minimumDipoleHeightPerSlipFamily, & ! minimum stable edge/screw dipole height for each family and instance
constitutive_nonlocal_minimumDipoleHeight, & ! minimum stable edge/screw dipole height for each slip system and instance
constitutive_nonlocal_peierlsStressPerSlipFamily, & ! Peierls stress (edge and screw)
constitutive_nonlocal_peierlsStress, & ! Peierls stress (edge and screw)
constitutive_nonlocal_forestProjectionEdge, & ! matrix of forest projections of edge dislocations for each instance
constitutive_nonlocal_forestProjectionScrew, & ! matrix of forest projections of screw dislocations for each instance
constitutive_nonlocal_interactionMatrixSlipSlip ! interaction matrix of the different slip systems for each instance
real(pReal), dimension(:,:,:,:), allocatable, private :: &
constitutive_nonlocal_lattice2slip, & ! orthogonal transformation matrix from lattice coordinate system to slip coordinate system (passive rotation !!!)
constitutive_nonlocal_accumulatedShear, & ! accumulated shear per slip system up to the start of the FE increment
constitutive_nonlocal_rhoDotEdgeJogs, &
constitutive_nonlocal_sourceProbability
real(pReal), dimension(:,:,:,:,:), allocatable, private :: &
constitutive_nonlocal_Cslip_3333, & ! elasticity matrix for each instance
constitutive_nonlocal_rhoDotFlux, & ! dislocation convection term
constitutive_nonlocal_rhoDotMultiplication, &
constitutive_nonlocal_rhoDotSingle2DipoleGlide, &
constitutive_nonlocal_rhoDotAthermalAnnihilation, &
constitutive_nonlocal_rhoDotThermalAnnihilation
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
constitutive_nonlocal_compatibility ! slip system compatibility between me and my neighbors
2013-01-22 05:20:28 +05:30
real(pReal), dimension(:,:), allocatable, private :: &
constitutive_nonlocal_nonSchmidCoeff
logical, dimension(:), allocatable, private :: &
constitutive_nonlocal_shortRangeStressCorrection, & ! flag indicating the use of the short range stress correction by a excess density gradient term
constitutive_nonlocal_deadZoneScaling, &
constitutive_nonlocal_probabilisticMultiplication
public :: &
constitutive_nonlocal_init, &
constitutive_nonlocal_stateInit, &
constitutive_nonlocal_aTolState, &
constitutive_nonlocal_homogenizedC, &
constitutive_nonlocal_microstructure, &
constitutive_nonlocal_LpAndItsTangent, &
constitutive_nonlocal_dotState, &
constitutive_nonlocal_deltaState, &
constitutive_nonlocal_dotTemperature, &
constitutive_nonlocal_updateCompatibility, &
constitutive_nonlocal_postResults
private :: &
constitutive_nonlocal_kinetics
CONTAINS
!**************************************
!* Module initialization *
!**************************************
subroutine constitutive_nonlocal_init(myFile)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: pInt, pReal
use math, only: math_Mandel3333to66, &
math_Voigt66to3333, &
math_mul3x3, &
math_transpose33
use IO, only: IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_error
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
FE_maxNipNeighbors
use material, only: homogenization_maxNgrains, &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput
use lattice, only: lattice_maxNslipFamily, &
lattice_maxNslip, &
lattice_maxNinteraction, &
lattice_NslipSystem, &
lattice_initializeStructure, &
lattice_symmetrizeC66, &
lattice_sd, &
lattice_sn, &
lattice_st, &
2013-01-22 05:20:28 +05:30
lattice_interactionSlipSlip, &
lattice_maxNonSchmid
!*** output variables
!*** input variables
integer(pInt), intent(in) :: myFile
!*** local variables
integer(pInt), parameter :: maxNchunks = 21_pInt
integer(pInt), &
dimension(1_pInt+2_pInt*maxNchunks) :: positions
integer(pInt) section, &
maxNinstance, &
maxTotalNslip, &
myStructure, &
f, & ! index of my slip family
i, & ! index of my instance of this plasticity
j, &
k, &
l, &
ns, & ! short notation for total number of active slip systems for the current instance
o, & ! index of my output
s, & ! index of my slip system
s1, & ! index of my slip system
s2, & ! index of my slip system
it, & ! index of my interaction type
mySize
character(len=64) tag
character(len=1024) :: line = '' ! to start initialized
write(6,*)
write(6,*) '<<<+- constitutive_',trim(constitutive_nonlocal_label),' init -+>>>'
write(6,*) '$Id$'
#include "compilation_info.f90"
maxNinstance = int(count(phase_plasticity == constitutive_nonlocal_label),pInt)
if (maxNinstance == 0) return ! we don't have to do anything if there's no instance for this constitutive law
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) then
write(6,'(a16,1x,i5)') '# instances:',maxNinstance
endif
!*** space allocation for global variables
allocate(constitutive_nonlocal_sizeDotState(maxNinstance))
allocate(constitutive_nonlocal_sizeDependentState(maxNinstance))
allocate(constitutive_nonlocal_sizeState(maxNinstance))
allocate(constitutive_nonlocal_sizePostResults(maxNinstance))
allocate(constitutive_nonlocal_sizePostResult(maxval(phase_Noutput), maxNinstance))
allocate(constitutive_nonlocal_output(maxval(phase_Noutput), maxNinstance))
allocate(constitutive_nonlocal_Noutput(maxNinstance))
constitutive_nonlocal_sizeDotState = 0_pInt
constitutive_nonlocal_sizeDependentState = 0_pInt
constitutive_nonlocal_sizeState = 0_pInt
constitutive_nonlocal_sizePostResults = 0_pInt
constitutive_nonlocal_sizePostResult = 0_pInt
constitutive_nonlocal_output = ''
constitutive_nonlocal_Noutput = 0_pInt
allocate(constitutive_nonlocal_structureName(maxNinstance))
allocate(constitutive_nonlocal_structure(maxNinstance))
allocate(constitutive_nonlocal_Nslip(lattice_maxNslipFamily, maxNinstance))
allocate(constitutive_nonlocal_slipFamily(lattice_maxNslip, maxNinstance))
allocate(constitutive_nonlocal_slipSystemLattice(lattice_maxNslip, maxNinstance))
allocate(constitutive_nonlocal_totalNslip(maxNinstance))
constitutive_nonlocal_structureName = ''
constitutive_nonlocal_structure = 0_pInt
constitutive_nonlocal_Nslip = 0_pInt
constitutive_nonlocal_slipFamily = 0_pInt
constitutive_nonlocal_slipSystemLattice = 0_pInt
constitutive_nonlocal_totalNslip = 0_pInt
allocate(constitutive_nonlocal_CoverA(maxNinstance))
allocate(constitutive_nonlocal_Gmod(maxNinstance))
allocate(constitutive_nonlocal_nu(maxNinstance))
allocate(constitutive_nonlocal_atomicVolume(maxNinstance))
allocate(constitutive_nonlocal_Dsd0(maxNinstance))
allocate(constitutive_nonlocal_Qsd(maxNinstance))
allocate(constitutive_nonlocal_aTolRho(maxNinstance))
allocate(constitutive_nonlocal_significantRho(maxNinstance))
allocate(constitutive_nonlocal_significantN(maxNinstance))
allocate(constitutive_nonlocal_Cslip_66(6,6,maxNinstance))
allocate(constitutive_nonlocal_Cslip_3333(3,3,3,3,maxNinstance))
allocate(constitutive_nonlocal_R(maxNinstance))
allocate(constitutive_nonlocal_doublekinkwidth(maxNinstance))
allocate(constitutive_nonlocal_solidSolutionEnergy(maxNinstance))
allocate(constitutive_nonlocal_solidSolutionSize(maxNinstance))
allocate(constitutive_nonlocal_solidSolutionConcentration(maxNinstance))
allocate(constitutive_nonlocal_p(maxNinstance))
allocate(constitutive_nonlocal_q(maxNinstance))
allocate(constitutive_nonlocal_viscosity(maxNinstance))
allocate(constitutive_nonlocal_fattack(maxNinstance))
allocate(constitutive_nonlocal_vmax(maxNinstance))
allocate(constitutive_nonlocal_rhoSglScatter(maxNinstance))
allocate(constitutive_nonlocal_rhoSglRandom(maxNinstance))
allocate(constitutive_nonlocal_rhoSglRandomBinning(maxNinstance))
allocate(constitutive_nonlocal_surfaceTransmissivity(maxNinstance))
allocate(constitutive_nonlocal_grainboundaryTransmissivity(maxNinstance))
allocate(constitutive_nonlocal_shortRangeStressCorrection(maxNinstance))
allocate(constitutive_nonlocal_deadZoneScaling(maxNinstance))
allocate(constitutive_nonlocal_probabilisticMultiplication(maxNinstance))
allocate(constitutive_nonlocal_CFLfactor(maxNinstance))
allocate(constitutive_nonlocal_fEdgeMultiplication(maxNinstance))
allocate(constitutive_nonlocal_linetensionEffect(maxNinstance))
allocate(constitutive_nonlocal_edgeJogFactor(maxNinstance))
constitutive_nonlocal_CoverA = 0.0_pReal
constitutive_nonlocal_Gmod = 0.0_pReal
constitutive_nonlocal_atomicVolume = 0.0_pReal
constitutive_nonlocal_Dsd0 = -1.0_pReal
constitutive_nonlocal_Qsd = 0.0_pReal
constitutive_nonlocal_aTolRho = 0.0_pReal
constitutive_nonlocal_significantRho = 0.0_pReal
constitutive_nonlocal_significantN = 0.0_pReal
constitutive_nonlocal_nu = 0.0_pReal
constitutive_nonlocal_Cslip_66 = 0.0_pReal
constitutive_nonlocal_Cslip_3333 = 0.0_pReal
constitutive_nonlocal_R = -1.0_pReal
constitutive_nonlocal_doublekinkwidth = 0.0_pReal
constitutive_nonlocal_solidSolutionEnergy = 0.0_pReal
constitutive_nonlocal_solidSolutionSize = 0.0_pReal
constitutive_nonlocal_solidSolutionConcentration = 0.0_pReal
constitutive_nonlocal_p = 1.0_pReal
constitutive_nonlocal_q = 1.0_pReal
constitutive_nonlocal_viscosity = 0.0_pReal
constitutive_nonlocal_fattack = 0.0_pReal
constitutive_nonlocal_vmax = 0.0_pReal
constitutive_nonlocal_rhoSglScatter = 0.0_pReal
constitutive_nonlocal_rhoSglRandom = 0.0_pReal
constitutive_nonlocal_rhoSglRandomBinning = 1.0_pReal
constitutive_nonlocal_surfaceTransmissivity = 1.0_pReal
constitutive_nonlocal_grainboundaryTransmissivity = -1.0_pReal
constitutive_nonlocal_CFLfactor = 2.0_pReal
constitutive_nonlocal_fEdgeMultiplication = 0.0_pReal
constitutive_nonlocal_linetensionEffect = 0.0_pReal
constitutive_nonlocal_edgeJogFactor = 1.0_pReal
constitutive_nonlocal_shortRangeStressCorrection = .false.
constitutive_nonlocal_deadZoneScaling = .false.
constitutive_nonlocal_probabilisticMultiplication = .false.
allocate(constitutive_nonlocal_rhoSglEdgePos0(lattice_maxNslipFamily,maxNinstance))
allocate(constitutive_nonlocal_rhoSglEdgeNeg0(lattice_maxNslipFamily,maxNinstance))
allocate(constitutive_nonlocal_rhoSglScrewPos0(lattice_maxNslipFamily,maxNinstance))
allocate(constitutive_nonlocal_rhoSglScrewNeg0(lattice_maxNslipFamily,maxNinstance))
allocate(constitutive_nonlocal_rhoDipEdge0(lattice_maxNslipFamily,maxNinstance))
allocate(constitutive_nonlocal_rhoDipScrew0(lattice_maxNslipFamily,maxNinstance))
allocate(constitutive_nonlocal_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance))
allocate(constitutive_nonlocal_Lambda0PerSlipFamily(lattice_maxNslipFamily,maxNinstance))
allocate(constitutive_nonlocal_interactionSlipSlip(lattice_maxNinteraction,maxNinstance))
constitutive_nonlocal_rhoSglEdgePos0 = -1.0_pReal
constitutive_nonlocal_rhoSglEdgeNeg0 = -1.0_pReal
constitutive_nonlocal_rhoSglScrewPos0 = -1.0_pReal
constitutive_nonlocal_rhoSglScrewNeg0 = -1.0_pReal
constitutive_nonlocal_rhoDipEdge0 = -1.0_pReal
constitutive_nonlocal_rhoDipScrew0 = -1.0_pReal
constitutive_nonlocal_burgersPerSlipFamily = 0.0_pReal
constitutive_nonlocal_lambda0PerSlipFamily = 0.0_pReal
constitutive_nonlocal_interactionSlipSlip = 0.0_pReal
allocate(constitutive_nonlocal_minimumDipoleHeightPerSlipFamily(lattice_maxNslipFamily,2,maxNinstance))
allocate(constitutive_nonlocal_peierlsStressPerSlipFamily(lattice_maxNslipFamily,2,maxNinstance))
constitutive_nonlocal_minimumDipoleHeightPerSlipFamily = -1.0_pReal
constitutive_nonlocal_peierlsStressPerSlipFamily = 0.0_pReal
2013-01-22 05:20:28 +05:30
allocate(constitutive_nonlocal_nonSchmidCoeff(lattice_maxNonSchmid,maxNinstance))
constitutive_nonlocal_nonSchmidCoeff = 0.0_pReal
!*** readout data from material.config file
rewind(myFile)
line = ''
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
read(myFile,'(a1024)',END=100) line
enddo
do ! read thru sections of phase part
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt ! advance section counter
cycle
endif
if (section > 0_pInt .and. phase_plasticity(section) == constitutive_nonlocal_label) then ! one of my sections
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case('plasticity','elasticity','/nonlocal/')
cycle
case ('(output)')
constitutive_nonlocal_Noutput(i) = constitutive_nonlocal_Noutput(i) + 1_pInt
constitutive_nonlocal_output(constitutive_nonlocal_Noutput(i),i) = IO_lc(IO_stringValue(line,positions,2_pInt))
case ('lattice_structure')
constitutive_nonlocal_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
case ('c/a_ratio','covera_ratio')
constitutive_nonlocal_CoverA(i) = IO_floatValue(line,positions,2_pInt)
case ('c11')
constitutive_nonlocal_Cslip_66(1,1,i) = IO_floatValue(line,positions,2_pInt)
case ('c12')
constitutive_nonlocal_Cslip_66(1,2,i) = IO_floatValue(line,positions,2_pInt)
case ('c13')
constitutive_nonlocal_Cslip_66(1,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c22')
constitutive_nonlocal_Cslip_66(2,2,i) = IO_floatValue(line,positions,2_pInt)
case ('c23')
constitutive_nonlocal_Cslip_66(2,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c33')
constitutive_nonlocal_Cslip_66(3,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c44')
constitutive_nonlocal_Cslip_66(4,4,i) = IO_floatValue(line,positions,2_pInt)
case ('c55')
constitutive_nonlocal_Cslip_66(5,5,i) = IO_floatValue(line,positions,2_pInt)
case ('c66')
constitutive_nonlocal_Cslip_66(6,6,i) = IO_floatValue(line,positions,2_pInt)
case ('nslip')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_Nslip(f,i) = IO_intValue(line,positions,1_pInt+f)
case ('rhosgledgepos0')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_rhoSglEdgePos0(f,i) = IO_floatValue(line,positions,1_pInt+f)
case ('rhosgledgeneg0')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_rhoSglEdgeNeg0(f,i) = IO_floatValue(line,positions,1_pInt+f)
case ('rhosglscrewpos0')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_rhoSglScrewPos0(f,i) = IO_floatValue(line,positions,1_pInt+f)
case ('rhosglscrewneg0')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_rhoSglScrewNeg0(f,i) = IO_floatValue(line,positions,1_pInt+f)
case ('rhodipedge0')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_rhoDipEdge0(f,i) = IO_floatValue(line,positions,1_pInt+f)
case ('rhodipscrew0')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_rhoDipScrew0(f,i) = IO_floatValue(line,positions,1_pInt+f)
case ('lambda0')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_lambda0PerSlipFamily(f,i) = IO_floatValue(line,positions,1_pInt+f)
case ('burgers')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_burgersPerSlipFamily(f,i) = IO_floatValue(line,positions,1_pInt+f)
case('cutoffradius','r')
constitutive_nonlocal_R(i) = IO_floatValue(line,positions,2_pInt)
case('minimumdipoleheightedge','ddipminedge')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_minimumDipoleHeightPerSlipFamily(f,1_pInt,i) = IO_floatValue(line,positions,1_pInt+f)
case('minimumdipoleheightscrew','ddipminscrew')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_minimumDipoleHeightPerSlipFamily(f,2_pInt,i) = IO_floatValue(line,positions,1_pInt+f)
case('atomicvolume')
constitutive_nonlocal_atomicVolume(i) = IO_floatValue(line,positions,2_pInt)
case('selfdiffusionprefactor','dsd0')
constitutive_nonlocal_Dsd0(i) = IO_floatValue(line,positions,2_pInt)
case('selfdiffusionenergy','qsd')
constitutive_nonlocal_Qsd(i) = IO_floatValue(line,positions,2_pInt)
case('atol_rho','absolutetolerancerho','absolutetolerance_rho','absolutetolerancedensity','absolutetolerance_density')
constitutive_nonlocal_aTolRho(i) = IO_floatValue(line,positions,2_pInt)
case('significantrho','significant_rho','significantdensity','significant_density')
constitutive_nonlocal_significantRho(i) = IO_floatValue(line,positions,2_pInt)
case('significantn','significant_n','significantdislocations','significant_dislcations')
constitutive_nonlocal_significantN(i) = IO_floatValue(line,positions,2_pInt)
case ('interaction_slipslip')
forall (it = 1_pInt:lattice_maxNinteraction) &
constitutive_nonlocal_interactionSlipSlip(it,i) = IO_floatValue(line,positions,1_pInt+it)
case('linetension','linetensioneffect','linetension_effect')
constitutive_nonlocal_linetensionEffect(i) = IO_floatValue(line,positions,2_pInt)
case('edgejog','edgejogs','edgejogeffect','edgejog_effect')
constitutive_nonlocal_edgeJogFactor(i) = IO_floatValue(line,positions,2_pInt)
case('peierlsstressedge','peierlsstress_edge')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_peierlsStressPerSlipFamily(f,1_pInt,i) = IO_floatValue(line,positions,1_pInt+f)
case('peierlsstressscrew','peierlsstress_screw')
forall (f = 1_pInt:lattice_maxNslipFamily) &
constitutive_nonlocal_peierlsStressPerSlipFamily(f,2_pInt,i) = IO_floatValue(line,positions,1_pInt+f)
case('doublekinkwidth')
constitutive_nonlocal_doublekinkwidth(i) = IO_floatValue(line,positions,2_pInt)
case('solidsolutionenergy')
constitutive_nonlocal_solidSolutionEnergy(i) = IO_floatValue(line,positions,2_pInt)
case('solidsolutionsize')
constitutive_nonlocal_solidSolutionSize(i) = IO_floatValue(line,positions,2_pInt)
case('solidsolutionconcentration')
constitutive_nonlocal_solidSolutionConcentration(i) = IO_floatValue(line,positions,2_pInt)
case('p')
constitutive_nonlocal_p(i) = IO_floatValue(line,positions,2_pInt)
case('q')
constitutive_nonlocal_q(i) = IO_floatValue(line,positions,2_pInt)
case('viscosity','glideviscosity')
constitutive_nonlocal_viscosity(i) = IO_floatValue(line,positions,2_pInt)
case('attackfrequency','fattack')
