2019-12-09 02:18:32 +05:30
|
|
|
import os
|
|
|
|
|
2019-11-24 10:59:00 +05:30
|
|
|
import pytest
|
2019-11-22 01:31:01 +05:30
|
|
|
import numpy as np
|
2019-11-24 10:59:00 +05:30
|
|
|
|
2019-11-22 01:31:01 +05:30
|
|
|
from damask import Rotation
|
2020-05-17 01:26:30 +05:30
|
|
|
import rotation_conversion
|
2020-04-08 17:11:46 +05:30
|
|
|
|
2020-04-09 11:10:20 +05:30
|
|
|
n = 1100
|
2020-04-08 23:00:50 +05:30
|
|
|
atol=1.e-4
|
|
|
|
scatter=1.e-2
|
2019-11-24 10:59:00 +05:30
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def default():
|
|
|
|
"""A set of n random rotations."""
|
2020-04-08 22:08:57 +05:30
|
|
|
specials = np.array(
|
|
|
|
[np.array([ 1.0, 0.0, 0.0, 0.0]),
|
2020-04-08 17:11:46 +05:30
|
|
|
#-----------------------------------------------
|
2020-04-08 22:08:57 +05:30
|
|
|
np.array([0.0, 1.0, 0.0, 0.0]),
|
|
|
|
np.array([0.0, 0.0, 1.0, 0.0]),
|
|
|
|
np.array([0.0, 0.0, 0.0, 1.0]),
|
|
|
|
np.array([0.0,-1.0, 0.0, 0.0]),
|
|
|
|
np.array([0.0, 0.0,-1.0, 0.0]),
|
|
|
|
np.array([0.0, 0.0, 0.0,-1.0]),
|
2020-04-08 17:11:46 +05:30
|
|
|
#-----------------------------------------------
|
2020-04-08 22:08:57 +05:30
|
|
|
np.array([1.0, 1.0, 0.0, 0.0])/np.sqrt(2.),
|
|
|
|
np.array([1.0, 0.0, 1.0, 0.0])/np.sqrt(2.),
|
|
|
|
np.array([1.0, 0.0, 0.0, 1.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 1.0, 1.0, 0.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 1.0, 0.0, 1.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 0.0, 1.0, 1.0])/np.sqrt(2.),
|
2020-04-08 17:11:46 +05:30
|
|
|
#-----------------------------------------------
|
2020-04-08 22:08:57 +05:30
|
|
|
np.array([1.0,-1.0, 0.0, 0.0])/np.sqrt(2.),
|
|
|
|
np.array([1.0, 0.0,-1.0, 0.0])/np.sqrt(2.),
|
|
|
|
np.array([1.0, 0.0, 0.0,-1.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 1.0,-1.0, 0.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 1.0, 0.0,-1.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 0.0, 1.0,-1.0])/np.sqrt(2.),
|
2020-04-08 17:11:46 +05:30
|
|
|
#-----------------------------------------------
|
2020-04-08 22:08:57 +05:30
|
|
|
np.array([0.0, 1.0,-1.0, 0.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 1.0, 0.0,-1.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 0.0, 1.0,-1.0])/np.sqrt(2.),
|
2020-04-08 17:11:46 +05:30
|
|
|
#-----------------------------------------------
|
2020-04-08 22:08:57 +05:30
|
|
|
np.array([0.0,-1.0,-1.0, 0.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0,-1.0, 0.0,-1.0])/np.sqrt(2.),