constitutive_nonlocal_fattack(i) = IO_floatValue(line,positions,2_pInt)
case('maximumvelocity','vmax')
constitutive_nonlocal_vmax(i) = IO_floatValue(line,positions,2_pInt)
case('rhosglscatter')
constitutive_nonlocal_rhoSglScatter(i) = IO_floatValue(line,positions,2_pInt)
case('rhosglrandom')
constitutive_nonlocal_rhoSglRandom(i) = IO_floatValue(line,positions,2_pInt)
case('rhosglrandombinning')
constitutive_nonlocal_rhoSglRandomBinning(i) = IO_floatValue(line,positions,2_pInt)
case('surfacetransmissivity')
constitutive_nonlocal_surfaceTransmissivity(i) = IO_floatValue(line,positions,2_pInt)
case('grainboundarytransmissivity')
constitutive_nonlocal_grainboundaryTransmissivity(i) = IO_floatValue(line,positions,2_pInt)
case('cflfactor')
constitutive_nonlocal_CFLfactor(i) = IO_floatValue(line,positions,2_pInt)
case('fedgemultiplication','edgemultiplicationfactor','edgemultiplication')
constitutive_nonlocal_fEdgeMultiplication(i) = IO_floatValue(line,positions,2_pInt)
case('shortrangestresscorrection')
constitutive_nonlocal_shortRangeStressCorrection(i) = IO_floatValue(line,positions,2_pInt) > 0.0_pReal
2013-01-22 05:20:28 +05:30
case ('nonschmid_coefficients')
forall (f = 1_pInt:lattice_maxNonSchmid) &
constitutive_nonlocal_nonSchmidCoeff(f,i) = IO_floatValue(line,positions,1_pInt+f)
case('deadzonescaling','deadzone','deadscaling')
constitutive_nonlocal_deadZoneScaling(i) = IO_floatValue(line,positions,2_pInt) > 0.0_pReal
case('probabilisticmultiplication','randomsources','randommultiplication','discretesources')
constitutive_nonlocal_probabilisticMultiplication(i) = IO_floatValue(line,positions,2_pInt) > 0.0_pReal
case default
call IO_error(210_pInt,ext_msg=tag//' ('//constitutive_nonlocal_label//')')
end select
endif
enddo
100 do i = 1_pInt,maxNinstance
constitutive_nonlocal_structure(i) = &
lattice_initializeStructure(constitutive_nonlocal_structureName(i), constitutive_nonlocal_CoverA(i)) ! our lattice structure is defined in the material.config file by the structureName (and the c/a ratio)
myStructure = constitutive_nonlocal_structure(i)
!*** sanity checks
if (myStructure < 1_pInt) call IO_error(205_pInt,e=i)
if (sum(constitutive_nonlocal_Nslip(:,i)) <= 0_pInt) call IO_error(211_pInt,ext_msg='Nslip (' &
//constitutive_nonlocal_label//')')
do o = 1_pInt,maxval(phase_Noutput)
if(len(constitutive_nonlocal_output(o,i)) > 64_pInt) call IO_error(666_pInt)
enddo
do f = 1_pInt,lattice_maxNslipFamily
if (constitutive_nonlocal_Nslip(f,i) > 0_pInt) then
if (constitutive_nonlocal_rhoSglEdgePos0(f,i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoSglEdgePos0 (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_rhoSglEdgeNeg0(f,i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoSglEdgeNeg0 (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_rhoSglScrewPos0(f,i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoSglScrewPos0 (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_rhoSglScrewNeg0(f,i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoSglScrewNeg0 (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_rhoDipEdge0(f,i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoDipEdge0 (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_rhoDipScrew0(f,i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoDipScrew0 (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_burgersPerSlipFamily(f,i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='Burgers (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_lambda0PerSlipFamily(f,i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='lambda0 (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_minimumDipoleHeightPerSlipFamily(f,1,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='minimumDipoleHeightEdge (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_minimumDipoleHeightPerSlipFamily(f,2,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='minimumDipoleHeightScrew (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_peierlsStressPerSlipFamily(f,1,i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='peierlsStressEdge (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_peierlsStressPerSlipFamily(f,2,i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='peierlsStressScrew (' &
//constitutive_nonlocal_label//')')
endif
enddo
if (any(constitutive_nonlocal_interactionSlipSlip(1:maxval(lattice_interactionSlipSlip(:,:,myStructure)),i) < 0.0_pReal)) &
call IO_error(211_pInt,ext_msg='interaction_SlipSlip (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_linetensionEffect(i) < 0.0_pReal .or. constitutive_nonlocal_linetensionEffect(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='linetension (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_edgeJogFactor(i) < 0.0_pReal .or. constitutive_nonlocal_edgeJogFactor(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='edgejog (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_R(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='r (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_atomicVolume(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='atomicVolume (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_Dsd0(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='selfDiffusionPrefactor (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_Qsd(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='selfDiffusionEnergy (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_aTolRho(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='aTol_rho (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_significantRho(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='significantRho (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_significantN(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='significantN (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_doublekinkwidth(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='doublekinkwidth (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_solidSolutionEnergy(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='solidSolutionEnergy (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_solidSolutionSize(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='solidSolutionSize (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_solidSolutionConcentration(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='solidSolutionConcentration (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_p(i) <= 0.0_pReal .or. constitutive_nonlocal_p(i) > 1.0_pReal) call IO_error(211_pInt,ext_msg='p (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_q(i) < 1.0_pReal .or. constitutive_nonlocal_q(i) > 2.0_pReal) call IO_error(211_pInt,ext_msg='q (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_viscosity(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='viscosity (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_fattack(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='attackFrequency (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_vmax(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='maximumVelocity (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_rhoSglScatter(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoSglScatter (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_rhoSglRandom(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoSglRandom (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_rhoSglRandomBinning(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='rhoSglRandomBinning (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_surfaceTransmissivity(i) < 0.0_pReal &
.or. constitutive_nonlocal_surfaceTransmissivity(i) > 1.0_pReal) call IO_error(211_pInt,ext_msg='surfaceTransmissivity (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_grainboundaryTransmissivity(i) > 1.0_pReal) call IO_error(211_pInt,&
ext_msg='grainboundaryTransmissivity ('//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_CFLfactor(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='CFLfactor (' &
//constitutive_nonlocal_label//')')
if (constitutive_nonlocal_fEdgeMultiplication(i) < 0.0_pReal .or. constitutive_nonlocal_fEdgeMultiplication(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='edgemultiplicationfactor ('&
//constitutive_nonlocal_label//')')
!*** determine total number of active slip systems
constitutive_nonlocal_Nslip(1:lattice_maxNslipFamily,i) = min( lattice_NslipSystem(1:lattice_maxNslipFamily, myStructure), &
constitutive_nonlocal_Nslip(1:lattice_maxNslipFamily,i) ) ! we can't use more slip systems per family than specified in lattice
constitutive_nonlocal_totalNslip(i) = sum(constitutive_nonlocal_Nslip(1:lattice_maxNslipFamily,i))
enddo
!*** allocation of variables whose size depends on the total number of active slip systems
maxTotalNslip = maxval(constitutive_nonlocal_totalNslip)
allocate(constitutive_nonlocal_burgers(maxTotalNslip, maxNinstance))
constitutive_nonlocal_burgers = 0.0_pReal
allocate(constitutive_nonlocal_lambda0(maxTotalNslip, maxNinstance))
constitutive_nonlocal_lambda0 = 0.0_pReal
allocate(constitutive_nonlocal_minimumDipoleHeight(maxTotalNslip,2,maxNinstance))
constitutive_nonlocal_minimumDipoleHeight = -1.0_pReal
allocate(constitutive_nonlocal_forestProjectionEdge(maxTotalNslip, maxTotalNslip, maxNinstance))
constitutive_nonlocal_forestProjectionEdge = 0.0_pReal
allocate(constitutive_nonlocal_forestProjectionScrew(maxTotalNslip, maxTotalNslip, maxNinstance))
constitutive_nonlocal_forestProjectionScrew = 0.0_pReal
allocate(constitutive_nonlocal_interactionMatrixSlipSlip(maxTotalNslip, maxTotalNslip, maxNinstance))
constitutive_nonlocal_interactionMatrixSlipSlip = 0.0_pReal
allocate(constitutive_nonlocal_lattice2slip(1:3, 1:3, maxTotalNslip, maxNinstance))
constitutive_nonlocal_lattice2slip = 0.0_pReal
allocate(constitutive_nonlocal_accumulatedShear(maxTotalNslip, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
constitutive_nonlocal_accumulatedShear = 0.0_pReal
allocate(constitutive_nonlocal_sourceProbability(maxTotalNslip, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
constitutive_nonlocal_sourceProbability = 2.0_pReal
allocate(constitutive_nonlocal_rhoDotFlux(maxTotalNslip, 8, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(constitutive_nonlocal_rhoDotMultiplication(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(constitutive_nonlocal_rhoDotSingle2DipoleGlide(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(constitutive_nonlocal_rhoDotAthermalAnnihilation(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(constitutive_nonlocal_rhoDotThermalAnnihilation(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(constitutive_nonlocal_rhoDotEdgeJogs(maxTotalNslip, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
constitutive_nonlocal_rhoDotFlux = 0.0_pReal
constitutive_nonlocal_rhoDotMultiplication = 0.0_pReal
constitutive_nonlocal_rhoDotSingle2DipoleGlide = 0.0_pReal
constitutive_nonlocal_rhoDotAthermalAnnihilation = 0.0_pReal
constitutive_nonlocal_rhoDotThermalAnnihilation = 0.0_pReal
constitutive_nonlocal_rhoDotEdgeJogs = 0.0_pReal
allocate(constitutive_nonlocal_compatibility(2,maxTotalNslip, maxTotalNslip, FE_maxNipNeighbors, mesh_maxNips, mesh_NcpElems))
constitutive_nonlocal_compatibility = 0.0_pReal
allocate(constitutive_nonlocal_peierlsStress(maxTotalNslip,2,maxNinstance))
constitutive_nonlocal_peierlsStress = 0.0_pReal
allocate(constitutive_nonlocal_colinearSystem(maxTotalNslip,maxNinstance))
constitutive_nonlocal_colinearSystem = 0_pInt
do i = 1,maxNinstance
myStructure = constitutive_nonlocal_structure(i) ! lattice structure of this instance
!*** Inverse lookup of my slip system family and the slip system in lattice
l = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily
do s = 1_pInt,constitutive_nonlocal_Nslip(f,i)
l = l + 1_pInt
constitutive_nonlocal_slipFamily(l,i) = f
constitutive_nonlocal_slipSystemLattice(l,i) = sum(lattice_NslipSystem(1:f-1_pInt, myStructure)) + s
enddo; enddo
!*** determine size of state array
ns = constitutive_nonlocal_totalNslip(i)
constitutive_nonlocal_sizeDotState(i) = int(size(constitutive_nonlocal_listBasicStates),pInt) * ns
constitutive_nonlocal_sizeDependentState(i) = int(size(constitutive_nonlocal_listDependentStates),pInt) * ns
constitutive_nonlocal_sizeState(i) = constitutive_nonlocal_sizeDotState(i) &
+ constitutive_nonlocal_sizeDependentState(i) &
+ int(size(constitutive_nonlocal_listOtherStates),pInt) * ns
!*** determine size of postResults array
do o = 1_pInt,constitutive_nonlocal_Noutput(i)
select case(constitutive_nonlocal_output(o,i))
case( 'rho', &
'delta', &
'rho_edge', &
'rho_screw', &
'rho_sgl', &
'delta_sgl', &
'rho_sgl_edge', &
'rho_sgl_edge_pos', &
'rho_sgl_edge_neg', &
'rho_sgl_screw', &
'rho_sgl_screw_pos', &
'rho_sgl_screw_neg', &
'rho_sgl_mobile', &
'rho_sgl_edge_mobile', &
'rho_sgl_edge_pos_mobile', &
'rho_sgl_edge_neg_mobile', &
'rho_sgl_screw_mobile', &
'rho_sgl_screw_pos_mobile', &
'rho_sgl_screw_neg_mobile', &
'rho_sgl_immobile', &
'rho_sgl_edge_immobile', &
'rho_sgl_edge_pos_immobile', &
'rho_sgl_edge_neg_immobile', &
'rho_sgl_screw_immobile', &
'rho_sgl_screw_pos_immobile', &
'rho_sgl_screw_neg_immobile', &
'rho_dip', &
'delta_dip', &
'rho_dip_edge', &
'rho_dip_screw', &
'excess_rho', &
'excess_rho_edge', &
'excess_rho_screw', &
'rho_forest', &
'shearrate', &
'resolvedstress', &
'resolvedstress_external', &
'resolvedstress_back', &
'resistance', &
'rho_dot', &
'rho_dot_sgl', &
'rho_dot_dip', &
'rho_dot_gen', &
'rho_dot_gen_edge', &
'rho_dot_gen_screw', &
'rho_dot_sgl2dip', &
'rho_dot_sgl2dip_edge', &
'rho_dot_sgl2dip_screw', &
'rho_dot_ann_ath', &
'rho_dot_ann_the', &
'rho_dot_ann_the_edge', &
'rho_dot_ann_the_screw', &
'rho_dot_edgejogs', &
'rho_dot_flux', &
'rho_dot_flux_edge', &
'rho_dot_flux_screw', &
'velocity_edge_pos', &
'velocity_edge_neg', &
'velocity_screw_pos', &
'velocity_screw_neg', &
'fluxdensity_edge_pos_x', &
'fluxdensity_edge_pos_y', &
'fluxdensity_edge_pos_z', &
'fluxdensity_edge_neg_x', &
'fluxdensity_edge_neg_y', &
'fluxdensity_edge_neg_z', &
'fluxdensity_screw_pos_x', &
'fluxdensity_screw_pos_y', &
'fluxdensity_screw_pos_z', &
'fluxdensity_screw_neg_x', &
'fluxdensity_screw_neg_y', &
'fluxdensity_screw_neg_z', &
2012-01-26 18:20:04 +05:30
'maximumdipoleheight_edge', &
'maximumdipoleheight_screw', &
'accumulatedshear', &
'boundarylayer' )
mySize = constitutive_nonlocal_totalNslip(i)
case('dislocationstress')
mySize = 6_pInt
case default
call IO_error(212_pInt,ext_msg=constitutive_nonlocal_output(o,i)//' ('//constitutive_nonlocal_label//')')
end select
if (mySize > 0_pInt) then ! any meaningful output found
constitutive_nonlocal_sizePostResult(o,i) = mySize
constitutive_nonlocal_sizePostResults(i) = constitutive_nonlocal_sizePostResults(i) + mySize
endif
enddo
!*** elasticity matrix and shear modulus according to material.config
constitutive_nonlocal_Cslip_66(:,:,i) = lattice_symmetrizeC66(constitutive_nonlocal_structureName(i),&
constitutive_nonlocal_Cslip_66)
constitutive_nonlocal_Gmod(i) = 0.2_pReal * ( constitutive_nonlocal_Cslip_66(1,1,i) - constitutive_nonlocal_Cslip_66(1,2,i) &
+ 3.0_pReal*constitutive_nonlocal_Cslip_66(4,4,i) ) ! (C11iso-C12iso)/2 with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5
constitutive_nonlocal_nu(i) = ( constitutive_nonlocal_Cslip_66(1,1,i) + 4.0_pReal*constitutive_nonlocal_Cslip_66(1,2,i) &
- 2.0_pReal*constitutive_nonlocal_Cslip_66(1,2,i) ) &
/ ( 4.0_pReal*constitutive_nonlocal_Cslip_66(1,1,i) + 6.0_pReal*constitutive_nonlocal_Cslip_66(1,2,i) &
+ 2.0_pReal*constitutive_nonlocal_Cslip_66(4,4,i) )
constitutive_nonlocal_Cslip_66(1:6,1:6,i) = math_Mandel3333to66(math_Voigt66to3333(constitutive_nonlocal_Cslip_66(1:6,1:6,i)))
constitutive_nonlocal_Cslip_3333(1:3,1:3,1:3,1:3,i) = math_Voigt66to3333(constitutive_nonlocal_Cslip_66(1:6,1:6,i))
! C12iso/(C11iso+C12iso) with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5
do s1 = 1_pInt,ns
f = constitutive_nonlocal_slipFamily(s1,i)
!*** burgers vector, mean free path prefactor and minimum dipole distance for each slip system
constitutive_nonlocal_burgers(s1,i) = constitutive_nonlocal_burgersPerSlipFamily(f,i)
constitutive_nonlocal_lambda0(s1,i) = constitutive_nonlocal_lambda0PerSlipFamily(f,i)
constitutive_nonlocal_minimumDipoleHeight(s1,1:2,i) = constitutive_nonlocal_minimumDipoleHeightPerSlipFamily(f,1:2,i)
constitutive_nonlocal_peierlsStress(s1,1:2,i) = constitutive_nonlocal_peierlsStressPerSlipFamily(f,1:2,i)
do s2 = 1_pInt,ns
!*** calculation of forest projections for edge and screw dislocations. s2 acts as forest for s1
constitutive_nonlocal_forestProjectionEdge(s1,s2,i) &
= abs(math_mul3x3(lattice_sn(1:3,constitutive_nonlocal_slipSystemLattice(s1,i),myStructure), &
lattice_st(1:3,constitutive_nonlocal_slipSystemLattice(s2,i),myStructure))) ! forest projection of edge dislocations is the projection of (t = b x n) onto the slip normal of the respective slip plane
constitutive_nonlocal_forestProjectionScrew(s1,s2,i) &
= abs(math_mul3x3(lattice_sn(1:3,constitutive_nonlocal_slipSystemLattice(s1,i),myStructure), &