|
|
|
|
np.array([0.0, 0.0,-1.0,-1.0])/np.sqrt(2.),
|
|
|
|
#-----------------------------------------------
|
|
|
|
np.array([1.0, 1.0, 1.0, 0.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0, 1.0, 0.0, 1.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0, 0.0, 1.0, 1.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0,-1.0, 1.0, 0.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0,-1.0, 0.0, 1.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0, 0.0,-1.0, 1.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0, 1.0,-1.0, 0.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0, 1.0, 0.0,-1.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0, 0.0, 1.0,-1.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0,-1.0,-1.0, 0.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0,-1.0, 0.0,-1.0])/np.sqrt(3.),
|
|
|
|
np.array([1.0, 0.0,-1.0,-1.0])/np.sqrt(3.),
|
|
|
|
#-----------------------------------------------
|
|
|
|
np.array([0.0, 1.0, 1.0, 1.0])/np.sqrt(3.),
|
|
|
|
np.array([0.0, 1.0,-1.0, 1.0])/np.sqrt(3.),
|
|
|
|
np.array([0.0, 1.0, 1.0,-1.0])/np.sqrt(3.),
|
|
|
|
np.array([0.0,-1.0, 1.0, 1.0])/np.sqrt(3.),
|
|
|
|
np.array([0.0,-1.0,-1.0, 1.0])/np.sqrt(3.),
|
|
|
|
np.array([0.0,-1.0, 1.0,-1.0])/np.sqrt(3.),
|
|
|
|
np.array([0.0,-1.0,-1.0,-1.0])/np.sqrt(3.),
|
|
|
|
#-----------------------------------------------
|
|
|
|
np.array([1.0, 1.0, 1.0, 1.0])/2.,
|
|
|
|
np.array([1.0,-1.0, 1.0, 1.0])/2.,
|
|
|
|
np.array([1.0, 1.0,-1.0, 1.0])/2.,
|
|
|
|
np.array([1.0, 1.0, 1.0,-1.0])/2.,
|
|
|
|
np.array([1.0,-1.0,-1.0, 1.0])/2.,
|
|
|
|
np.array([1.0,-1.0, 1.0,-1.0])/2.,
|
|
|
|
np.array([1.0, 1.0,-1.0,-1.0])/2.,
|
|
|
|
np.array([1.0,-1.0,-1.0,-1.0])/2.,
|
|
|
|
])
|
2020-04-09 11:10:20 +05:30
|
|
|
specials_scatter = specials + np.broadcast_to(np.random.rand(4)*scatter,specials.shape)
|
|
|
|
specials_scatter /= np.linalg.norm(specials_scatter,axis=1).reshape(-1,1)
|
|
|
|
specials_scatter[specials_scatter[:,0]<0]*=-1
|
|
|
|
|
2020-05-03 22:21:30 +05:30
|
|
|
return [Rotation.from_quaternion(s) for s in specials] + \
|
|
|
|
[Rotation.from_quaternion(s) for s in specials_scatter] + \
|
|
|
|
[Rotation.from_random() for _ in range(n-len(specials)-len(specials_scatter))]
|
2019-11-24 10:59:00 +05:30
|
|
|
|
2019-12-09 02:18:32 +05:30
|
|
|
@pytest.fixture
|
|
|
|
def reference_dir(reference_dir_base):
|
|
|
|
"""Directory containing reference results."""