lattice_sd(1:3,constitutive_nonlocal_slipSystemLattice(s2,i),myStructure))) ! forest projection of screw dislocations is the projection of b onto the slip normal of the respective splip plane
!*** calculation of interaction matrices
constitutive_nonlocal_interactionMatrixSlipSlip(s1,s2,i) &
= constitutive_nonlocal_interactionSlipSlip(lattice_interactionSlipSlip(constitutive_nonlocal_slipSystemLattice(s1,i), &
constitutive_nonlocal_slipSystemLattice(s2,i), &
myStructure), i)
!*** colinear slip system (only makes sense for fcc like it is defined here)
if (lattice_interactionSlipSlip(constitutive_nonlocal_slipSystemLattice(s1,i), &
constitutive_nonlocal_slipSystemLattice(s2,i), &
myStructure) == 3_pInt) then
constitutive_nonlocal_colinearSystem(s1,i) = s2
endif
enddo
!*** rotation matrix from lattice configuration to slip system
constitutive_nonlocal_lattice2slip(1:3,1:3,s1,i) &
= math_transpose33( reshape([ lattice_sd(1:3, constitutive_nonlocal_slipSystemLattice(s1,i), myStructure), &
-lattice_st(1:3, constitutive_nonlocal_slipSystemLattice(s1,i), myStructure), &
lattice_sn(1:3, constitutive_nonlocal_slipSystemLattice(s1,i), myStructure)], [3,3]))
enddo
enddo
endsubroutine
!*********************************************************************
!* initial microstructural state (just the "basic" states) *
!*********************************************************************
subroutine constitutive_nonlocal_stateInit(state)
use prec, only: pReal, &
pInt, &
p_vec
use lattice, only: lattice_maxNslipFamily
use math, only: math_sampleGaussVar
use mesh, only: mesh_ipVolume, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
FE_Nips, &
FE_geomtype
use material, only: material_phase, &
phase_plasticityInstance, &
phase_plasticity
implicit none
!*** input/output variables
type(p_vec), dimension(1,mesh_maxNips,mesh_NcpElems), intent(inout) :: &
state ! microstructural state
!*** local variables
real(pReal), dimension(:), allocatable :: &
rhoSglEdgePos, & ! positive edge dislocation density
rhoSglEdgeNeg, & ! negative edge dislocation density
rhoSglScrewPos, & ! positive screw dislocation density
rhoSglScrewNeg, & ! negative screw dislocation density
rhoDipEdge, & ! edge dipole dislocation density
2011-04-13 19:46:22 +05:30
rhoDipScrew ! screw dipole dislocation density
integer(pInt) el, &
ip, &
g, &
ns, & ! short notation for total number of active slip systems
f, & ! index of lattice family
from, &
upto, &
s, & ! index of slip system
t, &
i, &
myInstance, &
maxNinstance
real(pReal), dimension(2) :: noise
real(pReal), dimension(4) :: rnd
real(pReal) meanDensity, &
totalVolume, &
densityBinning, &
minimumIpVolume
maxNinstance = int(count(phase_plasticity == constitutive_nonlocal_label),pInt)
if (maxNinstance > 0_pInt) then
allocate(rhoSglEdgePos(maxval(constitutive_nonlocal_totalNslip)))
allocate(rhoSglEdgeNeg(maxval(constitutive_nonlocal_totalNslip)))
allocate(rhoSglScrewPos(maxval(constitutive_nonlocal_totalNslip)))
allocate(rhoSglScrewNeg(maxval(constitutive_nonlocal_totalNslip)))
allocate(rhoDipEdge(maxval(constitutive_nonlocal_totalNslip)))
allocate(rhoDipScrew(maxval(constitutive_nonlocal_totalNslip)))
endif
do myInstance = 1_pInt,maxNinstance
ns = constitutive_nonlocal_totalNslip(myInstance)
! randomly distribute dislocation segments on random slip system and of random type in the volume
if (constitutive_nonlocal_rhoSglRandom(myInstance) > 0.0_pReal) then
! ititalize all states to zero and get the total volume of the instance
minimumIpVolume = 1e99_pReal
do el = 1_pInt,mesh_NcpElems
do ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,el)))
if (constitutive_nonlocal_label == phase_plasticity(material_phase(1,ip,el)) &
.and. myInstance == phase_plasticityInstance(material_phase(1,ip,el))) then
totalVolume = totalVolume + mesh_ipVolume(ip,el)
minimumIpVolume = min(minimumIpVolume, mesh_ipVolume(ip,el))
state(1,ip,el)%p = 0.0_pReal
endif
enddo
enddo
densityBinning = constitutive_nonlocal_rhoSglRandomBinning(myInstance) / minimumIpVolume ** (2.0_pReal / 3.0_pReal)
! subsequently fill random ips with dislocation segments until we reach the desired overall density
meanDensity = 0.0_pReal
do while(meanDensity < constitutive_nonlocal_rhoSglRandom(myInstance))
call random_number(rnd)
el = nint(rnd(1)*real(mesh_NcpElems,pReal)+0.5_pReal,pInt)
ip = nint(rnd(2)*real(FE_Nips(FE_geomtype(mesh_element(2,el))),pReal)+0.5_pReal,pInt)
if (constitutive_nonlocal_label == phase_plasticity(material_phase(1,ip,el)) &
.and. myInstance == phase_plasticityInstance(material_phase(1,ip,el))) then
s = nint(rnd(3)*real(ns,pReal)+0.5_pReal,pInt)
t = nint(rnd(4)*4.0_pReal+0.5_pReal,pInt)
meanDensity = meanDensity + densityBinning * mesh_ipVolume(ip,el) / totalVolume
state(1,ip,el)%p((t-1)*ns+s) = state(1,ip,el)%p((t-1)*ns+s) + densityBinning
endif
enddo
! homogeneous distribution of density with some noise
else
do el = 1_pInt,mesh_NcpElems
do ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,el)))
if (constitutive_nonlocal_label == phase_plasticity(material_phase(1,ip,el)) &
.and. myInstance == phase_plasticityInstance(material_phase(1,ip,el))) then
do f = 1_pInt,lattice_maxNslipFamily
from = 1_pInt + sum(constitutive_nonlocal_Nslip(1:f-1_pInt,myInstance))
upto = sum(constitutive_nonlocal_Nslip(1:f,myInstance))
do s = from,upto
do i = 1_pInt,2_pInt
noise(i) = math_sampleGaussVar(0.0_pReal, constitutive_nonlocal_rhoSglScatter(myInstance))
enddo
rhoSglEdgePos(s) = constitutive_nonlocal_rhoSglEdgePos0(f, myInstance) + noise(1)
rhoSglEdgeNeg(s) = constitutive_nonlocal_rhoSglEdgeNeg0(f, myInstance) + noise(1)
rhoSglScrewPos(s) = constitutive_nonlocal_rhoSglScrewPos0(f, myInstance) + noise(2)
rhoSglScrewNeg(s) = constitutive_nonlocal_rhoSglScrewNeg0(f, myInstance) + noise(2)
enddo
rhoDipEdge(from:upto) = constitutive_nonlocal_rhoDipEdge0(f, myInstance)
rhoDipScrew(from:upto) = constitutive_nonlocal_rhoDipScrew0(f, myInstance)
enddo
state(1,ip,el)%p( 1: ns) = rhoSglEdgePos(1:ns)
state(1,ip,el)%p( ns+1: 2*ns) = rhoSglEdgeNeg(1:ns)
state(1,ip,el)%p( 2*ns+1: 3*ns) = rhoSglScrewPos(1:ns)
state(1,ip,el)%p( 3*ns+1: 4*ns) = rhoSglScrewNeg(1:ns)
state(1,ip,el)%p( 4*ns+1: 5*ns) = 0.0_pReal
state(1,ip,el)%p( 5*ns+1: 6*ns) = 0.0_pReal
state(1,ip,el)%p( 6*ns+1: 7*ns) = 0.0_pReal
state(1,ip,el)%p( 7*ns+1: 8*ns) = 0.0_pReal
state(1,ip,el)%p( 8*ns+1: 9*ns) = rhoDipEdge(1:ns)
state(1,ip,el)%p( 9*ns+1:10*ns) = rhoDipScrew(1:ns)
endif
enddo
enddo
endif
enddo
if (maxNinstance > 0_pInt) then
deallocate(rhoSglEdgePos)
deallocate(rhoSglEdgeNeg)
deallocate(rhoSglScrewPos)
deallocate(rhoSglScrewNeg)
deallocate(rhoDipEdge)
deallocate(rhoDipScrew)
endif
endsubroutine
!*********************************************************************
!* absolute state tolerance *
!*********************************************************************
pure function constitutive_nonlocal_aTolState(myInstance)
use prec, only: pReal, &
pInt
implicit none
!*** input variables
integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the plasticity
!*** output variables
real(pReal), dimension(constitutive_nonlocal_sizeState(myInstance)) :: &
constitutive_nonlocal_aTolState ! absolute state tolerance for the current instance of this plasticity
!*** local variables
constitutive_nonlocal_aTolState = constitutive_nonlocal_aTolRho(myInstance)
endfunction
!*********************************************************************
!* calculates homogenized elacticity matrix *
!*********************************************************************
pure function constitutive_nonlocal_homogenizedC(state,g,ip,el)
use prec, only: pReal, &
pInt, &
p_vec
use mesh, only: mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain ID
ip, & ! current integration point
el ! current element
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state ! microstructural state
!*** output variables
real(pReal), dimension(6,6) :: constitutive_nonlocal_homogenizedC ! homogenized elasticity matrix
!*** local variables
integer(pInt) myInstance ! current instance of this plasticity
myInstance = phase_plasticityInstance(material_phase(g,ip,el))
constitutive_nonlocal_homogenizedC = constitutive_nonlocal_Cslip_66(1:6,1:6,myInstance)
endfunction
!*********************************************************************
!* calculates quantities characterizing the microstructure *
!*********************************************************************
subroutine constitutive_nonlocal_microstructure(state, Temperature, Fe, Fp, g, ip, el)
use prec, only: pReal, &
pInt, &
p_vec
use IO, only: IO_error
use math, only: math_Mandel33to6, &
math_mul33x33, &
math_mul33x3, &
math_mul3x3, &
math_norm3, &
math_inv33, &
math_invert33, &
math_transpose33, &
pi
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
mesh_ipNeighborhood, &
mesh_ipCoordinates, &
mesh_ipVolume, &
mesh_ipAreaNormal, &
FE_NipNeighbors, &
FE_maxNipNeighbors, &
FE_geomtype
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_localPlasticity, &
phase_plasticityInstance
use lattice, only: lattice_sd, &
lattice_st, &
lattice_interactionSlipSlip
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain ID
ip, & ! current integration point
el ! current element
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(3,3), intent(in) :: &
Fe, & ! elastic deformation gradient
Fp ! elastic deformation gradient
!*** input/output variables
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: &
state ! microstructural state
!*** output variables
!*** local variables
integer(pInt) neighboring_el, & ! element number of neighboring material point
neighboring_ip, & ! integration point of neighboring material point
instance, & ! my instance of this plasticity
neighboring_instance, & ! instance of this plasticity of neighboring material point
latticeStruct, & ! my lattice structure
neighboring_latticeStruct, & ! lattice structure of neighboring material point
phase, &
neighboring_phase, &
ns, & ! total number of active slip systems at my material point
neighboring_ns, & ! total number of active slip systems at neighboring material point
c, & ! index of dilsocation character (edge, screw)
s, & ! slip system index
s2, & ! slip system index
t, & ! index of dilsocation type (e+, e-, s+, s-, used e+, used e-, used s+, used s-)
dir, &
n, &
interactionCoefficient
integer(pInt), dimension(2) :: neighbor
real(pReal) nu, & ! poisson's ratio
mu, &
b, &
detFe, &
detFp, &
FVsize, &
temp, &
correction, &
myRhoForest
real(pReal), dimension(2) :: rhoExcessGradient, &
rhoExcessGradient_over_rho, &
rhoTotal
real(pReal), dimension(3) :: ipCoords, &
neighboring_ipCoords, &
rhoExcessDifferences
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
rhoForest, & ! forest dislocation density
tauBack, & ! back stress from pileup on same slip system
2011-04-13 19:46:22 +05:30
tauThreshold ! threshold shear stress
real(pReal), dimension(3,3) :: invFe, & ! inverse of elastic deformation gradient
invFp, & ! inverse of plastic deformation gradient
connections, &
invConnections
real(pReal), dimension(3,FE_maxNipNeighbors) :: &
connection_latticeConf
real(pReal), dimension(2,constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
rhoExcess
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),2) :: &
rhoDip ! dipole dislocation density (edge, screw)
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
rhoSgl ! single dislocation density (edge+, edge-, screw+, screw-, used edge+, used edge-, used screw+, used screw-)
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))), &
constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
myInteractionMatrix ! corrected slip interaction matrix
real(pReal), dimension(2,maxval(constitutive_nonlocal_totalNslip),FE_maxNipNeighbors) :: &
neighboring_rhoExcess ! excess density at neighboring material point
real(pReal), dimension(3,constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),2) :: &
m ! direction of dislocation motion
logical inversionError
phase = material_phase(g,ip,el)
instance = phase_plasticityInstance(phase)
latticeStruct = constitutive_nonlocal_structure(instance)
ns = constitutive_nonlocal_totalNslip(instance)
!*** get basic states
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
rhoSgl(s,t) = max(state(g,ip,el)%p((t-1_pInt)*ns+s), 0.0_pReal) ! ensure positive single mobile densities
forall (t = 5_pInt:8_pInt) &
rhoSgl(1:ns,t) = state(g,ip,el)%p((t-1_pInt)*ns+1_pInt:t*ns)
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
rhoDip(s,c) = max(state(g,ip,el)%p((7_pInt+c)*ns+s), 0.0_pReal) ! ensure positive dipole densities
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(instance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(instance)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(instance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(instance)) &
rhoDip = 0.0_pReal
!*** calculate the forest dislocation density
!*** (= projection of screw and edge dislocations)
forall (s = 1_pInt:ns) &
rhoForest(s) = dot_product((sum(abs(rhoSgl(1:ns,[1,2,5,6])),2) + rhoDip(1:ns,1)), &
constitutive_nonlocal_forestProjectionEdge(s,1:ns,instance)) &
+ dot_product((sum(abs(rhoSgl(1:ns,[3,4,7,8])),2) + rhoDip(1:ns,2)), &
constitutive_nonlocal_forestProjectionScrew(s,1:ns,instance))
!*** calculate the threshold shear stress for dislocation slip
myInteractionMatrix = 0.0_pReal
myInteractionMatrix(1:ns,1:ns) = constitutive_nonlocal_interactionMatrixSlipSlip(1:ns,1:ns,instance)
if (latticeStruct == 1_pInt) then ! in case of fcc: coefficients are corrected for the line tension effect (see Kubin,Devincre,Hoc; 2008; Modeling dislocation storage rates and mean free paths in face-centered cubic crystals)
do s = 1_pInt,ns
myRhoForest = max(rhoForest(s),constitutive_nonlocal_significantRho(instance))
correction = ( 1.0_pReal - constitutive_nonlocal_linetensionEffect(instance) &
+ constitutive_nonlocal_linetensionEffect(instance) &
* log(0.35_pReal * constitutive_nonlocal_burgers(s,instance) * sqrt(myRhoForest)) &
/ log(0.35_pReal * constitutive_nonlocal_burgers(s,instance) * 1e6_pReal)) ** 2.0_pReal
do s2 = 1_pInt,ns
interactionCoefficient = lattice_interactionSlipSlip(constitutive_nonlocal_slipSystemLattice(s,instance), &
constitutive_nonlocal_slipSystemLattice(s2,instance), &
latticeStruct)
select case(interactionCoefficient)
case(4_pInt,5_pInt,6_pInt) ! only correct junction forming interactions (4,5,6)
myInteractionMatrix(s,s2) = correction * myInteractionMatrix(s,s2)
endselect
enddo
enddo
endif
forall (s = 1_pInt:ns) &
tauThreshold(s) = constitutive_nonlocal_Gmod(instance) * constitutive_nonlocal_burgers(s,instance) &
* sqrt(dot_product((sum(abs(rhoSgl),2) + sum(abs(rhoDip),2)), myInteractionMatrix(s,1:ns)))
!*** calculate the dislocation stress of the neighboring excess dislocation densities
!*** zero for material points of local plasticity
tauBack = 0.0_pReal
if (.not. phase_localPlasticity(phase) .and. constitutive_nonlocal_shortRangeStressCorrection(instance)) then
call math_invert33(Fe, invFe, detFe, inversionError)
call math_invert33(Fp, invFp, detFp, inversionError)
ipCoords = mesh_ipCoordinates(1:3,ip,el)
rhoExcess(1,1:ns) = rhoSgl(1:ns,1) - rhoSgl(1:ns,2)
rhoExcess(2,1:ns) = rhoSgl(1:ns,3) - rhoSgl(1:ns,4)
FVsize = mesh_ipVolume(ip,el) ** (1.0_pReal/3.0_pReal)
nu = constitutive_nonlocal_nu(instance)
mu = constitutive_nonlocal_Gmod(instance)
!* loop through my neighborhood and get the connection vectors (in lattice frame) and the excess densities
do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,el)))
neighboring_el = mesh_ipNeighborhood(1,n,ip,el)
neighboring_ip = mesh_ipNeighborhood(2,n,ip,el)
if (neighboring_el > 0 .and. neighboring_ip > 0) then
neighboring_phase = material_phase(g,neighboring_ip,neighboring_el)
neighboring_instance = phase_plasticityInstance(neighboring_phase)
neighboring_latticeStruct = constitutive_nonlocal_structure(neighboring_instance)
neighboring_ns = constitutive_nonlocal_totalNslip(neighboring_instance)
neighboring_ipCoords = mesh_ipCoordinates(1:3,neighboring_ip,neighboring_el)
if (.not. phase_localPlasticity(neighboring_phase) &
.and. neighboring_latticeStruct == latticeStruct &
.and. neighboring_instance == instance) then
if (neighboring_ns == ns) then
if (neighboring_el /= el .or. neighboring_ip /= ip) then
connection_latticeConf(1:3,n) = math_mul33x3(invFe, neighboring_ipCoords - ipCoords)
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
neighboring_rhoExcess(c,s,n) = state(g,neighboring_ip,neighboring_el)%p((2_pInt*c-2_pInt)*ns+s) & ! positive mobiles
- state(g,neighboring_ip,neighboring_el)%p((2_pInt*c-1_pInt)*ns+s) ! negative mobiles
else
! thats myself! probably using periodic images -> assume constant excess density
connection_latticeConf(1:3,n) = math_mul33x3(math_transpose33(invFp), mesh_ipAreaNormal(1:3,n,ip,el)) ! direction of area normal
neighboring_rhoExcess(1:2,1:ns,n) = rhoExcess
endif
else
! different number of active slip systems
call IO_error(-1_pInt,ext_msg='different number of active slip systems in neighboring IPs of same crystal structure')
endif
else
! local neighbor or different lattice structure or different constitution instance -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pReal
neighboring_rhoExcess(1:2,1:ns,n) = rhoExcess
endif
else
! free surface -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pReal
neighboring_rhoExcess(1:2,1:ns,n) = rhoExcess
endif
enddo
!* loop through the slip systems and calculate the dislocation gradient by
!* 1. interpolation of the excess density in the neighorhood
!* 2. interpolation of the dead dislocation density in the central volume
m(1:3,1:ns,1) = lattice_sd(1:3, constitutive_nonlocal_slipSystemLattice(1:ns,instance), latticeStruct)
m(1:3,1:ns,2) = -lattice_st(1:3, constitutive_nonlocal_slipSystemLattice(1:ns,instance), latticeStruct)
do s = 1_pInt,ns
!* gradient from interpolation of neighboring excess density
do c = 1_pInt,2_pInt
do dir = 1_pInt,3_pInt
neighbor(1) = 2_pInt * dir - 1_pInt
neighbor(2) = 2_pInt * dir
connections(dir,1:3) = connection_latticeConf(1:3,neighbor(1)) - connection_latticeConf(1:3,neighbor(2))
rhoExcessDifferences(dir) = neighboring_rhoExcess(c,s,neighbor(1)) - neighboring_rhoExcess(c,s,neighbor(2))
enddo
call math_invert33(connections,invConnections,temp,inversionError)
if (inversionError) then
call IO_error(-1_pInt,ext_msg='back stress calculation: inversion error')
endif
rhoExcessGradient(c) = math_mul3x3(math_mul33x3(invConnections, rhoExcessDifferences), m(1:3,s,c))
enddo
!* plus gradient from deads
do t = 1_pInt,4_pInt
c = (t - 1_pInt) / 2_pInt + 1_pInt
rhoExcessGradient(c) = rhoExcessGradient(c) + rhoSgl(s,t+4_pInt) / FVsize
enddo
!* normalized with the total density
rhoExcessGradient_over_rho = 0.0_pReal
rhoTotal(1_pInt) = sum(abs(rhoSgl(s,[1_pInt,2_pInt,5_pInt,6_pInt]))) + rhoDip(s,1_pInt)
rhoTotal(2_pInt) = sum(abs(rhoSgl(s,[3_pInt,4_pInt,7_pInt,8_pInt]))) + rhoDip(s,2_pInt)
forall (c = 1_pInt:2_pInt, rhoTotal(c) > 0.0_pReal) &
rhoExcessGradient_over_rho(c) = rhoExcessGradient(c) / rhoTotal(c)
!* gives the local stress correction when multiplied with a factor
b = constitutive_nonlocal_burgers(s,instance)
tauBack(s) = - mu * b / (2.0_pReal * pi) * (rhoExcessGradient_over_rho(1) / (1.0_pReal - nu) + rhoExcessGradient_over_rho(2))
enddo
endif
!*** set dependent states
state(g,ip,el)%p(10_pInt*ns+1:11_pInt*ns) = rhoForest
state(g,ip,el)%p(11_pInt*ns+1:12_pInt*ns) = tauThreshold
state(g,ip,el)%p(12_pInt*ns+1:13_pInt*ns) = tauBack
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_microstructure at el ip g',el,ip,g
write(6,*)
write(6,'(a,/,12x,12(e10.3,1x))') '<< CONST >> rhoForest', rhoForest
write(6,'(a,/,12x,12(f10.5,1x))') '<< CONST >> tauThreshold / MPa', tauThreshold/1e6
write(6,'(a,/,12x,12(f10.5,1x))') '<< CONST >> tauBack / MPa', tauBack/1e6
write(6,*)
endif
#endif
endsubroutine
!*********************************************************************
!* calculates kinetics *
!*********************************************************************
subroutine constitutive_nonlocal_kinetics(v, tau, c, Temperature, state, g, ip, el, dv_dtau)
use prec, only: pReal, &
pInt, &
p_vec
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use material, only: material_phase, &
phase_plasticityInstance
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el, & ! current element number
c ! dislocation character (1:edge, 2:screw)
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
intent(in) :: tau ! resolved external shear stress (for bcc this already contains non Schmid effects)
type(p_vec), intent(in) :: state ! microstructural state
!*** input/output variables
!*** output variables
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
intent(out) :: v ! velocity
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))), &
intent(out), optional :: dv_dtau ! velocity derivative with respect to resolved shear stress
!*** local variables
integer(pInt) instance, & ! current instance of this plasticity
ns, & ! short notation for the total number of active slip systems
2013-01-22 05:20:28 +05:30
s, t ! index of my current slip system
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
tauThreshold, & ! threshold shear stress
tauEff ! effective shear stress
real(pReal) tauRel_P, &
tauRel_S, &
tPeierls, & ! waiting time in front of a peierls barriers
tSolidSolution, & ! waiting time in front of a solid solution obstacle
vViscous, & ! viscous glide velocity
dtPeierls_dtau, & ! derivative with respect to resolved shear stress
dtSolidSolution_dtau, & ! derivative with respect to resolved shear stress
p, & ! shortcut to Kocks,Argon,Ashby parameter p
q, & ! shortcut to Kocks,Argon,Ashby parameter q
meanfreepath_S, & ! mean free travel distance for dislocations between two solid solution obstacles
meanfreepath_P, & ! mean free travel distance for dislocations between two Peierls barriers
jumpWidth_P, & ! depth of activated area
jumpWidth_S, & ! depth of activated area
activationLength_P, & ! length of activated dislocation line
activationLength_S, & ! length of activated dislocation line
activationVolume_P, & ! volume that needs to be activated to overcome barrier
activationVolume_S, & ! volume that needs to be activated to overcome barrier
activationEnergy_P, & ! energy that is needed to overcome barrier
activationEnergy_S, & ! energy that is needed to overcome barrier
criticalStress_P, & ! maximum obstacle strength
criticalStress_S, & ! maximum obstacle strength
mobility ! dislocation mobility
instance = phase_plasticityInstance(material_phase(g,ip,el))
ns = constitutive_nonlocal_totalNslip(instance)
tauThreshold = state%p(11_pInt*ns+1:12_pInt*ns)
tauEff = abs(tau) - tauThreshold
p = constitutive_nonlocal_p(instance)
q = constitutive_nonlocal_q(instance)
v = 0.0_pReal
if (present(dv_dtau)) dv_dtau = 0.0_pReal
if (Temperature > 0.0_pReal) then
do s = 1_pInt,ns
if (tauEff(s) > 0.0_pReal) then
!* Peierls contribution
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
meanfreepath_P = constitutive_nonlocal_burgers(s,instance)
jumpWidth_P = constitutive_nonlocal_burgers(s,instance)
activationLength_P = constitutive_nonlocal_doublekinkwidth(instance) * constitutive_nonlocal_burgers(s,instance)
activationVolume_P = activationLength_P * jumpWidth_P * constitutive_nonlocal_burgers(s,instance)
criticalStress_P = constitutive_nonlocal_peierlsStress(s,c,instance)
activationEnergy_P = criticalStress_P * activationVolume_P
tauRel_P = min(1.0_pReal, tauEff(s) / criticalStress_P) ! ensure that the activation probability cannot become greater than one
tPeierls = 1.0_pReal / constitutive_nonlocal_fattack(instance) &
* exp(activationEnergy_P / (kB * Temperature) * (1.0_pReal - tauRel_P**p)**q)
if (present(dv_dtau)) then
if (tauEff(s) < criticalStress_P) then
dtPeierls_dtau = tPeierls * p * q * activationVolume_P / (kB * Temperature) &
* (1.0_pReal - tauRel_P**p)**(q-1.0_pReal) * tauRel_P**(p-1.0_pReal)
else
dtPeierls_dtau = 0.0_pReal
endif
endif
!* Contribution from solid solution strengthening
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
meanfreepath_S = constitutive_nonlocal_burgers(s,instance) / sqrt(constitutive_nonlocal_solidSolutionConcentration(instance))
jumpWidth_S = constitutive_nonlocal_solidSolutionSize(instance) * constitutive_nonlocal_burgers(s,instance)
activationLength_S = constitutive_nonlocal_burgers(s,instance) &
/ sqrt(constitutive_nonlocal_solidSolutionConcentration(instance))
activationVolume_S = activationLength_S * jumpWidth_S * constitutive_nonlocal_burgers(s,instance)
activationEnergy_S = constitutive_nonlocal_solidSolutionEnergy(instance)
criticalStress_S = activationEnergy_S / activationVolume_S
tauRel_S = min(1.0_pReal, tauEff(s) / criticalStress_S) ! ensure that the activation probability cannot become greater than one
tSolidSolution = 1.0_pReal / constitutive_nonlocal_fattack(instance) &
* exp(activationEnergy_S / (kB * Temperature) * (1.0_pReal - tauRel_S**p)**q)
if (present(dv_dtau)) then
if (tauEff(s) < criticalStress_S) then
dtSolidSolution_dtau = tSolidSolution * p * q * activationVolume_S / (kB * Temperature) &
* (1.0_pReal - tauRel_S**p)**(q-1.0_pReal) * tauRel_S**(p-1.0_pReal)
else
dtSolidSolution_dtau = 0.0_pReal
endif
endif
!* viscous glide velocity
mobility = constitutive_nonlocal_burgers(s,instance) / constitutive_nonlocal_viscosity(instance)
vViscous = mobility * tauEff(s)
!* Mean velocity results from waiting time at peierls barriers and solid solution obstacles with respective meanfreepath of
!* free flight at glide velocity in between. Backward jumps at low stresses are considered only at peierls barriers,
!* since those have the smallest activation volume, thus are decisive.
v(s) = 1.0_pReal / (tPeierls / meanfreepath_P + tSolidSolution / meanfreepath_S + 1.0_pReal / vViscous) &
* (1.0_pReal - exp(-tauEff(s) * activationVolume_P / (kB * Temperature)))
if (present(dv_dtau)) then
dv_dtau(s) = 1.0_pReal / (tPeierls / meanfreepath_P + tSolidSolution / meanfreepath_S + 1.0_pReal / vViscous) &
* (v(s) * ( dtPeierls_dtau / meanfreepath_P + dtSolidSolution_dtau / meanfreepath_S &
+ 1.0_pReal / (mobility * tauEff(s)*tauEff(s))) &
+ activationVolume_P / (kB * Temperature) * exp(-tauEff(s) * activationVolume_P / (kB * Temperature)))
endif
!* relativistic correction
if (present(dv_dtau)) then
dv_dtau(s) = dv_dtau(s) * exp( -v(s) / constitutive_nonlocal_vmax(instance))
endif
v(s) = constitutive_nonlocal_vmax(instance) * (1.0_pReal - exp( -v(s) / constitutive_nonlocal_vmax(instance)))
!* adopt sign from resolved stress
v(s) = sign(v(s),tau(s))
endif
enddo
endif
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_kinetics at el ip g',el,ip,g
write(6,*)
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tau / MPa', tau / 1e6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauEff / MPa', tauEff / 1e6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> v / 1e-3m/s', v * 1e3
if (present(dv_dtau)) then
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtau', dv_dtau
endif
endif
#endif
endsubroutine
!*********************************************************************
!* calculates plastic velocity gradient and its tangent *
!*********************************************************************
subroutine constitutive_nonlocal_LpAndItsTangent(Lp, dLp_dTstar99, Tstar_v, Temperature, state, g, ip, el)
use prec, only: pReal, &
pInt, &
p_vec
use math, only: math_Plain3333to99, &
2013-01-22 05:20:28 +05:30
math_mul6x6, &
math_Mandel6to33
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
use lattice, only: lattice_Sslip, &
2013-01-22 05:20:28 +05:30
lattice_Sslip_v, &
NnonSchmid
use mesh, only: mesh_ipVolume
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola-Kirchhoff stress in Mandel notation
!*** input/output variables
type(p_vec), intent(inout) :: state ! microstructural state
!*** output variables
real(pReal), dimension(3,3), intent(out) :: Lp ! plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 ! derivative of Lp with respect to Tstar (9x9 matrix)
!*** local variables
integer(pInt) myInstance, & ! current instance of this plasticity
myStructure, & ! current lattice structure
ns, & ! short notation for the total number of active slip systems
c, &
i, &
j, &
k, &
l, &
t, & ! dislocation type
s, & ! index of my current slip system
sLattice ! index of my current slip system according to lattice order
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 ! derivative of Lp with respect to Tstar (3x3x3x3 matrix)
2013-01-22 05:20:28 +05:30
real(pReal), dimension(3,3,2) :: nonSchmid_tensor
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
rhoSgl ! single dislocation densities (including used)
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
v, & ! velocity
2013-01-22 05:20:28 +05:30
tau, & ! resolved shear stress including non Schmid and backstress terms
dgdot_dtau, & ! derivative of the shear rate with respect to the shear stress
dv_dtau ! velocity derivative with respect to the shear stress
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
gdotTotal, & ! shear rate
tauBack, & ! back stress from dislocation gradients on same slip system
deadZoneSize
!*** initialize local variables
Lp = 0.0_pReal
dLp_dTstar3333 = 0.0_pReal
myInstance = phase_plasticityInstance(material_phase(g,ip,el))
myStructure = constitutive_nonlocal_structure(myInstance)
ns = constitutive_nonlocal_totalNslip(myInstance)
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
rhoSgl(s,t) = max(state%p((t-1_pInt)*ns+s), 0.0_pReal)
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt) &
rhoSgl(s,t) = state%p((t-1_pInt)*ns+s)
tauBack = state%p(12_pInt*ns+1:13_pInt*ns)
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(myInstance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(myInstance)) &
rhoSgl = 0.0_pReal
!*** get effective resolved shear stress
do s = 1_pInt,ns
2013-01-22 05:20:28 +05:30
tau(s,1:4) = math_mul6x6(Tstar_v, lattice_Sslip_v(:,1,constitutive_nonlocal_slipSystemLattice(s,myInstance),myStructure)) &
+ tauBack(s)
2013-01-22 05:20:28 +05:30
!*** adding non schmid contributions to ONLY screw components if present (i.e. if NnonSchmid(myStructure) > 0)
nonSchmid_tensor(1:3,1:3,1) = math_Mandel6to33(lattice_Sslip_v(:,1,constitutive_nonlocal_slipSystemLattice(s,myInstance),myStructure))
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
do k = 1_pInt, NnonSchmid(myStructure)
tau(s,3) = tau(s,3) + constitutive_nonlocal_nonSchmidCoeff(k,myInstance)* &
math_mul6x6(Tstar_v, lattice_Sslip_v(:,2*k,constitutive_nonlocal_slipSystemLattice(s,myInstance),myStructure))
tau(s,4) = tau(s,4) + constitutive_nonlocal_nonSchmidCoeff(k,myInstance)* &
math_mul6x6(Tstar_v, lattice_Sslip_v(:,2*k+1,constitutive_nonlocal_slipSystemLattice(s,myInstance),myStructure))
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + constitutive_nonlocal_nonSchmidCoeff(k,myInstance)*&
math_Mandel6to33(lattice_Sslip_v(:,2*k,constitutive_nonlocal_slipSystemLattice(s,myInstance),myStructure))
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + constitutive_nonlocal_nonSchmidCoeff(k,myInstance)*&
math_Mandel6to33(lattice_Sslip_v(:,2*k+1,constitutive_nonlocal_slipSystemLattice(s,myInstance),myStructure))
enddo
enddo
!*** get dislocation velocity and its tangent and store the velocity in the state array
2013-01-22 05:20:28 +05:30
if (myStructure == 1_pInt .and. NnonSchmid(myStructure) == 0_pInt) then ! for fcc all velcities are equal
call constitutive_nonlocal_kinetics(v(1:ns,1), tau(1:ns,1), 1_pInt, Temperature, state, g, ip, el, dv_dtau(1:ns,1))
do t = 1_pInt,4_pInt
v(1:ns,t) = v(1:ns,1)
dv_dtau(1:ns,t) = dv_dtau(1:ns,1)
state%p((12_pInt+t)*ns+1:(13_pInt+t)*ns) = v(1:ns,1)
enddo
else ! for all other lattice structures the velcities may vary with character and sign
do t = 1_pInt,4_pInt
c = (t-1_pInt)/2_pInt+1_pInt
2013-01-22 05:20:28 +05:30
call constitutive_nonlocal_kinetics(v(1:ns,t), tau(1:ns,t), c, Temperature, state, g, ip, el, dv_dtau(1:ns,t))
state%p((12+t)*ns+1:(13+t)*ns) = v(1:ns,t)
enddo
endif
!*** Bauschinger effect
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt, rhoSgl(s,t) * v(s,t-4_pInt) < 0.0_pReal) &
rhoSgl(s,t-4_pInt) = rhoSgl(s,t-4_pInt) + abs(rhoSgl(s,t))
!*** Calculation of gdot and its tangent
deadZoneSize = 0.0_pReal
if (constitutive_nonlocal_deadZoneScaling(myInstance)) then
forall(s = 1_pInt:ns, sum(abs(rhoSgl(s,1:8))) > 0.0_pReal) &
deadZoneSize(s) = maxval(abs(rhoSgl(s,5:8)) / (rhoSgl(s,1:4) + abs(rhoSgl(s,5:8))))
endif
gdotTotal = sum(rhoSgl(1:ns,1:4) * v, 2) * constitutive_nonlocal_burgers(1:ns,myInstance) * (1.0_pReal - deadZoneSize)
2013-01-22 05:20:28 +05:30
do t = 1_pInt,4_pInt
dgdot_dtau(:,t) = rhoSgl(1:ns,t) * dv_dtau(1:ns,t) * constitutive_nonlocal_burgers(1:ns,myInstance) * (1.0_pReal - deadZoneSize)
enddo
!*** Calculation of Lp and its tangent
do s = 1_pInt,ns
sLattice = constitutive_nonlocal_slipSystemLattice(s,myInstance)
Lp = Lp + gdotTotal(s) * lattice_Sslip(1:3,1:3,sLattice,myStructure)
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
2013-01-22 05:20:28 +05:30
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) + &
dgdot_dtau(s,1)*lattice_Sslip(i,j,sLattice,myStructure)*lattice_Sslip(k,l,sLattice,myStructure) +&
dgdot_dtau(s,2)*lattice_Sslip(i,j,sLattice,myStructure)*lattice_Sslip(k,l,sLattice,myStructure) +&
dgdot_dtau(s,3)*lattice_Sslip(i,j,sLattice,myStructure)*nonSchmid_tensor(k,l,1) +&
dgdot_dtau(s,4)*lattice_Sslip(i,j,sLattice,myStructure)*nonSchmid_tensor(k,l,2)
enddo
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,*)
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_LpandItsTangent at el ip g ',el,ip,g
write(6,*)
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> gdot total / 1e-3',gdotTotal*1e3_pReal
write(6,'(a,/,3(12x,3(f12.7,1x),/))') '<< CONST >> Lp',Lp
endif
#endif
endsubroutine
!*********************************************************************
!* incremental change of microstructure *
!*********************************************************************
subroutine constitutive_nonlocal_deltaState(deltaState, state, Tstar_v, Temperature, g,ip,el)
use prec, only: pReal, &
pInt, &
p_vec
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use math, only: pi, &
math_mul6x6
use lattice, only: lattice_Sslip_v
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_ipVolume
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
!*** input/output variables