|
|
|
|
return os.path.join(reference_dir_base,'Rotation')
|
|
|
|
|
2019-11-22 01:31:01 +05:30
|
|
|
|
|
|
|
class TestRotation:
|
|
|
|
|
2020-05-19 13:25:23 +05:30
|
|
|
@pytest.mark.parametrize('forward,backward',[(Rotation.qu2om,Rotation.om2qu),
|
|
|
|
(Rotation.qu2eu,Rotation.eu2qu),
|
|
|
|
(Rotation.qu2ax,Rotation.ax2qu),
|
|
|
|
(Rotation.qu2ro,Rotation.ro2qu),
|
|
|
|
(Rotation.qu2ho,Rotation.ho2qu),
|
|
|
|
(Rotation.qu2cu,Rotation.cu2qu)])
|
|
|
|
def test_quaternion_internal(self,default,forward,backward):
|
|
|
|
for rot in default:
|
|
|
|
m = rot.as_quaternion()
|
|
|
|
o = backward(forward(m))
|
|
|
|
ok = np.allclose(m,o,atol=atol)
|
|
|
|
if np.isclose(rot.as_quaternion()[0],0.0,atol=atol):
|
|
|
|
ok = ok or np.allclose(m*-1.,o,atol=atol)
|
|
|
|
print(m,o,rot.as_quaternion())
|
|
|
|
assert ok and np.isclose(np.linalg.norm(o),1.0)
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('forward,backward',[(Rotation.om2qu,Rotation.qu2om)])
|
|
|
|
#(Rotation.om2eu,Rotation.eu2om),
|
|
|
|
#(Rotation.om2ax,Rotation.ax2om),
|
|
|
|
#(Rotation.om2ro,Rotation.ro2om),
|
|
|
|
#(Rotation.om2ho,Rotation.ho2om),
|
|
|
|
#(Rotation.om2cu,Rotation.cu2om)])
|
|
|
|
def test_matrix_internal(self,default,forward,backward):
|
|
|
|
for rot in default:
|
|
|
|
m = rot.as_matrix()
|
|
|
|
o = backward(forward(m))
|
|
|
|
ok = np.allclose(m,o,atol=atol)
|
|
|
|
print(m,o,rot.as_quaternion())
|
|
|
|
assert ok and np.isclose(np.linalg.det(o),1.0)
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('forward,backward',[(Rotation.eu2qu,Rotation.qu2eu)])
|
|
|
|
#(Rotation.eu2om,Rotation.om2eu),
|
|
|
|
#(Rotation.eu2ax,Rotation.ax2eu),
|
|
|
|
#(Rotation.eu2ro,Rotation.ro2eu),
|
|
|
|
#(Rotation.eu2ho,Rotation.ho2eu),
|
|
|
|
#(Rotation.eu2cu,Rotation.cu2eu)])
|
|
|
|
def test_Eulers_internal(self,default,forward,backward):
|
|
|
|
for rot in default:
|
|
|
|
m = rot.as_Eulers()
|
|
|
|
o = backward(forward(m))
|
|
|
|
u = np.array([np.pi*2,np.pi,np.pi*2])
|
|
|
|
ok = np.allclose(m,o,atol=atol)
|
|
|
|
ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
|
|
|
|
if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol):
|
|
|
|
sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]])
|
|
|
|
ok = ok or np.isclose(sum_phi[0],sum_phi[1],atol=atol)
|
|
|
|
print(m,o,rot.as_quaternion())
|
|
|
|
assert ok and (np.zeros(3)-1.e-9 <= o).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all()
|
|
|
|
|
|
|
|
|
2020-05-19 12:40:14 +05:30
|
|
|
@pytest.mark.parametrize('degrees',[True,False])
|
|
|
|
def test_Eulers(self,default,degrees):
|
2019-11-24 10:59:00 +05:30
|
|
|
for rot in default:
|
2020-05-03 22:21:30 +05:30
|
|
|
m = rot.as_quaternion()
|
2020-05-19 12:40:14 +05:30
|
|
|
o = Rotation.from_Eulers(rot.as_Eulers(degrees),degrees).as_quaternion()
|
2020-04-08 22:08:57 +05:30
|
|
|
ok = np.allclose(m,o,atol=atol)
|
2020-05-03 22:21:30 +05:30
|
|
|
if np.isclose(rot.as_quaternion()[0],0.0,atol=atol):
|
2020-04-08 22:08:57 +05:30
|
|
|
ok = ok or np.allclose(m*-1.,o,atol=atol)
|
2020-05-03 22:21:30 +05:30
|
|
|
print(m,o,rot.as_quaternion())
|
2020-04-11 16:07:21 +05:30
|
|
|
assert ok and np.isclose(np.linalg.norm(o),1.0)
|
2019-11-22 01:31:01 +05:30
|
|
|
|
2020-05-19 12:40:14 +05:30
|
|
|
@pytest.mark.parametrize('P',[1,-1])
|
|
|
|
@pytest.mark.parametrize('normalise',[True,False])
|
|
|
|
@pytest.mark.parametrize('degrees',[True,False])
|
|
|
|
def test_AxisAngle(self,default,degrees,normalise,P):
|
|
|
|
c = np.array([P*-1,P*-1,P*-1,1.])