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: &
state ! current microstructural state
!*** output variables
type(p_vec), intent(out) :: deltaState ! change of state variables / microstructure
!*** local variables
integer(pInt) myInstance, & ! current instance of this plasticity
myStructure, & ! current lattice structure
ns, & ! short notation for the total number of active slip systems
c, & ! character of dislocation
t, & ! type of dislocation
s, & ! index of my current slip system
sLattice ! index of my current slip system according to lattice order
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),10) :: &
deltaRho, & ! density increment
deltaRhoRemobilization, & ! density increment by remobilization
deltaRhoDipole2SingleStress ! density increment by dipole dissociation (by stress change)
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
rhoSgl ! current single dislocation densities (positive/negative screw and edge without dipoles)
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
v ! dislocation glide velocity
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
tau, & ! current resolved shear stress
tauBack ! current back stress from pileups on same slip system
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),2) :: &
rhoDip, & ! current dipole dislocation densities (screw and edge dipoles)
dLower, & ! minimum stable dipole distance for edges and screws
dUpper, & ! current maximum stable dipole distance for edges and screws
dUpperOld, & ! old maximum stable dipole distance for edges and screws
deltaDUpper ! change in maximum stable dipole distance for edges and screws
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,*)
2012-05-30 13:11:22 +05:30
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_deltaState at el ip g ',el,ip,g
write(6,*)
endif
#endif
myInstance = phase_plasticityInstance(material_phase(g,ip,el))
myStructure = constitutive_nonlocal_structure(myInstance)
ns = constitutive_nonlocal_totalNslip(myInstance)
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
rhoSgl(s,t) = max(state(g,ip,el)%p((t-1_pInt)*ns+s), 0.0_pReal)
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt) &
rhoSgl(s,t) = state(g,ip,el)%p((t-1_pInt)*ns+s)
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
rhoDip(s,c) = max(state(g,ip,el)%p((7_pInt+c)*ns+s), 0.0_pReal)
tauBack = state(g,ip,el)%p(12_pInt*ns+1:13_pInt*ns)
forall (t = 1_pInt:4_pInt) &
v(1_pInt:ns,t) = state(g,ip,el)%p((12_pInt+t)*ns+1_pInt:(13_pInt+t)*ns)
forall (c = 1_pInt:2_pInt) &
dUpperOld(1_pInt:ns,c) = state(g,ip,el)%p((16_pInt+c)*ns+1_pInt:(17_pInt+c)*ns)
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(myInstance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(myInstance)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(myInstance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(myInstance)) &
rhoDip = 0.0_pReal
!****************************************************************************
!*** dislocation remobilization (bauschinger effect)
deltaRhoRemobilization = 0.0_pReal
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
if (rhoSgl(s,t+4_pInt) * v(s,t) < 0.0_pReal) then
deltaRhoRemobilization(s,t) = abs(rhoSgl(s,t+4_pInt))
rhoSgl(s,t) = rhoSgl(s,t) + abs(rhoSgl(s,t+4_pInt))
deltaRhoRemobilization(s,t+4_pInt) = - rhoSgl(s,t+4_pInt)
rhoSgl(s,t+4_pInt) = 0.0_pReal
endif
enddo
enddo
!****************************************************************************
!*** calculate dipole formation and dissociation by stress change
!*** calculate limits for stable dipole height
do s = 1_pInt,ns
sLattice = constitutive_nonlocal_slipSystemLattice(s,myInstance)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,myStructure)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = constitutive_nonlocal_minimumDipoleHeight(1:ns,1:2,myInstance)
dUpper(1:ns,1) = constitutive_nonlocal_Gmod(myInstance) * constitutive_nonlocal_burgers(1:ns,myInstance) &
/ (8.0_pReal * pi * (1.0_pReal - constitutive_nonlocal_nu(myInstance)) * abs(tau))
dUpper(1:ns,2) = constitutive_nonlocal_Gmod(myInstance) * constitutive_nonlocal_burgers(1:ns,myInstance) &
/ (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
dUpper = max(dUpper,dLower)
deltaDUpper = dUpper - dUpperOld
!*** dissociation by stress increase
deltaRhoDipole2SingleStress = 0.0_pReal
forall (c=1_pInt:2_pInt, s=1_pInt:ns, deltaDUpper(s,c) < 0.0_pReal) &
deltaRhoDipole2SingleStress(s,8_pInt+c) = rhoDip(s,c) * deltaDUpper(s,c) / (dUpperOld(s,c) - dLower(s,c))
forall (t=1_pInt:4_pInt) &
deltaRhoDipole2SingleStress(1_pInt:ns,t) = -0.5_pReal * deltaRhoDipole2SingleStress(1_pInt:ns,(t-1_pInt)/2_pInt+9_pInt)
!*** store new maximum dipole height in state
forall (c = 1_pInt:2_pInt) &
state(g,ip,el)%p((16_pInt+c)*ns+1_pInt:(17_pInt+c)*ns) = dUpper(1_pInt:ns,c)
!****************************************************************************
!*** assign the changes in the dislocation densities to deltaState
deltaRho = 0.0_pReal
deltaRho = deltaRhoRemobilization &
+ deltaRhoDipole2SingleStress
deltaState%p = reshape(deltaRho,(/10_pInt*ns/))
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation remobilization', deltaRhoRemobilization(1:ns,1:8)
2012-05-30 13:35:36 +05:30
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> dipole dissociation by stress increase', deltaRhoDipole2SingleStress
write(6,*)
endif
#endif
endsubroutine
!*********************************************************************
!* rate of change of microstructure *
!*********************************************************************
2012-11-30 00:14:00 +05:30
function constitutive_nonlocal_dotState(Tstar_v, Fe, Fp, Temperature, state, state0, timestep, subfrac, g,ip,el)
use prec, only: pReal, &
pInt, &
p_vec, &
DAMASK_NaN
use numerics, only: numerics_integrationMode, &
numerics_timeSyncing
use IO, only: IO_error
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use math, only: math_norm3, &
math_mul6x6, &
math_mul3x3, &
math_mul33x3, &
math_mul33x33, &
math_inv33, &
math_det33, &
math_transpose33, &
pi
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
mesh_maxNipNeighbors, &
mesh_ipNeighborhood, &
mesh_ipVolume, &
mesh_ipArea, &
mesh_ipAreaNormal, &
FE_NipNeighbors, &
FE_geomtype
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance, &
phase_localPlasticity, &
phase_plasticity
use lattice, only: lattice_Sslip_v, &
lattice_sd, &
lattice_st
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), intent(in) :: Temperature, & ! temperature
timestep ! substepped crystallite time increment
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
subfrac ! fraction of timestep at the beginning of the substepped crystallite time increment
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe, & ! elastic deformation gradient
Fp ! plastic deformation gradient
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state, & ! current microstructural state
state0 ! microstructural state at beginning of crystallite increment
!*** input/output variables
!*** output variables
real(pReal), dimension(constitutive_nonlocal_sizeDotState(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
constitutive_nonlocal_dotState ! evolution of state variables / microstructure
!*** local variables
integer(pInt) myInstance, & ! current instance of this plasticity
myStructure, & ! current lattice structure
ns, & ! short notation for the total number of active slip systems
c, & ! character of dislocation
n, & ! index of my current neighbor
neighboring_el, & ! element number of my neighbor
neighboring_ip, & ! integration point of my neighbor
neighboring_n, & ! neighbor index pointing to me when looking from my neighbor
opposite_neighbor, & ! index of my opposite neighbor
opposite_ip, & ! ip of my opposite neighbor
opposite_el, & ! element index of my opposite neighbor
opposite_n, & ! neighbor index pointing to me when looking from my opposite neighbor
t, & ! type of dislocation
topp, & ! type of dislocation with opposite sign to t
s, & ! index of my current slip system
sLattice, & ! index of my current slip system according to lattice order
deads
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),10) :: &
rhoDot, & ! density evolution
rhoDotMultiplication, & ! density evolution by multiplication
rhoDotFlux, & ! density evolution by flux
rhoDotSingle2DipoleGlide, & ! density evolution by dipole formation (by glide)
rhoDotAthermalAnnihilation, & ! density evolution by athermal annihilation
rhoDotThermalAnnihilation ! density evolution by thermal annihilation
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
rhoSgl, & ! current single dislocation densities (positive/negative screw and edge without dipoles)
rhoSglOriginal, &
rhoSgl0, & ! single dislocation densities at start of cryst inc (positive/negative screw and edge without dipoles)
rhoSglMe, & ! single dislocation densities of central ip (positive/negative screw and edge without dipoles)
neighboring_rhoSgl ! current single dislocation densities of neighboring ip (positive/negative screw and edge without dipoles)
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
v, & ! current dislocation glide velocity
v0, & ! dislocation glide velocity at start of cryst inc
vMe, & ! dislocation glide velocity of central ip
neighboring_v, & ! dislocation glide velocity of enighboring ip
gdot ! shear rates
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
rhoForest, & ! forest dislocation density
tauThreshold, & ! threshold shear stress
tau, & ! current resolved shear stress
tauBack, & ! current back stress from pileups on same slip system
vClimb, & ! climb velocity of edge dipoles
nSources
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),2) :: &
rhoDip, & ! current dipole dislocation densities (screw and edge dipoles)
rhoDipOriginal, &
dLower, & ! minimum stable dipole distance for edges and screws
dUpper ! current maximum stable dipole distance for edges and screws
real(pReal), dimension(3,constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
m ! direction of dislocation motion
real(pReal), dimension(3,3) :: my_F, & ! my total deformation gradient
neighboring_F, & ! total deformation gradient of my neighbor
my_Fe, & ! my elastic deformation gradient
neighboring_Fe, & ! elastic deformation gradient of my neighbor
Favg ! average total deformation gradient of me and my neighbor
real(pReal), dimension(3) :: normal_neighbor2me, & ! interface normal pointing from my neighbor to me in neighbor's lattice configuration
normal_neighbor2me_defConf, & ! interface normal pointing from my neighbor to me in shared deformed configuration
normal_me2neighbor, & ! interface normal pointing from me to my neighbor in my lattice configuration
normal_me2neighbor_defConf ! interface normal pointing from me to my neighbor in shared deformed configuration
real(pReal) area, & ! area of the current interface
transmissivity, & ! overall transmissivity of dislocation flux to neighboring material point
lineLength, & ! dislocation line length leaving the current interface
D, & ! self diffusion
rnd, &
meshlength
logical considerEnteringFlux, &
considerLeavingFlux
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_dotState at el ip g ',el,ip,g
write(6,*)
endif
#endif
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
myInstance = phase_plasticityInstance(material_phase(g,ip,el))
myStructure = constitutive_nonlocal_structure(myInstance)
ns = constitutive_nonlocal_totalNslip(myInstance)
tau = 0.0_pReal
gdot = 0.0_pReal
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
rhoSgl(s,t) = max(state(g,ip,el)%p((t-1_pInt)*ns+s), 0.0_pReal)
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt) &
rhoSgl(s,t) = state(g,ip,el)%p((t-1_pInt)*ns+s)
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
rhoDip(s,c) = max(state(g,ip,el)%p((7_pInt+c)*ns+s), 0.0_pReal)
rhoForest = state(g,ip,el)%p(10_pInt*ns+1:11_pInt*ns)
tauThreshold = state(g,ip,el)%p(11_pInt*ns+1_pInt:12_pInt*ns)
tauBack = state(g,ip,el)%p(12_pInt*ns+1:13_pInt*ns)
forall (t = 1_pInt:4_pInt) &
v(1_pInt:ns,t) = state(g,ip,el)%p((12_pInt+t)*ns+1_pInt:(13_pInt+t)*ns)
rhoSglOriginal = rhoSgl
rhoDipOriginal = rhoDip
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(myInstance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(myInstance)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(myInstance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(myInstance)) &
rhoDip = 0.0_pReal
!*** sanity check for timestep
if (timestep <= 0.0_pReal) then ! if illegal timestep...
constitutive_nonlocal_dotState = 0.0_pReal ! ...return without doing anything (-> zero dotState)
return
endif
!****************************************************************************
!*** Calculate shear rate
forall (t = 1_pInt:4_pInt) &
gdot(1_pInt:ns,t) = rhoSgl(1_pInt:ns,t) * constitutive_nonlocal_burgers(1:ns,myInstance) * v(1:ns,t)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> rho / 1/m^2', rhoSgl, rhoDip
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> gdot / 1/s',gdot
endif
#endif
!****************************************************************************
!*** calculate limits for stable dipole height
do s = 1_pInt,ns ! loop over slip systems
sLattice = constitutive_nonlocal_slipSystemLattice(s,myInstance)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,myStructure)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = constitutive_nonlocal_minimumDipoleHeight(1:ns,1:2,myInstance)
dUpper(1:ns,1) = constitutive_nonlocal_Gmod(myInstance) * constitutive_nonlocal_burgers(1:ns,myInstance) &
/ (8.0_pReal * pi * (1.0_pReal - constitutive_nonlocal_nu(myInstance)) * abs(tau))
dUpper(1:ns,2) = constitutive_nonlocal_Gmod(myInstance) * constitutive_nonlocal_burgers(1:ns,myInstance) &
/ (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
dUpper = max(dUpper,dLower)
!****************************************************************************
!*** calculate dislocation multiplication
rhoDotMultiplication = 0.0_pReal
if (constitutive_nonlocal_probabilisticMultiplication(myInstance)) then
meshlength = mesh_ipVolume(ip,el)**0.333_pReal
where(sum(rhoSgl(1:ns,1:4),2) > 0.0_pReal)
nSources = (sum(rhoSgl(1:ns,1:2),2) * constitutive_nonlocal_fEdgeMultiplication(myInstance) + sum(rhoSgl(1:ns,3:4),2)) &
/ sum(rhoSgl(1:ns,1:4),2) * meshlength / constitutive_nonlocal_lambda0(1:ns,myInstance) * sqrt(rhoForest(1:ns))
elsewhere
nSources = meshlength / constitutive_nonlocal_lambda0(1:ns,myInstance) * sqrt(rhoForest(1:ns))
endwhere
do s = 1_pInt,ns
if (nSources(s) < 1.0_pReal) then
if (constitutive_nonlocal_sourceProbability(s,g,ip,el) > 1.0_pReal) then
call random_number(rnd)
constitutive_nonlocal_sourceProbability(s,g,ip,el) = rnd
!$OMP FLUSH(constitutive_nonlocal_sourceProbability)
endif
if (constitutive_nonlocal_sourceProbability(s,g,ip,el) > 1.0_pReal - nSources(s)) then
rhoDotMultiplication(s,1:4) = sum(rhoSglOriginal(s,1:4) * abs(v(s,1:4))) / meshlength
endif
else
constitutive_nonlocal_sourceProbability(s,g,ip,el) = 2.0_pReal
rhoDotMultiplication(s,1:4) = &
(sum(abs(gdot(s,1:2))) * constitutive_nonlocal_fEdgeMultiplication(myInstance) + sum(abs(gdot(s,3:4)))) &
/ constitutive_nonlocal_burgers(s,myInstance) * sqrt(rhoForest(s)) / constitutive_nonlocal_lambda0(s,myInstance)
endif
enddo
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,4(12x,12(f12.5,1x),/))') '<< CONST >> sources', nSources
write(6,*)
endif
#endif
else
rhoDotMultiplication(1:ns,1:4) = spread( &
(sum(abs(gdot(1:ns,1:2)),2) * constitutive_nonlocal_fEdgeMultiplication(myInstance) + sum(abs(gdot(1:ns,3:4)),2)) &
* sqrt(rhoForest(1:ns)) / constitutive_nonlocal_lambda0(1:ns,myInstance) / constitutive_nonlocal_burgers(1:ns,myInstance), 2, 4)
endif
!****************************************************************************
!*** calculate dislocation fluxes (only for nonlocal plasticity)
rhoDotFlux = 0.0_pReal
if (.not. phase_localPlasticity(material_phase(g,ip,el))) then ! only for nonlocal plasticity
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
.and. constitutive_nonlocal_CFLfactor(myInstance) * abs(v) * timestep &
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt) then
write(6,'(a,i5,a,i2)') '<< CONST >> CFL condition not fullfilled at el ',el,' ip ',ip
2012-09-05 16:49:46 +05:30
write(6,'(a,e10.3,a,e10.3)') '<< CONST >> velocity is at ', &
maxval(abs(v), abs(gdot) > 0.0_pReal .and. constitutive_nonlocal_CFLfactor(myInstance) * abs(v) * timestep &
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el))), &
' at a timestep of ',timestep
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
endif
#endif
constitutive_nonlocal_dotState = DAMASK_NaN ! -> return NaN and, hence, enforce cutback
return
endif
if (numerics_timeSyncing) then
forall (t = 1_pInt:4_pInt) &
v0(1_pInt:ns,t) = state0(g,ip,el)%p((12_pInt+t)*ns+1_pInt:(13_pInt+t)*ns)
forall (t = 1_pInt:8_pInt) &
rhoSgl0(1_pInt:ns,t) = state0(g,ip,el)%p((t-1_pInt)*ns+1_pInt:t*ns)
where (abs(rhoSgl0) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(myInstance) &
.or. abs(rhoSgl0) < constitutive_nonlocal_significantRho(myInstance)) &
rhoSgl0 = 0.0_pReal
endif
!*** be aware of the definition of lattice_st = lattice_sd x lattice_sn !!!