|
2019-11-24 10:59:00 +05:30
|
|
|
for rot in default:
|
2020-05-03 22:21:30 +05:30
|
|
|
m = rot.as_Eulers()
|
2020-05-19 12:40:14 +05:30
|
|
|
o = Rotation.from_axis_angle(rot.as_axis_angle(degrees)*c,degrees,normalise,P).as_Eulers()
|
2020-04-08 22:08:57 +05:30
|
|
|
u = np.array([np.pi*2,np.pi,np.pi*2])
|
|
|
|
ok = np.allclose(m,o,atol=atol)
|
|
|
|
ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol)
|
|
|
|
if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol):
|
|
|
|
sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]])
|
|
|
|
ok = ok or np.isclose(sum_phi[0],sum_phi[1],atol=atol)
|
2020-05-03 22:21:30 +05:30
|
|
|
print(m,o,rot.as_quaternion())
|
2020-04-11 16:07:21 +05:30
|
|
|
assert ok and (np.zeros(3)-1.e-9 <= o).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all()
|
2019-11-22 01:31:01 +05:30
|
|
|
|
2019-11-24 10:59:00 +05:30
|
|
|
def test_Matrix(self,default):
|
|
|
|
for rot in default:
|
2020-05-03 22:21:30 +05:30
|
|
|
m = rot.as_axis_angle()
|
|
|
|
o = Rotation.from_axis_angle(rot.as_axis_angle()).as_axis_angle()
|
2020-04-08 22:08:57 +05:30
|
|
|
ok = np.allclose(m,o,atol=atol)
|
|
|
|
if np.isclose(m[3],np.pi,atol=atol):
|
|
|
|
ok = ok or np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol)
|
2020-05-03 22:21:30 +05:30
|
|
|
print(m,o,rot.as_quaternion())
|
2020-04-11 16:07:21 +05:30
|
|
|
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi++1.e-9
|
2019-11-22 01:31:01 +05:30
|
|
|
|
2020-05-19 12:40:14 +05:30
|
|
|
@pytest.mark.parametrize('P',[1,-1])
|
|
|
|
@pytest.mark.parametrize('normalise',[True,False])
|
|
|
|
def test_Rodrigues(self,default,normalise,P):
|
|
|
|
c = np.array([P*-1,P*-1,P*-1,1.])
|
2019-11-24 10:59:00 +05:30
|
|
|
for rot in default:
|
2020-05-03 22:21:30 +05:30
|
|
|
m = rot.as_matrix()
|
2020-05-19 12:40:14 +05:30
|
|
|
o = Rotation.from_Rodrigues(rot.as_Rodrigues()*c,normalise,P).as_matrix()
|
2020-04-11 16:07:21 +05:30
|
|
|
ok = np.allclose(m,o,atol=atol)
|
2020-04-08 22:08:57 +05:30
|
|
|
print(m,o)
|
2020-04-11 16:07:21 +05:30
|
|
|
assert ok and np.isclose(np.linalg.det(o),1.0)
|
2019-11-22 01:31:01 +05:30
|
|
|
|
2020-05-19 12:40:14 +05:30
|
|
|
@pytest.mark.parametrize('P',[1,-1])
|
|
|
|
def test_Homochoric(self,default,P):
|
2020-04-11 16:07:21 +05:30
|
|
|
cutoff = np.tan(np.pi*.5*(1.-1e-4))
|
2019-11-24 10:59:00 +05:30
|
|
|
for rot in default:
|
2020-05-03 22:21:30 +05:30
|
|
|
m = rot.as_Rodrigues()
|
2020-05-19 12:40:14 +05:30
|
|
|
o = Rotation.from_homochoric(rot.as_homochoric()*P*-1,P).as_Rodrigues()
|
2020-04-11 16:07:21 +05:30
|
|
|
ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol)
|
2020-04-08 22:08:57 +05:30
|
|
|
ok = ok or np.isclose(m[3],0.0,atol=atol)
|
2020-05-03 22:21:30 +05:30
|
|
|
print(m,o,rot.as_quaternion())
|
2020-04-11 16:07:21 +05:30
|
|
|
assert ok and np.isclose(np.linalg.norm(o[:3]),1.0)
|
2019-11-22 01:31:01 +05:30
|
|
|
|
2020-05-19 12:40:14 +05:30
|
|
|
@pytest.mark.parametrize('P',[1,-1])
|
|
|
|
def test_Cubochoric(self,default,P):
|
2019-11-24 10:59:00 +05:30
|
|
|
for rot in default:
|
2020-05-03 22:21:30 +05:30
|
|
|
m = rot.as_homochoric()
|
2020-05-19 12:40:14 +05:30
|
|
|
o = Rotation.from_cubochoric(rot.as_cubochoric()*P*-1,P).as_homochoric()
|
2020-04-11 16:07:21 +05:30
|
|
|
ok = np.allclose(m,o,atol=atol)
|
2020-05-03 22:21:30 +05:30
|
|
|
print(m,o,rot.as_quaternion())
|
2020-04-11 16:07:21 +05:30
|
|
|
assert ok and np.linalg.norm(o) < (3.*np.pi/4.)**(1./3.) + 1.e-9
|
2019-11-22 01:31:01 +05:30
|
|
|
|
2020-05-19 12:40:14 +05:30
|
|
|
@pytest.mark.parametrize('P',[1,-1])
|
|
|
|
def test_Quaternion(self,default,P):
|
|
|
|
c = np.array([1,P*-1,P*-1,P*-1])
|
2019-11-24 10:59:00 +05:30
|
|
|
for rot in default:
|
2020-05-03 22:21:30 +05:30
|
|
|
m = rot.as_cubochoric()
|
2020-05-19 12:40:14 +05:30
|
|
|
o = Rotation.from_quaternion(rot.as_quaternion()*c,False,P).as_cubochoric()
|
2020-04-11 16:07:21 +05:30
|
|
|
ok = np.allclose(m,o,atol=atol)
|
2020-05-03 22:21:30 +05:30
|
|
|
print(m,o,rot.as_quaternion())
|
2020-04-11 16:07:21 +05:30
|
|
|
assert ok and o.max() < np.pi**(2./3.)*0.5+1.e-9
|
2020-04-09 00:20:42 +05:30
|
|
|
|
2020-04-21 16:52:55 +05:30
|
|
|
@pytest.mark.parametrize('function',[Rotation.from_quaternion,
|
|
|
|
Rotation.from_Eulers,
|
|
|
|
Rotation.from_axis_angle,
|
|
|
|
Rotation.from_matrix,
|
|
|
|
Rotation.from_Rodrigues,
|
|
|
|
Rotation.from_homochoric])
|
|
|
|
def test_invalid_shape(self,function):
|
|
|
|
invalid_shape = np.random.random(np.random.randint(8,32,(3)))
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
function(invalid_shape)
|
|
|
|
|
2020-04-16 02:30:00 +05:30
|
|
|
@pytest.mark.parametrize('function,invalid',[(Rotation.from_quaternion, np.array([-1,0,0,0])),
|
|
|
|
(Rotation.from_quaternion, np.array([1,1,1,0])),
|
|
|
|
(Rotation.from_Eulers, np.array([1,4,0])),
|
|
|
|
(Rotation.from_axis_angle, np.array([1,0,0,4])),
|
|
|
|
(Rotation.from_axis_angle, np.array([1,1,0,1])),
|
|
|
|
(Rotation.from_matrix, np.random.rand(3,3)),
|
|
|
|
(Rotation.from_Rodrigues, np.array([1,0,0,-1])),
|
|
|
|
(Rotation.from_Rodrigues, np.array([1,1,0,1])),
|
|
|
|