!*** opposite sign to our p vector in the (s,p,n) triplet !!!
m(1:3,1:ns,1) = lattice_sd(1:3, constitutive_nonlocal_slipSystemLattice(1:ns,myInstance), myStructure)
m(1:3,1:ns,2) = -lattice_sd(1:3, constitutive_nonlocal_slipSystemLattice(1:ns,myInstance), myStructure)
m(1:3,1:ns,3) = -lattice_st(1:3, constitutive_nonlocal_slipSystemLattice(1:ns,myInstance), myStructure)
m(1:3,1:ns,4) = lattice_st(1:3, constitutive_nonlocal_slipSystemLattice(1:ns,myInstance), myStructure)
my_Fe = Fe(1:3,1:3,g,ip,el)
my_F = math_mul33x33(my_Fe, Fp(1:3,1:3,g,ip,el))
do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,el))) ! loop through my neighbors
neighboring_el = mesh_ipNeighborhood(1,n,ip,el)
neighboring_ip = mesh_ipNeighborhood(2,n,ip,el)
neighboring_n = mesh_ipNeighborhood(3,n,ip,el)
opposite_neighbor = n + mod(n,2_pInt) - mod(n+1_pInt,2_pInt)
opposite_el = mesh_ipNeighborhood(1,opposite_neighbor,ip,el)
opposite_ip = mesh_ipNeighborhood(2,opposite_neighbor,ip,el)
opposite_n = mesh_ipNeighborhood(3,opposite_neighbor,ip,el)
if (neighboring_n > 0_pInt) then ! if neighbor exists, average deformation gradient
neighboring_Fe = Fe(1:3,1:3,g,neighboring_ip,neighboring_el)
neighboring_F = math_mul33x33(neighboring_Fe, Fp(1:3,1:3,g,neighboring_ip,neighboring_el))
Favg = 0.5_pReal * (my_F + neighboring_F)
else ! if no neighbor, take my value as average
Favg = my_F
endif
!* FLUX FROM MY NEIGHBOR TO ME
!* This is only considered, if I have a neighbor of nonlocal plasticity (also nonlocal constitutive law with local properties) that is at least a little bit compatible.
!* If it's not at all compatible, no flux is arriving, because everything is dammed in front of my neighbor's interface.
!* The entering flux from my neighbor will be distributed on my slip systems according to the compatibility
considerEnteringFlux = .false.
neighboring_v = 0.0_pReal ! needed for check of sign change in flux density below
neighboring_rhoSgl = 0.0_pReal
if (neighboring_n > 0_pInt) then
if (phase_plasticity(material_phase(1,neighboring_ip,neighboring_el)) == constitutive_nonlocal_label &
.and. any(constitutive_nonlocal_compatibility(:,:,:,n,ip,el) > 0.0_pReal)) &
considerEnteringFlux = .true.
endif
if (considerEnteringFlux) then
if(numerics_timeSyncing .and. (subfrac(g,neighboring_ip,neighboring_el) /= subfrac(g,ip,el))) then ! for timesyncing: in case of a timestep at the interface we have to use "state0" to make sure that fluxes n both sides are equal
forall (t = 1_pInt:4_pInt) &
neighboring_v(1_pInt:ns,t) = state0(g,neighboring_ip,neighboring_el)%p((12_pInt+t)*ns+1_pInt:(13_pInt+t)*ns)
forall (t = 1_pInt:8_pInt) &
neighboring_rhoSgl(1_pInt:ns,t) = state0(g,neighboring_ip,neighboring_el)%p((t-1_pInt)*ns+1_pInt:t*ns)
else
forall (t = 1_pInt:4_pInt) &
neighboring_v(1_pInt:ns,t) = state(g,neighboring_ip,neighboring_el)%p((12_pInt+t)*ns+1_pInt:(13_pInt+t)*ns)
forall (t = 1_pInt:8_pInt) &
neighboring_rhoSgl(1_pInt:ns,t) = state(g,neighboring_ip,neighboring_el)%p((t-1_pInt)*ns+1_pInt:t*ns)
endif
where (abs(neighboring_rhoSgl) * mesh_ipVolume(neighboring_ip,neighboring_el) ** 0.667_pReal &
< constitutive_nonlocal_significantN(myInstance) &
.or. abs(neighboring_rhoSgl) < constitutive_nonlocal_significantRho(myInstance)) &
neighboring_rhoSgl = 0.0_pReal
normal_neighbor2me_defConf = math_det33(Favg) &
* math_mul33x3(math_inv33(transpose(Favg)), mesh_ipAreaNormal(1:3,neighboring_n,neighboring_ip,neighboring_el)) ! calculate the normal of the interface in (average) deformed configuration (now pointing from my neighbor to me!!!)
normal_neighbor2me = math_mul33x3(transpose(neighboring_Fe), normal_neighbor2me_defConf) / math_det33(neighboring_Fe) ! interface normal in the lattice configuration of my neighbor
area = mesh_ipArea(neighboring_n,neighboring_ip,neighboring_el) * math_norm3(normal_neighbor2me)
normal_neighbor2me = normal_neighbor2me / math_norm3(normal_neighbor2me) ! normalize the surface normal to unit length
do s = 1_pInt,ns
do t = 1_pInt,4_pInt
c = (t + 1_pInt) / 2
topp = t + mod(t,2_pInt) - mod(t+1_pInt,2_pInt)
if (neighboring_v(s,t) * math_mul3x3(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
.and. v(s,t) * neighboring_v(s,t) >= 0.0_pReal ) then ! ... only if no sign change in flux density
do deads = 0_pInt,4_pInt,4_pInt
lineLength = abs(neighboring_rhoSgl(s,t+deads)) * neighboring_v(s,t) &
* math_mul3x3(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
where (constitutive_nonlocal_compatibility(c,1_pInt:ns,s,n,ip,el) > 0.0_pReal) & ! positive compatibility...
rhoDotFlux(1_pInt:ns,t) = rhoDotFlux(1_pInt:ns,t) + lineLength / mesh_ipVolume(ip,el) & ! ... transferring to equally signed mobile dislocation type
* constitutive_nonlocal_compatibility(c,1_pInt:ns,s,n,ip,el) ** 2.0_pReal
where (constitutive_nonlocal_compatibility(c,1_pInt:ns,s,n,ip,el) < 0.0_pReal) & ! ..negative compatibility...
rhoDotFlux(1_pInt:ns,topp) = rhoDotFlux(1_pInt:ns,topp) + lineLength / mesh_ipVolume(ip,el) & ! ... transferring to opposite signed mobile dislocation type
* constitutive_nonlocal_compatibility(c,1_pInt:ns,s,n,ip,el) ** 2.0_pReal
enddo
endif
enddo
enddo
endif
!* FLUX FROM ME TO MY NEIGHBOR
!* This is not considered, if my opposite neighbor has a different constitutive law than nonlocal (still considered for nonlocal law with lcal properties).
!* Then, we assume, that the opposite(!) neighbor sends an equal amount of dislocations to me.
!* So the net flux in the direction of my neighbor is equal to zero:
!* leaving flux to neighbor == entering flux from opposite neighbor
!* In case of reduced transmissivity, part of the leaving flux is stored as dead dislocation density.
!* That means for an interface of zero transmissivity the leaving flux is fully converted to dead dislocations.
considerLeavingFlux = .true.
if (opposite_n > 0_pInt) then
if (phase_plasticity(material_phase(1,opposite_ip,opposite_el)) /= constitutive_nonlocal_label) &
considerLeavingFlux = .false.
endif
if (considerLeavingFlux) then
!* timeSyncing mode: If the central ip has zero subfraction, always use "state0". This is needed in case of
!* a synchronization step for the central ip, because then "state" contains the values at the end of the
!* previously converged full time step. Also, if either me or my neighbor has zero subfraction, we have to
!* use "state0" to make sure that fluxes on both sides of the (potential) timestep are equal.
rhoSglMe = rhoSgl
vMe = v
if(numerics_timeSyncing) then
if (subfrac(g,ip,el) == 0.0_pReal) then
rhoSglMe = rhoSgl0
vMe = v0
elseif (neighboring_n > 0_pInt) then
if (subfrac(g,neighboring_ip,neighboring_el) == 0.0_pReal) then
rhoSglMe = rhoSgl0
vMe = v0
endif
endif
endif
normal_me2neighbor_defConf = math_det33(Favg) * math_mul33x3(math_inv33(math_transpose33(Favg)), &
mesh_ipAreaNormal(1:3,n,ip,el)) ! calculate the normal of the interface in (average) deformed configuration (pointing from me to my neighbor!!!)
normal_me2neighbor = math_mul33x3(math_transpose33(my_Fe), normal_me2neighbor_defConf) / math_det33(my_Fe) ! interface normal in my lattice configuration
area = mesh_ipArea(n,ip,el) * math_norm3(normal_me2neighbor)
normal_me2neighbor = normal_me2neighbor / math_norm3(normal_me2neighbor) ! normalize the surface normal to unit length
do s = 1_pInt,ns
do t = 1_pInt,4_pInt
c = (t + 1_pInt) / 2_pInt
if (vMe(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
if (vMe(s,t) * neighboring_v(s,t) >= 0.0_pReal) then ! no sign change in flux density
transmissivity = sum(constitutive_nonlocal_compatibility(c,1_pInt:ns,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
transmissivity = 0.0_pReal
endif
lineLength = rhoSglMe(s,t) * vMe(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of mobiles that wants to leave through this interface
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) ! subtract dislocation flux from current type
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) + lineLength / mesh_ipVolume(ip,el) * (1.0_pReal - transmissivity) &
* sign(1.0_pReal, vMe(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
lineLength = rhoSglMe(s,t+4_pInt) * vMe(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of deads that wants to leave through this interface
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) - lineLength / mesh_ipVolume(ip,el) * transmissivity ! dead dislocations leaving through this interface
endif
enddo
enddo
endif
enddo ! neighbor loop
endif
!****************************************************************************
!*** calculate dipole formation and annihilation
!*** formation by glide
do c = 1_pInt,2_pInt
rhoDotSingle2DipoleGlide(1:ns,2*c-1) = -2.0_pReal * dUpper(1:ns,c) / constitutive_nonlocal_burgers(1:ns,myInstance) &
* (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(1:ns,2*c) = -2.0_pReal * dUpper(1:ns,c) / constitutive_nonlocal_burgers(1:ns,myInstance) &
* (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c))) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(1:ns,2*c+3) = -2.0_pReal * dUpper(1:ns,c) / constitutive_nonlocal_burgers(1:ns,myInstance) &
* rhoSgl(1:ns,2*c+3) * abs(gdot(1:ns,2*c)) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(1:ns,2*c+4) = -2.0_pReal * dUpper(1:ns,c) / constitutive_nonlocal_burgers(1:ns,myInstance) &
* rhoSgl(1:ns,2*c+4) * abs(gdot(1:ns,2*c-1)) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(1:ns,c+8) = - rhoDotSingle2DipoleGlide(1:ns,2*c-1) - rhoDotSingle2DipoleGlide(1:ns,2*c) &
+ abs(rhoDotSingle2DipoleGlide(1:ns,2*c+3)) + abs(rhoDotSingle2DipoleGlide(1:ns,2*c+4))
enddo
!*** athermal annihilation
rhoDotAthermalAnnihilation = 0.0_pReal
forall (c=1_pInt:2_pInt) &
rhoDotAthermalAnnihilation(1:ns,c+8_pInt) = -2.0_pReal * dLower(1:ns,c) / constitutive_nonlocal_burgers(1:ns,myInstance) &
* ( 2.0_pReal * (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) + rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1))) & ! was single hitting single
+ 2.0_pReal * (abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c)) + abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) & ! was single hitting immobile single or was immobile single hit by single
+ rhoDip(1:ns,c) * (abs(gdot(1:ns,2*c-1)) + abs(gdot(1:ns,2*c)))) ! single knocks dipole constituent
! annihilated screw dipoles leave edge jogs behind on the colinear system
if (myStructure == 1_pInt) then ! only fcc
forall (s = 1:ns, constitutive_nonlocal_colinearSystem(s,myInstance) > 0_pInt) &
rhoDotAthermalAnnihilation(constitutive_nonlocal_colinearSystem(s,myInstance),1:2) = -rhoDotAthermalAnnihilation(s,10) &
* 0.25_pReal * sqrt(rhoForest(s)) * (dUpper(s,2) + dLower(s,2)) &
* constitutive_nonlocal_edgeJogFactor(myInstance)
endif
2012-11-17 19:20:20 +05:30
!*** thermally activated annihilation of edge dipoles by climb
rhoDotThermalAnnihilation = 0.0_pReal
D = constitutive_nonlocal_Dsd0(myInstance) * exp(-constitutive_nonlocal_Qsd(myInstance) / (kB * Temperature))
vClimb = constitutive_nonlocal_atomicVolume(myInstance) * D / ( kB * Temperature ) &
* constitutive_nonlocal_Gmod(myInstance) / ( 2.0_pReal * pi * (1.0_pReal-constitutive_nonlocal_nu(myInstance)) ) &
* 2.0_pReal / ( dUpper(1:ns,1) + dLower(1:ns,1) )
forall (s = 1_pInt:ns, dUpper(s,1) > dLower(s,1)) &
rhoDotThermalAnnihilation(s,9) = max(- 4.0_pReal * rhoDip(s,1) * vClimb(s) / (dUpper(s,1) - dLower(s,1)), &
- rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) - rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
!****************************************************************************
!*** assign the rates of dislocation densities to my dotState
!*** if evolution rates lead to negative densities, a cutback is enforced
rhoDot = 0.0_pReal
rhoDot = rhoDotFlux &
+ rhoDotMultiplication &
+ rhoDotSingle2DipoleGlide &
+ rhoDotAthermalAnnihilation &
+ rhoDotThermalAnnihilation
if (numerics_integrationMode == 1_pInt) then ! save rates for output if in central integration mode
constitutive_nonlocal_rhoDotFlux(1:ns,1:8,g,ip,el) = rhoDotFlux(1:ns,1:8)
constitutive_nonlocal_rhoDotMultiplication(1:ns,1:2,g,ip,el) = rhoDotMultiplication(1:ns,[1,3])
constitutive_nonlocal_rhoDotSingle2DipoleGlide(1:ns,1:2,g,ip,el) = rhoDotSingle2DipoleGlide(1:ns,9:10)
constitutive_nonlocal_rhoDotAthermalAnnihilation(1:ns,1:2,g,ip,el) = rhoDotAthermalAnnihilation(1:ns,9:10)
constitutive_nonlocal_rhoDotThermalAnnihilation(1:ns,1:2,g,ip,el) = rhoDotThermalAnnihilation(1:ns,9:10)
constitutive_nonlocal_rhoDotEdgeJogs(1:ns,g,ip,el) = 2.0_pReal * rhoDotThermalAnnihilation(1:ns,1)
endif
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == g)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> dislocation multiplication', rhoDotMultiplication(1:ns,1:4) * timestep
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation flux', rhoDotFlux(1:ns,1:8) * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> dipole formation by glide', rhoDotSingle2DipoleGlide * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> athermal dipole annihilation', &
rhoDotAthermalAnnihilation * timestep
2012-11-17 19:20:20 +05:30
write(6,'(a,/,2(12x,12(e12.5,1x),/))') '<< CONST >> thermally activated dipole annihilation', &
rhoDotThermalAnnihilation(1:ns,9:10) * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> total density change', rhoDot * timestep
write(6,'(a,/,10(12x,12(f12.5,1x),/))') '<< CONST >> relative density change', &
rhoDot(1:ns,1:8) * timestep / (abs(rhoSglOriginal)+1.0e-10), &
rhoDot(1:ns,9:10) * timestep / (rhoDipOriginal+1.0e-10)
write(6,*)
endif
#endif
if ( any(rhoSglOriginal(1:ns,1:4) + rhoDot(1:ns,1:4) * timestep < -constitutive_nonlocal_aTolRho(myInstance)) &
.or. any(rhoDipOriginal(1:ns,1:2) + rhoDot(1:ns,9:10) * timestep < -constitutive_nonlocal_aTolRho(myInstance))) then
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt) then
write(6,'(a,i5,a,i2)') '<< CONST >> evolution rate leads to negative density at el ',el,' ip ',ip
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
endif
#endif
constitutive_nonlocal_dotState = DAMASK_NaN
return
else
constitutive_nonlocal_dotState(1:10_pInt*ns) = reshape(rhoDot,(/10_pInt*ns/))
endif
endfunction
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!*********************************************************************
!* COMPATIBILITY UPDATE *
!* Compatibility is defined as normalized product of signed cosine *
!* of the angle between the slip plane normals and signed cosine of *
!* the angle between the slip directions. Only the largest values *
!* that sum up to a total of 1 are considered, all others are set to *
!* zero. *
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!*********************************************************************
subroutine constitutive_nonlocal_updateCompatibility(orientation,i,e)
use prec, only: pReal, &
pInt
use math, only: math_QuaternionDisorientation, &
math_mul3x3, &
math_qRot
use material, only: material_phase, &
material_texture, &
phase_localPlasticity, &
phase_plasticityInstance, &
homogenization_maxNgrains
use mesh, only: mesh_element, &
mesh_ipNeighborhood, &
mesh_maxNips, &
mesh_NcpElems, &
FE_NipNeighbors, &
FE_geomtype
use lattice, only: lattice_sn, &
lattice_sd
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
implicit none
!* input variables
integer(pInt), intent(in) :: i, & ! ip index
e ! element index
real(pReal), dimension(4,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
orientation ! crystal orientation in quaternions
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!* output variables
!* local variables
integer(pInt) Nneighbors, & ! number of neighbors
n, & ! neighbor index
neighboring_e, & ! element index of my neighbor
neighboring_i, & ! integration point index of my neighbor
my_phase, &
neighboring_phase, &
my_texture, &
neighboring_texture, &
my_structure, & ! lattice structure
my_instance, & ! instance of plasticity
ns, & ! number of active slip systems
s1, & ! slip system index (me)
s2 ! slip system index (my neighbor)
real(pReal), dimension(4) :: absoluteMisorientation ! absolute misorientation (without symmetry) between me and my neighbor
real(pReal), dimension(2,constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(1,i,e))),&
constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(1,i,e))),&
FE_NipNeighbors(FE_geomtype(mesh_element(2,e)))) :: &
compatibility ! compatibility for current element and ip
real(pReal), dimension(3,constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(1,i,e)))) :: &
slipNormal, &
slipDirection
real(pReal) compatibilitySum, &
thresholdValue, &
nThresholdValues
logical, dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(1,i,e)))) :: &
belowThreshold
Nneighbors = FE_NipNeighbors(FE_geomtype(mesh_element(2,e)))
my_phase = material_phase(1,i,e)
my_texture = material_texture(1,i,e)
my_instance = phase_plasticityInstance(my_phase)
my_structure = constitutive_nonlocal_structure(my_instance)
ns = constitutive_nonlocal_totalNslip(my_instance)
slipNormal(1:3,1:ns) = lattice_sn(1:3, constitutive_nonlocal_slipSystemLattice(1:ns,my_instance), my_structure)
slipDirection(1:3,1:ns) = lattice_sd(1:3, constitutive_nonlocal_slipSystemLattice(1:ns,my_instance), my_structure)
!*** start out fully compatible
compatibility = 0.0_pReal
forall(s1 = 1_pInt:ns) &
compatibility(1:2,s1,s1,1:Nneighbors) = 1.0_pReal
!*** Loop thrugh neighbors and check whether there is any compatibility.
do n = 1_pInt,Nneighbors
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
!* FREE SURFACE
!* Set surface transmissivity to the value specified in the material.config
if (neighboring_e <= 0_pInt .or. neighboring_i <= 0_pInt) then
forall(s1 = 1_pInt:ns) &
compatibility(1:2,s1,s1,n) = sqrt(constitutive_nonlocal_surfaceTransmissivity(my_instance))
cycle
endif
!* PHASE BOUNDARY
!* If we encounter a different nonlocal "cpfem" phase at the neighbor,
!* we consider this to be a real "physical" phase boundary, so completely incompatible.
!* If one of the two "CPFEM" phases has a local plasticity law,
!* we do not consider this to be a phase boundary, so completely compatible.
neighboring_phase = material_phase(1,neighboring_i,neighboring_e)
if (neighboring_phase /= my_phase) then
if (.not. phase_localPlasticity(neighboring_phase) .and. .not. phase_localPlasticity(my_phase)) then
forall(s1 = 1_pInt:ns) &
compatibility(1:2,s1,s1,n) = 0.0_pReal ! = sqrt(0.0)
endif
cycle
endif
!* GRAIN BOUNDARY !
!* fixed transmissivity for adjacent ips with different texture (only if explicitly given in material.config)
if (constitutive_nonlocal_grainboundaryTransmissivity(my_instance) >= 0.0_pReal) then
neighboring_texture = material_texture(1,neighboring_i,neighboring_e)
if (neighboring_texture /= my_texture) then
if (.not. phase_localPlasticity(neighboring_phase)) then
forall(s1 = 1_pInt:ns) &
compatibility(1:2,s1,s1,n) = sqrt(constitutive_nonlocal_grainboundaryTransmissivity(my_instance))
endif
cycle
endif
!* GRAIN BOUNDARY ?
!* Compatibility defined by relative orientation of slip systems:
!* The compatibility value is defined as the product of the slip normal projection and the slip direction projection.
!* Its sign is always positive for screws, for edges it has the same sign as the slip normal projection.
!* Since the sum for each slip system can easily exceed one (which would result in a transmissivity larger than one),
!* only values above or equal to a certain threshold value are considered. This threshold value is chosen, such that
!* the number of compatible slip systems is minimized with the sum of the original compatibility values exceeding one.
!* Finally the smallest compatibility value is decreased until the sum is exactly equal to one.
!* All values below the threshold are set to zero.
else
absoluteMisorientation = math_QuaternionDisorientation(orientation(1:4,1,i,e), &
orientation(1:4,1,neighboring_i,neighboring_e), &
0_pInt) ! no symmetry
do s1 = 1_pInt,ns ! my slip systems
do s2 = 1_pInt,ns ! my neighbor's slip systems
compatibility(1,s2,s1,n) = math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2))) &
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
compatibility(2,s2,s1,n) = abs(math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2)))) &
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
enddo
compatibilitySum = 0.0_pReal
belowThreshold = .true.
do while (compatibilitySum < 1.0_pReal .and. any(belowThreshold(1:ns)))
thresholdValue = maxval(compatibility(2,1:ns,s1,n), belowThreshold(1:ns)) ! screws always positive
nThresholdValues = real(count(compatibility(2,1:ns,s1,n) == thresholdValue),pReal)
where (compatibility(2,1:ns,s1,n) >= thresholdValue) &
belowThreshold(1:ns) = .false.
if (compatibilitySum + thresholdValue * nThresholdValues > 1.0_pReal) &
where (abs(compatibility(1:2,1:ns,s1,n)) == thresholdValue) &
compatibility(1:2,1:ns,s1,n) = sign((1.0_pReal - compatibilitySum) / nThresholdValues, compatibility(1:2,1:ns,s1,n))
compatibilitySum = compatibilitySum + nThresholdValues * thresholdValue
enddo
where (belowThreshold(1:ns)) compatibility(1,1:ns,s1,n) = 0.0_pReal
where (belowThreshold(1:ns)) compatibility(2,1:ns,s1,n) = 0.0_pReal
enddo ! my slip systems cycle
endif
enddo ! neighbor cycle
constitutive_nonlocal_compatibility(1:2,1:ns,1:ns,1:Nneighbors,i,e) = compatibility
endsubroutine
!*********************************************************************
!* rate of change of temperature *
!*********************************************************************
pure function constitutive_nonlocal_dotTemperature(Tstar_v,Temperature,state,g,ip,el)
use prec, only: pReal, &
pInt, &
p_vec
use mesh, only: mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_maxNgrains
implicit none
!* input variables
integer(pInt), intent(in) :: g, & ! current grain ID
ip, & ! current integration point
el ! current element
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola-Kirchhoff stress in Mandel notation
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state ! microstructural state
!* output variables
real(pReal) constitutive_nonlocal_dotTemperature ! evolution of Temperature
!* local variables
constitutive_nonlocal_dotTemperature = 0.0_pReal
endfunction
!*********************************************************************
!* calculates quantities characterizing the microstructure *
!*********************************************************************
function constitutive_nonlocal_dislocationstress(state, Fe, g, ip, el)
use prec, only: pReal, &
pInt, &
p_vec
use math, only: math_mul33x33, &
math_mul33x3, &
math_invert33, &
math_transpose33, &
pi
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
mesh_node0, &
mesh_cellCenterCoordinates, &
mesh_ipVolume, &
mesh_periodicSurface, &
FE_Nips, &
FE_geomtype
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_localPlasticity, &
phase_plasticityInstance
implicit none
!*** input variables
integer(pInt), intent(in) :: g, & ! current grain ID
ip, & ! current integration point
el ! current element
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe ! elastic deformation gradient
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state ! microstructural state
!*** input/output variables
!*** output variables
real(pReal), dimension(3,3) :: constitutive_nonlocal_dislocationstress
!*** local variables
integer(pInt) neighboring_el, & ! element number of neighboring material point
neighboring_ip, & ! integration point of neighboring material point
instance, & ! my instance of this plasticity
neighboring_instance, & ! instance of this plasticity of neighboring material point
latticeStruct, & ! my lattice structure
neighboring_latticeStruct, & ! lattice structure of neighboring material point
phase, &
neighboring_phase, &
ns, & ! total number of active slip systems at my material point
neighboring_ns, & ! total number of active slip systems at neighboring material point
c, & ! index of dilsocation character (edge, screw)
s, & ! slip system index
t, & ! index of dilsocation type (e+, e-, s+, s-, used e+, used e-, used s+, used s-)
dir, &
deltaX, deltaY, deltaZ, &
side, &
j
integer(pInt), dimension(2,3) :: periodicImages
real(pReal) nu, & ! poisson's ratio
x, y, z, & ! coordinates of connection vector in neighboring lattice frame
xsquare, ysquare, zsquare, & ! squares of respective coordinates
distance, & ! length of connection vector
segmentLength, & ! segment length of dislocations
lambda, &
R, Rsquare, Rcube, &
denominator, &
flipSign, &
neighboring_ipVolumeSideLength, &
detFe
real(pReal), dimension(3) :: connection, & ! connection vector between me and my neighbor in the deformed configuration
connection_neighboringLattice, & ! connection vector between me and my neighbor in the lattice configuration of my neighbor
connection_neighboringSlip, & ! connection vector between me and my neighbor in the slip system frame of my neighbor
maxCoord, minCoord, &
meshSize, &
coords, & ! x,y,z coordinates of cell center of ip volume
neighboring_coords ! x,y,z coordinates of cell center of neighboring ip volume
real(pReal), dimension(3,3) :: sigma, & ! dislocation stress for one slip system in neighboring material point's slip system frame
Tdislo_neighboringLattice, & ! dislocation stress as 2nd Piola-Kirchhoff stress at neighboring material point
invFe, & ! inverse of my elastic deformation gradient
neighboring_invFe, &
neighboringLattice2myLattice ! mapping from neighboring MPs lattice configuration to my lattice configuration
real(pReal), dimension(2,2,maxval(constitutive_nonlocal_totalNslip)) :: &
neighboring_rhoExcess ! excess density at neighboring material point (edge/screw,mobile/dead,slipsystem)
real(pReal), dimension(2,maxval(constitutive_nonlocal_totalNslip)) :: &
rhoExcessDead
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
rhoSgl ! single dislocation density (edge+, edge-, screw+, screw-, used edge+, used edge-, used screw+, used screw-)
logical inversionError
phase = material_phase(g,ip,el)
instance = phase_plasticityInstance(phase)
latticeStruct = constitutive_nonlocal_structure(instance)
ns = constitutive_nonlocal_totalNslip(instance)
!*** get basic states
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
rhoSgl(s,t) = max(state(g,ip,el)%p((t-1_pInt)*ns+s), 0.0_pReal) ! ensure positive single mobile densities
forall (t = 5_pInt:8_pInt) &
rhoSgl(1:ns,t) = state(g,ip,el)%p((t-1_pInt)*ns+1_pInt:t*ns)
!*** calculate the dislocation stress of the neighboring excess dislocation densities
!*** zero for material points of local plasticity
constitutive_nonlocal_dislocationstress = 0.0_pReal
if (.not. phase_localPlasticity(phase)) then
call math_invert33(Fe(1:3,1:3,g,ip,el), invFe, detFe, inversionError)
! if (inversionError) then
! return
! endif
!* in case of periodic surfaces we have to find out how many periodic images in each direction we need
do dir = 1_pInt,3_pInt
maxCoord(dir) = maxval(mesh_node0(dir,:))
minCoord(dir) = minval(mesh_node0(dir,:))
enddo
meshSize = maxCoord - minCoord
coords = mesh_cellCenterCoordinates(ip,el)
periodicImages = 0_pInt
do dir = 1_pInt,3_pInt
if (mesh_periodicSurface(dir)) then
periodicImages(1,dir) = floor((coords(dir) - constitutive_nonlocal_R(instance) - minCoord(dir)) / meshSize(dir), pInt)
periodicImages(2,dir) = ceiling((coords(dir) + constitutive_nonlocal_R(instance) - maxCoord(dir)) / meshSize(dir), pInt)
endif
enddo
!* loop through all material points (also through their periodic images if present),
!* but only consider nonlocal neighbors within a certain cutoff radius R
do neighboring_el = 1_pInt,mesh_NcpElems
ipLoop: do neighboring_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighboring_el)))
neighboring_phase = material_phase(g,neighboring_ip,neighboring_el)
if (phase_localPlasticity(neighboring_phase)) then
cycle
endif
neighboring_instance = phase_plasticityInstance(neighboring_phase)
neighboring_latticeStruct = constitutive_nonlocal_structure(neighboring_instance)
neighboring_ns = constitutive_nonlocal_totalNslip(neighboring_instance)
call math_invert33(Fe(1:3,1:3,1,neighboring_ip,neighboring_el), neighboring_invFe, detFe, inversionError)
! if (inversionError) then
! return
! endif
neighboring_ipVolumeSideLength = mesh_ipVolume(neighboring_ip,neighboring_el) ** (1.0_pReal/3.0_pReal) ! reference volume used here
forall (s = 1_pInt:neighboring_ns, c = 1_pInt:2_pInt) &
neighboring_rhoExcess(c,1,s) = state(g,neighboring_ip,neighboring_el)%p((2_pInt*c-2_pInt)*neighboring_ns+s) & ! positive mobiles
- state(g,neighboring_ip,neighboring_el)%p((2_pInt*c-1_pInt)*neighboring_ns+s) ! negative mobiles
forall (s = 1_pInt:neighboring_ns, c = 1_pInt:2_pInt) &
neighboring_rhoExcess(c,2,s) = abs(state(g,neighboring_ip,neighboring_el)%p((2_pInt*c+2_pInt)*neighboring_ns+s)) & ! positive deads
- abs(state(g,neighboring_ip,neighboring_el)%p((2_pInt*c+3_pInt)*neighboring_ns+s)) ! negative deads
nu = constitutive_nonlocal_nu(neighboring_instance)
Tdislo_neighboringLattice = 0.0_pReal
do deltaX = periodicImages(1,1),periodicImages(2,1)
do deltaY = periodicImages(1,2),periodicImages(2,2)
do deltaZ = periodicImages(1,3),periodicImages(2,3)
!* regular case
if (neighboring_el /= el .or. neighboring_ip /= ip &
.or. deltaX /= 0_pInt .or. deltaY /= 0_pInt .or. deltaZ /= 0_pInt) then
neighboring_coords = mesh_cellCenterCoordinates(neighboring_ip,neighboring_el) &
+ (/real(deltaX,pReal), real(deltaY,pReal), real(deltaZ,pReal)/) * meshSize
connection = neighboring_coords - coords
distance = sqrt(sum(connection * connection))
if (distance > constitutive_nonlocal_R(instance)) then
cycle
endif
!* the segment length is the minimum of the third root of the control volume and the ip distance
!* this ensures, that the central MP never sits on a neighboring dislocation segment
connection_neighboringLattice = math_mul33x3(neighboring_invFe, connection)
segmentLength = min(neighboring_ipVolumeSideLength, distance)
!* loop through all slip systems of the neighboring material point
!* and add up the stress contributions from egde and screw excess on these slip systems (if significant)
do s = 1_pInt,neighboring_ns
if (all(abs(neighboring_rhoExcess(:,:,s)) < constitutive_nonlocal_significantRho(instance))) then
cycle ! not significant
endif
!* map the connection vector from the lattice into the slip system frame
connection_neighboringSlip = math_mul33x3(constitutive_nonlocal_lattice2slip(1:3,1:3,s,neighboring_instance), &
connection_neighboringLattice)
!* edge contribution to stress
sigma = 0.0_pReal
x = connection_neighboringSlip(1)
y = connection_neighboringSlip(2)
z = connection_neighboringSlip(3)
xsquare = x * x
ysquare = y * y
zsquare = z * z
do j = 1_pInt,2_pInt
if (abs(neighboring_rhoExcess(1,j,s)) < constitutive_nonlocal_significantRho(instance)) then
cycle
elseif (j > 1_pInt) then
x = connection_neighboringSlip(1) + sign(0.5_pReal * segmentLength, &
state(g,neighboring_ip,neighboring_el)%p(4*neighboring_ns+s) &
- state(g,neighboring_ip,neighboring_el)%p(5*neighboring_ns+s))
xsquare = x * x
endif
flipSign = sign(1.0_pReal, -y)
do side = 1_pInt,-1_pInt,-2_pInt
lambda = real(side,pReal) * 0.5_pReal * segmentLength - y
R = sqrt(xsquare + zsquare + lambda * lambda)
Rsquare = R * R
Rcube = Rsquare * R
denominator = R * (R + flipSign * lambda)
if (denominator == 0.0_pReal) then
exit ipLoop
endif
sigma(1,1) = sigma(1,1) - real(side,pReal) * flipSign * z / denominator &
* (1.0_pReal + xsquare / Rsquare + xsquare / denominator) &
* neighboring_rhoExcess(1,j,s)
sigma(2,2) = sigma(2,2) - real(side,pReal) * (flipSign * 2.0_pReal * nu * z / denominator + z * lambda / Rcube)&
* neighboring_rhoExcess(1,j,s)
sigma(3,3) = sigma(3,3) + real(side,pReal) * flipSign * z / denominator &
* (1.0_pReal - zsquare / Rsquare - zsquare / denominator) &
* neighboring_rhoExcess(1,j,s)
sigma(1,2) = sigma(1,2) + real(side,pReal) * x * z / Rcube * neighboring_rhoExcess(1,j,s)
sigma(1,3) = sigma(1,3) + real(side,pReal) * flipSign * x / denominator &
* (1.0_pReal - zsquare / Rsquare - zsquare / denominator) &
* neighboring_rhoExcess(1,j,s)
sigma(2,3) = sigma(2,3) - real(side,pReal) * (nu / R - zsquare / Rcube) * neighboring_rhoExcess(1,j,s)
enddo
enddo
!* screw contribution to stress
x = connection_neighboringSlip(1) ! have to restore this value, because position might have been adapted for edge deads before
do j = 1_pInt,2_pInt
if (abs(neighboring_rhoExcess(2,j,s)) < constitutive_nonlocal_significantRho(instance)) then
cycle
elseif (j > 1_pInt) then
y = connection_neighboringSlip(2) + sign(0.5_pReal * segmentLength, &
state(g,neighboring_ip,neighboring_el)%p(6_pInt*neighboring_ns+s) &
- state(g,neighboring_ip,neighboring_el)%p(7_pInt*neighboring_ns+s))
ysquare = y * y
endif
flipSign = sign(1.0_pReal, x)
do side = 1_pInt,-1_pInt,-2_pInt
lambda = x + real(side,pReal) * 0.5_pReal * segmentLength
R = sqrt(ysquare + zsquare + lambda * lambda)
Rsquare = R * R
Rcube = Rsquare * R
denominator = R * (R + flipSign * lambda)
if (denominator == 0.0_pReal) then
exit ipLoop
endif
sigma(1,2) = sigma(1,2) - real(side,pReal) * flipSign * z * (1.0_pReal - nu) / denominator &
* neighboring_rhoExcess(2,j,s)
sigma(1,3) = sigma(1,3) + real(side,pReal) * flipSign * y * (1.0_pReal - nu) / denominator &
* neighboring_rhoExcess(2,j,s)
enddo
enddo
if (all(abs(sigma) < 1.0e-10_pReal)) then ! SIGMA IS NOT A REAL STRESS, THATS WHY WE NEED A REALLY SMALL VALUE HERE
cycle
endif
!* copy symmetric parts
sigma(2,1) = sigma(1,2)
sigma(3,1) = sigma(1,3)
sigma(3,2) = sigma(2,3)
!* scale stresses and map them into the neighboring material point's lattice configuration
sigma = sigma * constitutive_nonlocal_Gmod(neighboring_instance) &
* constitutive_nonlocal_burgers(s,neighboring_instance) &
/ (4.0_pReal * pi * (1.0_pReal - nu)) &
* mesh_ipVolume(neighboring_ip,neighboring_el) / segmentLength ! reference volume is used here (according to the segment length calculation)
Tdislo_neighboringLattice = Tdislo_neighboringLattice &
+ math_mul33x33(math_transpose33(constitutive_nonlocal_lattice2slip(1:3,1:3,s,neighboring_instance)), &
math_mul33x33(sigma, constitutive_nonlocal_lattice2slip(1:3,1:3,s,neighboring_instance)))
enddo ! slip system loop
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!* special case of central ip volume
!* only consider dead dislocations
!* we assume that they all sit at a distance equal to half the third root of V
!* in direction of the according slip direction
else
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
rhoExcessDead(c,s) = state(g,ip,el)%p((2_pInt*c+2_pInt)*ns+s) & ! positive deads (here we use symmetry: if this has negative sign it is treated as negative density at positive position instead of positive density at negative position)
+ state(g,ip,el)%p((2_pInt*c+3_pInt)*ns+s) ! negative deads (here we use symmetry: if this has negative sign it is treated as positive density at positive position instead of negative density at negative position)
do s = 1_pInt,ns
if (all(abs(rhoExcessDead(:,s)) < constitutive_nonlocal_significantRho(instance))) then
cycle ! not significant
endif
sigma = 0.0_pReal ! all components except for sigma13 are zero
sigma(1,3) = - (rhoExcessDead(1,s) + rhoExcessDead(2,s) * (1.0_pReal - nu)) * neighboring_ipVolumeSideLength &
* constitutive_nonlocal_Gmod(instance) * constitutive_nonlocal_burgers(s,instance) &
/ (sqrt(2.0_pReal) * pi * (1.0_pReal - nu))
sigma(3,1) = sigma(1,3)