(Rotation.from_homochoric, np.array([2,2,2])) ])
|
2020-05-16 17:14:07 +05:30
|
|
|
def test_invalid_value(self,function,invalid):
|
2020-04-16 02:30:00 +05:30
|
|
|
with pytest.raises(ValueError):
|
|
|
|
function(invalid)
|
|
|
|
|
2020-05-17 01:26:30 +05:30
|
|
|
@pytest.mark.parametrize('vectorized, single',[(Rotation.qu2om,rotation_conversion.qu2om),
|
|
|
|
(Rotation.qu2eu,rotation_conversion.qu2eu),
|
|
|
|
(Rotation.qu2ax,rotation_conversion.qu2ax),
|
|
|
|
(Rotation.qu2ro,rotation_conversion.qu2ro),
|
|
|
|
(Rotation.qu2ho,rotation_conversion.qu2ho)])
|
|
|
|
def test_quaternion_vectorization(self,default,vectorized,single):
|
2020-05-03 22:21:30 +05:30
|
|
|
qu = np.array([rot.as_quaternion() for rot in default])
|
2020-05-17 01:26:30 +05:30
|
|
|
vectorized(qu.reshape(qu.shape[0]//2,-1,4))
|
|
|
|
co = vectorized(qu)
|
2020-04-09 02:41:48 +05:30
|
|
|
for q,c in zip(qu,co):
|
2020-04-12 00:12:46 +05:30
|
|
|
print(q,c)
|
2020-05-17 01:26:30 +05:30
|
|
|
assert np.allclose(single(q),c) and np.allclose(single(q),vectorized(q))
|
2020-04-09 02:41:48 +05:30
|
|
|
|
2020-05-17 01:26:30 +05:30
|
|
|
|
2020-05-18 22:11:48 +05:30
|
|
|
@pytest.mark.parametrize('vectorized, single',[(Rotation.om2qu,rotation_conversion.om2qu),
|
|
|
|
(Rotation.om2eu,rotation_conversion.om2eu),
|
2020-05-17 01:26:30 +05:30
|
|
|
(Rotation.om2ax,rotation_conversion.om2ax)])
|
|
|
|
def test_matrix_vectorization(self,default,vectorized,single):
|
2020-05-03 22:21:30 +05:30
|
|
|
om = np.array([rot.as_matrix() for rot in default])
|
2020-05-17 01:26:30 +05:30
|
|
|
vectorized(om.reshape(om.shape[0]//2,-1,3,3))
|
|
|
|
co = vectorized(om)
|
2020-04-09 17:50:43 +05:30
|
|
|
for o,c in zip(om,co):
|
|
|
|
print(o,c)
|
2020-05-17 01:26:30 +05:30
|
|
|
assert np.allclose(single(o),c) and np.allclose(single(o),vectorized(o))
|
2020-04-09 04:17:43 +05:30
|
|
|
|
2020-05-17 01:26:30 +05:30
|
|
|
@pytest.mark.parametrize('vectorized, single',[(Rotation.eu2qu,rotation_conversion.eu2qu),
|
|
|
|
(Rotation.eu2om,rotation_conversion.eu2om),
|
|
|
|
(Rotation.eu2ax,rotation_conversion.eu2ax),
|
|
|
|
(Rotation.eu2ro,rotation_conversion.eu2ro)])
|
|
|
|
def test_Euler_vectorization(self,default,vectorized,single):
|
2020-05-03 22:21:30 +05:30
|
|
|
eu = np.array([rot.as_Eulers() for rot in default])
|
2020-05-17 01:26:30 +05:30
|
|
|
vectorized(eu.reshape(eu.shape[0]//2,-1,3))
|
|
|
|
co = vectorized(eu)
|
2020-04-09 17:50:43 +05:30
|
|
|
for e,c in zip(eu,co):
|
|
|
|
print(e,c)
|
2020-05-17 01:26:30 +05:30
|
|
|
assert np.allclose(single(e),c) and np.allclose(single(e),vectorized(e))