Tdislo_neighboringLattice = Tdislo_neighboringLattice &
+ math_mul33x33(math_transpose33(constitutive_nonlocal_lattice2slip(1:3,1:3,s,instance)), &
math_mul33x33(sigma, constitutive_nonlocal_lattice2slip(1:3,1:3,s,instance)))
enddo ! slip system loop
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
endif
enddo ! deltaZ loop
enddo ! deltaY loop
enddo ! deltaX loop
!* map the stress from the neighboring MP's lattice configuration into the deformed configuration
!* and back into my lattice configuration
neighboringLattice2myLattice = math_mul33x33(invFe, Fe(1:3,1:3,1,neighboring_ip,neighboring_el))
constitutive_nonlocal_dislocationstress = constitutive_nonlocal_dislocationstress &
+ math_mul33x33(neighboringLattice2myLattice, &
math_mul33x33(Tdislo_neighboringLattice, &
math_transpose33(neighboringLattice2myLattice)))
enddo ipLoop
enddo ! element loop
endif
endfunction
!*********************************************************************
!* return array of constitutive results *
!*********************************************************************
function constitutive_nonlocal_postResults(Tstar_v, Fe, Temperature, dt, state, dotState, g,ip,el)
use prec, only: pReal, &
pInt, &
p_vec
use math, only: math_mul6x6, &
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
math_mul33x3, &
math_mul33x33, &
pi
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_ipVolume
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance, &
phase_Noutput
use lattice, only: lattice_Sslip_v, &
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
lattice_sd, &
lattice_st
implicit none
!*** input variables
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), intent(in) :: Temperature, & ! temperature
dt ! time increment
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe ! elastic deformation gradient
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state ! current microstructural state
type(p_vec), intent(in) :: dotState ! evolution rate of microstructural state
!*** output variables
real(pReal), dimension(constitutive_nonlocal_sizePostResults(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
constitutive_nonlocal_postResults
!*** local variables
integer(pInt) myInstance, & ! current instance of this plasticity
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
myStructure, & ! current lattice structure
ns, & ! short notation for the total number of active slip systems
c, & ! character of dislocation
cs, & ! constitutive result index
o, & ! index of current output
t, & ! type of dislocation
s, & ! index of my current slip system
sLattice ! index of my current slip system according to lattice order
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),8) :: &
rhoSgl, & ! current single dislocation densities (positive/negative screw and edge without dipoles)
rhoDotSgl ! evolution rate of single dislocation densities (positive/negative screw and edge without dipoles)
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),4) :: &
gdot, & ! shear rates
v ! velocities
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
rhoForest, & ! forest dislocation density
tauThreshold, & ! threshold shear stress
tau, & ! current resolved shear stress
2012-11-30 00:14:00 +05:30
tauBack ! back stress from pileups on same slip system
real(pReal), dimension(constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),2) :: &
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
rhoDip, & ! current dipole dislocation densities (screw and edge dipoles)
rhoDotDip, & ! evolution rate of dipole dislocation densities (screw and edge dipoles)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
dLower, & ! minimum stable dipole distance for edges and screws
dUpper ! current maximum stable dipole distance for edges and screws
real(pReal), dimension(3,constitutive_nonlocal_totalNslip(phase_plasticityInstance(material_phase(g,ip,el))),2) :: &
m, & ! direction of dislocation motion for edge and screw (unit vector)
m_currentconf ! direction of dislocation motion for edge and screw (unit vector) in current configuration
real(pReal), dimension(3,3) :: sigma
myInstance = phase_plasticityInstance(material_phase(g,ip,el))
myStructure = constitutive_nonlocal_structure(myInstance)
ns = constitutive_nonlocal_totalNslip(myInstance)
cs = 0_pInt
constitutive_nonlocal_postResults = 0.0_pReal
!* short hand notations for state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt) &
rhoSgl(s,t) = max(state(g,ip,el)%p((t-1_pInt)*ns+s), 0.0_pReal)
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt) &
rhoSgl(s,t) = state(g,ip,el)%p((t-1_pInt)*ns+s)
forall (c = 1_pInt:2_pInt) &
rhoDip(1:ns,c) = max(state(g,ip,el)%p((7_pInt+c)*ns+1_pInt:(8_pInt+c)*ns), 0.0_pReal)
rhoForest = state(g,ip,el)%p(10_pInt*ns+1:11_pInt*ns)
tauThreshold = state(g,ip,el)%p(11_pInt*ns+1:12_pInt*ns)
tauBack = state(g,ip,el)%p(12_pInt*ns+1:13_pInt*ns)
forall (t = 1_pInt:8_pInt) rhoDotSgl(1:ns,t) = dotState%p((t-1_pInt)*ns+1_pInt:t*ns)
forall (c = 1_pInt:2_pInt) rhoDotDip(1:ns,c) = dotState%p((7_pInt+c)*ns+1_pInt:(8_pInt+c)*ns)
forall (t = 1_pInt:4_pInt) v(1:ns,t) = state(g,ip,el)%p((12_pInt+t)*ns+1_pInt:(13_pInt+t)*ns)
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(myInstance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(myInstance)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < constitutive_nonlocal_significantN(myInstance) &
.or. abs(rhoSgl) < constitutive_nonlocal_significantRho(myInstance)) &
rhoDip = 0.0_pReal
!* Calculate shear rate
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
if (rhoSgl(s,t+4_pInt) * v(s,t) < 0.0_pReal) then
rhoSgl(s,t) = rhoSgl(s,t) + abs(rhoSgl(s,t+4_pInt)) ! remobilization of immobile singles for changing sign of v (bauschinger effect)
rhoSgl(s,t+4_pInt) = 0.0_pReal ! remobilization of immobile singles for changing sign of v (bauschinger effect)
endif
enddo
enddo
forall (t = 1_pInt:4_pInt) &
gdot(1:ns,t) = rhoSgl(1:ns,t) * constitutive_nonlocal_burgers(1:ns,myInstance) * v(1:ns,t)
!* calculate limits for stable dipole height
do s = 1_pInt,ns
sLattice = constitutive_nonlocal_slipSystemLattice(s,myInstance)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,myStructure)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = constitutive_nonlocal_minimumDipoleHeight(1:ns,1:2,myInstance)
dUpper(1:ns,1) = constitutive_nonlocal_Gmod(myInstance) * constitutive_nonlocal_burgers(1:ns,myInstance) &
/ (8.0_pReal * pi * (1.0_pReal - constitutive_nonlocal_nu(myInstance)) * abs(tau))
dUpper(1:ns,2) = constitutive_nonlocal_Gmod(myInstance) * constitutive_nonlocal_burgers(1:ns,myInstance) &
/ (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
dUpper = max(dUpper,dLower)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!*** dislocation motion
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
m(1:3,1:ns,1) = lattice_sd(1:3,constitutive_nonlocal_slipSystemLattice(1:ns,myInstance),myStructure)
m(1:3,1:ns,2) = -lattice_st(1:3,constitutive_nonlocal_slipSystemLattice(1:ns,myInstance),myStructure)
forall (c = 1_pInt:2_pInt, s = 1_pInt:ns) &
m_currentconf(1:3,s,c) = math_mul33x3(Fe, m(1:3,s,c))
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
do o = 1_pInt,phase_Noutput(material_phase(g,ip,el))
select case(constitutive_nonlocal_output(o,myInstance))
case ('rho')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl),2) + sum(rhoDip,2)
cs = cs + ns
case ('rho_sgl')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl),2)
cs = cs + ns
case ('rho_sgl_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,1:4)),2)
cs = cs + ns
case ('rho_sgl_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,5:8),2)
cs = cs + ns
case ('rho_dip')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDip,2)
cs = cs + ns
case ('rho_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,(/1,2,5,6/))),2) + rhoDip(1:ns,1)
cs = cs + ns
case ('rho_sgl_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,(/1,2,5,6/))),2)
cs = cs + ns
case ('rho_sgl_edge_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,1:2),2)
cs = cs + ns
case ('rho_sgl_edge_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,5:6),2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('rho_sgl_edge_pos')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))
cs = cs + ns
case ('rho_sgl_edge_pos_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(1:ns)
cs = cs + ns
case ('rho_sgl_edge_pos_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(4*ns+1:5*ns)
cs = cs + ns
case ('rho_sgl_edge_neg')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6))
cs = cs + ns
case ('rho_sgl_edge_neg_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(ns+1:2*ns)
cs = cs + ns
case ('rho_sgl_edge_neg_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(5*ns+1:6*ns)
cs = cs + ns
case ('rho_dip_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(8*ns+1:9*ns)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('rho_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,(/3,4,7,8/))),2) + rhoDip(1:ns,2)
cs = cs + ns
case ('rho_sgl_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,(/3,4,7,8/))),2)
cs = cs + ns
case ('rho_sgl_screw_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,3:4),2)
cs = cs + ns
case ('rho_sgl_screw_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,7:8),2)
cs = cs + ns
case ('rho_sgl_screw_pos')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))
cs = cs + ns
case ('rho_sgl_screw_pos_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(2*ns+1:3*ns)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('rho_sgl_screw_pos_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(6*ns+1:7*ns)
cs = cs + ns
case ('rho_sgl_screw_neg')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8))
cs = cs + ns
case ('rho_sgl_screw_neg_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(3*ns+1:4*ns)
cs = cs + ns
case ('rho_sgl_screw_neg_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(7*ns+1:8*ns)
cs = cs + ns
case ('rho_dip_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(g,ip,el)%p(9*ns+1:10*ns)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('excess_rho')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))) &
- (rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6))) &
+ (rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))) &
- (rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8)))
cs = cs + ns
case ('excess_rho_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))) &
- (rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6)))
cs = cs + ns
case ('excess_rho_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))) &
- (rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8)))
cs = cs + ns
case ('rho_forest')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoForest
cs = cs + ns
case ('delta')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(abs(rhoSgl),2) + sum(rhoDip,2))
cs = cs + ns
case ('delta_sgl')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(abs(rhoSgl),2))
cs = cs + ns
case ('delta_dip')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(rhoDip,2))
cs = cs + ns
case ('shearrate')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(gdot,2)
cs = cs + ns
case ('resolvedstress')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = tau
cs = cs + ns
case ('resolvedstress_back')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = tauBack
cs = cs + ns
case ('resolvedstress_external')
do s = 1_pInt,ns
sLattice = constitutive_nonlocal_slipSystemLattice(s,myInstance)
constitutive_nonlocal_postResults(cs+s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,myStructure))
enddo
cs = cs + ns
case ('resistance')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = tauThreshold
cs = cs + ns
case ('rho_dot')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotSgl,2) + sum(rhoDotDip,2)
cs = cs + ns
case ('rho_dot_sgl')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotSgl,2)
cs = cs + ns
case ('rho_dot_dip')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotDip,2)
cs = cs + ns
case ('rho_dot_gen')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotMultiplication(1:ns,1,g,ip,el) &
+ constitutive_nonlocal_rhoDotMultiplication(1:ns,2,g,ip,el)
cs = cs + ns
case ('rho_dot_gen_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotMultiplication(1:ns,1,g,ip,el)
cs = cs + ns
case ('rho_dot_gen_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotMultiplication(1:ns,2,g,ip,el)
cs = cs + ns
case ('rho_dot_sgl2dip')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotSingle2DipoleGlide(1:ns,1,g,ip,el) &
+ constitutive_nonlocal_rhoDotSingle2DipoleGlide(1:ns,2,g,ip,el)
cs = cs + ns
case ('rho_dot_sgl2dip_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotSingle2DipoleGlide(1:ns,1,g,ip,el)
cs = cs + ns
case ('rho_dot_sgl2dip_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotSingle2DipoleGlide(1:ns,2,g,ip,el)
cs = cs + ns
case ('rho_dot_ann_ath')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotAthermalAnnihilation(1:ns,1,g,ip,el) &
+ constitutive_nonlocal_rhoDotAthermalAnnihilation(1:ns,2,g,ip,el)
cs = cs + ns
case ('rho_dot_ann_the')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotThermalAnnihilation(1:ns,1,g,ip,el) &
+ constitutive_nonlocal_rhoDotThermalAnnihilation(1:ns,2,g,ip,el)
cs = cs + ns
case ('rho_dot_ann_the_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotThermalAnnihilation(1:ns,1,g,ip,el)
cs = cs + ns
case ('rho_dot_ann_the_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotThermalAnnihilation(1:ns,2,g,ip,el)
cs = cs + ns
case ('rho_dot_edgejogs')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_rhoDotEdgeJogs(1:ns,g,ip,el)
cs = cs + ns
case ('rho_dot_flux')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(constitutive_nonlocal_rhoDotFlux(1:ns,1:4,g,ip,el),2) &
+ sum(abs(constitutive_nonlocal_rhoDotFlux(1:ns,5:8,g,ip,el)),2)
cs = cs + ns
case ('rho_dot_flux_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(constitutive_nonlocal_rhoDotFlux(1:ns,1:2,g,ip,el),2) &
+ sum(abs(constitutive_nonlocal_rhoDotFlux(1:ns,5:6,g,ip,el)),2)
cs = cs + ns
case ('rho_dot_flux_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(constitutive_nonlocal_rhoDotFlux(1:ns,3:4,g,ip,el),2) &
+ sum(abs(constitutive_nonlocal_rhoDotFlux(1:ns,7:8,g,ip,el)),2)
cs = cs + ns
case ('velocity_edge_pos')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,1)
2010-02-23 22:53:07 +05:30
cs = cs + ns
case ('velocity_edge_neg')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,2)
cs = cs + ns
case ('velocity_screw_pos')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,3)
cs = cs + ns
case ('velocity_screw_neg')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,4)
cs = cs + ns
case ('fluxdensity_edge_pos_x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(1,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_pos_y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(2,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_pos_z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(3,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_neg_x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(1,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_neg_y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(2,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_neg_z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(3,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_pos_x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(1,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_pos_y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(2,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_pos_z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(3,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_neg_x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(1,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_neg_y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(2,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_neg_z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(3,1:ns,2)
cs = cs + ns
case ('maximumdipoleheight_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = dUpper(1:ns,1)
cs = cs + ns
case ('maximumdipoleheight_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = dUpper(1:ns,2)
cs = cs + ns
case('dislocationstress')
sigma = constitutive_nonlocal_dislocationstress(state, Fe, g, ip, el)
constitutive_nonlocal_postResults(cs+1_pInt) = sigma(1,1)
constitutive_nonlocal_postResults(cs+2_pInt) = sigma(2,2)
constitutive_nonlocal_postResults(cs+3_pInt) = sigma(3,3)
constitutive_nonlocal_postResults(cs+4_pInt) = sigma(1,2)
constitutive_nonlocal_postResults(cs+5_pInt) = sigma(2,3)
constitutive_nonlocal_postResults(cs+6_pInt) = sigma(3,1)
cs = cs + 6_pInt
case('accumulatedshear')
constitutive_nonlocal_accumulatedShear(1:ns,g,ip,el) = constitutive_nonlocal_accumulatedShear(1:ns,g,ip,el) + sum(gdot,2)*dt
!$OMP FLUSH(constitutive_nonlocal_accumulatedShear)
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = constitutive_nonlocal_accumulatedShear(1:ns,g,ip,el)
cs = cs + ns
case('boundarylayer')
do s = 1_pInt,ns
if (sum(abs(rhoSgl(s,1:8))) > 0.0_pReal) then
constitutive_nonlocal_postResults(cs+s) = maxval(abs(rhoSgl(s,5:8))/(rhoSgl(s,1:4)+abs(rhoSgl(s,5:8))))
else
constitutive_nonlocal_postResults(cs+s) = 0.0_pReal
endif
enddo
cs = cs + ns
end select
enddo
endfunction
END MODULE