|
2020-04-09 02:41:48 +05:30
|
|
|
|
2020-05-17 01:26:30 +05:30
|
|
|
@pytest.mark.parametrize('vectorized, single',[(Rotation.ax2qu,rotation_conversion.ax2qu),
|
|
|
|
(Rotation.ax2om,rotation_conversion.ax2om),
|
|
|
|
(Rotation.ax2ro,rotation_conversion.ax2ro),
|
|
|
|
(Rotation.ax2ho,rotation_conversion.ax2ho)])
|
|
|
|
def test_axisAngle_vectorization(self,default,vectorized,single):
|
2020-05-03 22:21:30 +05:30
|
|
|
ax = np.array([rot.as_axis_angle() for rot in default])
|
2020-05-17 01:26:30 +05:30
|
|
|
vectorized(ax.reshape(ax.shape[0]//2,-1,4))
|
|
|
|
co = vectorized(ax)
|
2020-04-09 00:20:42 +05:30
|
|
|
for a,c in zip(ax,co):
|
2020-04-09 17:50:43 +05:30
|
|
|
print(a,c)
|
2020-05-17 01:26:30 +05:30
|
|
|
assert np.allclose(single(a),c) and np.allclose(single(a),vectorized(a))
|
2020-04-11 17:27:05 +05:30
|
|
|
|
|
|
|
|
2020-05-17 01:26:30 +05:30
|
|
|
@pytest.mark.parametrize('vectorized, single',[(Rotation.ro2ax,rotation_conversion.ro2ax),
|
|
|
|
(Rotation.ro2ho,rotation_conversion.ro2ho)])
|
|
|
|
def test_Rodrigues_vectorization(self,default,vectorized,single):
|
2020-05-03 22:21:30 +05:30
|
|
|
ro = np.array([rot.as_Rodrigues() for rot in default])
|
2020-05-17 01:26:30 +05:30
|
|
|
vectorized(ro.reshape(ro.shape[0]//2,-1,4))
|
|
|
|
co = vectorized(ro)
|
2020-04-11 17:27:05 +05:30
|
|
|
for r,c in zip(ro,co):
|
|
|
|
print(r,c)
|
2020-05-17 01:26:30 +05:30
|
|
|
assert np.allclose(single(r),c) and np.allclose(single(r),vectorized(r))
|
2020-04-11 19:44:40 +05:30
|
|
|
|
2020-05-17 01:26:30 +05:30
|
|
|
@pytest.mark.parametrize('vectorized, single',[(Rotation.ho2ax,rotation_conversion.ho2ax),
|
|
|
|
(Rotation.ho2cu,rotation_conversion.ho2cu)])
|
|
|
|
def test_homochoric_vectorization(self,default,vectorized,single):
|
2020-05-03 22:21:30 +05:30
|
|
|
ho = np.array([rot.as_homochoric() for rot in default])
|
2020-05-17 01:26:30 +05:30
|
|
|
vectorized(ho.reshape(ho.shape[0]//2,-1,3))
|
|
|
|
co = vectorized(ho)
|
2020-04-11 19:44:40 +05:30
|
|
|
for h,c in zip(ho,co):
|
|
|
|
print(h,c)
|
2020-05-17 01:26:30 +05:30
|
|
|
assert np.allclose(single(h),c) and np.allclose(single(h),vectorized(h))
|
2020-05-03 20:34:03 +05:30
|
|
|
|
2020-05-17 01:26:30 +05:30
|
|
|
@pytest.mark.parametrize('vectorized, single',[(Rotation.cu2ho,rotation_conversion.cu2ho)])
|
|
|
|
def test_cubochoric_vectorization(self,default,vectorized,single):
|
2020-05-03 22:21:30 +05:30
|
|
|
cu = np.array([rot.as_cubochoric() for rot in default])
|
2020-05-17 01:26:30 +05:30
|
|
|
vectorized(cu.reshape(cu.shape[0]//2,-1,3))
|
|
|
|
co = vectorized(cu)
|
2020-05-03 22:21:30 +05:30
|
|
|
for u,c in zip(cu,co):
|
|
|
|
print(u,c)
|
2020-05-17 01:26:30 +05:30
|
|
|
assert np.allclose(single(u),c) and np.allclose(single(u),vectorized(u))
|
2020-05-03 20:34:03 +05:30
|
|
|
|
|
|
|
@pytest.mark.parametrize('direction',['forward',
|
|
|
|
'backward'])
|
|
|
|
def test_pyramid_vectorization(self,direction):
|
|
|
|
p = np.random.rand(n,3)
|
2020-05-03 22:21:30 +05:30
|
|
|
o = Rotation._get_pyramid_order(p,direction)
|
2020-05-03 20:34:03 +05:30
|
|
|
for i,o_i in enumerate(o):
|
2020-05-03 22:21:30 +05:30
|
|
|
assert np.all(o_i==Rotation._get_pyramid_order(p[i],direction))
|
2020-05-03 20:34:03 +05:30
|
|
|
|
|
|
|
def test_pyramid_invariant(self):
|
|
|
|
a = np.random.rand(n,3)
|
2020-05-03 22:21:30 +05:30
|
|
|
f = Rotation._get_pyramid_order(a,'forward')
|
|
|
|
b = Rotation._get_pyramid_order(a,'backward')
|
2020-05-03 20:34:03 +05:30
|
|
|
assert np.all(np.take_along_axis(np.take_along_axis(a,f,-1),b,-1) == a)
|
2020-05-16 04:28:40 +05:30
|
|
|
|
|
|
|
|
2020-05-16 17:14:07 +05:30
|
|
|
@pytest.mark.parametrize('data',[np.random.rand(3),
|
|
|
|
np.random.rand(3,3),
|
|
|
|
np.random.rand(3,3,3,3)])
|
|
|
|
def test_rotate_identity(self,data):
|
2020-05-16 04:28:40 +05:30
|
|
|
R = Rotation()
|
2020-05-16 17:14:07 +05:30
|
|
|
assert np.allclose(data,R*data)
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('data',[np.random.rand(3),
|
|
|
|
np.random.rand(3,3),
|
|
|
|
np.random.rand(3,3,3,3)])
|
|
|
|
def test_rotate_360deg(self,data):
|
|
|
|
phi_1 = np.random.random() * np.pi
|
|
|
|
phi_2 = 2*np.pi - phi_1
|
|
|
|
R_1 = Rotation.from_Eulers(np.array([phi_1,0.,0.]))
|
|
|
|
R_2 = Rotation.from_Eulers(np.array([0.,0.,phi_2]))
|
|
|
|
assert np.allclose(data,R_2*(R_1*data))
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('data',[np.random.rand(3),
|
|
|
|
np.random.rand(3,3),
|
|
|
|
np.random.rand(3,3,3,3)])
|
|
|
|
def test_rotate_inverse(self,data):
|
|
|
|
R = Rotation.from_random()
|
|
|
|
assert np.allclose(data,R.inversed()*(R*data))
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('data',[np.random.rand(4),
|
|
|
|
np.random.rand(3,2),
|
|
|
|
np.random.rand(3,2,3,3)])
|
|
|
|
def test_rotate_invalid_shape(self,data):
|
|
|
|
R = Rotation.from_random()
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
R*data
|
|
|
|
|
|
|
|
@pytest.mark.parametrize('data',['does_not_work',
|
|
|
|
(1,2),
|
|
|
|
5])
|
|
|
|
def test_rotate_invalid_type(self,data):
|
|
|
|
R = Rotation.from_random()
|
|
|
|
with pytest.raises(TypeError):
|
|
|
|
R*data
|