import os import pytest import numpy as np from damask import Rotation import rotation_conversion n = 1100 atol=1.e-4 scatter=1.e-2 @pytest.fixture def default(): """A set of n random rotations.""" specials = np.array( [np.array([ 1.0, 0.0, 0.0, 0.0]), #----------------------------------------------- np.array([0.0, 1.0, 0.0, 0.0]), np.array([0.0, 0.0, 1.0, 0.0]), np.array([0.0, 0.0, 0.0, 1.0]), np.array([0.0,-1.0, 0.0, 0.0]), np.array([0.0, 0.0,-1.0, 0.0]), np.array([0.0, 0.0, 0.0,-1.0]), #----------------------------------------------- np.array([1.0, 1.0, 0.0, 0.0])/np.sqrt(2.), np.array([1.0, 0.0, 1.0, 0.0])/np.sqrt(2.), np.array([1.0, 0.0, 0.0, 1.0])/np.sqrt(2.), np.array([0.0, 1.0, 1.0, 0.0])/np.sqrt(2.), np.array([0.0, 1.0, 0.0, 1.0])/np.sqrt(2.), np.array([0.0, 0.0, 1.0, 1.0])/np.sqrt(2.), #----------------------------------------------- np.array([1.0,-1.0, 0.0, 0.0])/np.sqrt(2.), np.array([1.0, 0.0,-1.0, 0.0])/np.sqrt(2.), np.array([1.0, 0.0, 0.0,-1.0])/np.sqrt(2.), np.array([0.0, 1.0,-1.0, 0.0])/np.sqrt(2.), np.array([0.0, 1.0, 0.0,-1.0])/np.sqrt(2.), np.array([0.0, 0.0, 1.0,-1.0])/np.sqrt(2.), #----------------------------------------------- np.array([0.0, 1.0,-1.0, 0.0])/np.sqrt(2.), np.array([0.0, 1.0, 0.0,-1.0])/np.sqrt(2.), np.array([0.0, 0.0, 1.0,-1.0])/np.sqrt(2.), #----------------------------------------------- np.array([0.0,-1.0,-1.0, 0.0])/np.sqrt(2.), np.array([0.0,-1.0, 0.0,-1.0])/np.sqrt(2.), np.array([0.0, 0.0,-1.0,-1.0])/np.sqrt(2.), #----------------------------------------------- np.array([1.0, 1.0, 1.0, 0.0])/np.sqrt(3.), np.array([1.0, 1.0, 0.0, 1.0])/np.sqrt(3.), np.array([1.0, 0.0, 1.0, 1.0])/np.sqrt(3.), np.array([1.0,-1.0, 1.0, 0.0])/np.sqrt(3.), np.array([1.0,-1.0, 0.0, 1.0])/np.sqrt(3.), np.array([1.0, 0.0,-1.0, 1.0])/np.sqrt(3.), np.array([1.0, 1.0,-1.0, 0.0])/np.sqrt(3.), np.array([1.0, 1.0, 0.0,-1.0])/np.sqrt(3.), np.array([1.0, 0.0, 1.0,-1.0])/np.sqrt(3.), np.array([1.0,-1.0,-1.0, 0.0])/np.sqrt(3.), np.array([1.0,-1.0, 0.0,-1.0])/np.sqrt(3.), np.array([1.0, 0.0,-1.0,-1.0])/np.sqrt(3.), #----------------------------------------------- np.array([0.0, 1.0, 1.0, 1.0])/np.sqrt(3.), np.array([0.0, 1.0,-1.0, 1.0])/np.sqrt(3.), np.array([0.0, 1.0, 1.0,-1.0])/np.sqrt(3.), np.array([0.0,-1.0, 1.0, 1.0])/np.sqrt(3.), np.array([0.0,-1.0,-1.0, 1.0])/np.sqrt(3.), np.array([0.0,-1.0, 1.0,-1.0])/np.sqrt(3.), np.array([0.0,-1.0,-1.0,-1.0])/np.sqrt(3.), #----------------------------------------------- np.array([1.0, 1.0, 1.0, 1.0])/2., np.array([1.0,-1.0, 1.0, 1.0])/2., np.array([1.0, 1.0,-1.0, 1.0])/2., np.array([1.0, 1.0, 1.0,-1.0])/2., np.array([1.0,-1.0,-1.0, 1.0])/2., np.array([1.0,-1.0, 1.0,-1.0])/2., np.array([1.0, 1.0,-1.0,-1.0])/2., np.array([1.0,-1.0,-1.0,-1.0])/2., ]) specials_scatter = specials + np.broadcast_to(np.random.rand(4)*scatter,specials.shape) specials_scatter /= np.linalg.norm(specials_scatter,axis=1).reshape(-1,1) specials_scatter[specials_scatter[:,0]<0]*=-1 return [Rotation.from_quaternion(s) for s in specials] + \ [Rotation.from_quaternion(s) for s in specials_scatter] + \ [Rotation.from_random() for _ in range(n-len(specials)-len(specials_scatter))] @pytest.fixture def reference_dir(reference_dir_base): """Directory containing reference results.""" return os.path.join(reference_dir_base,'Rotation') class TestRotation: @pytest.mark.parametrize('forward,backward',[(Rotation.qu2om,Rotation.om2qu), (Rotation.qu2eu,Rotation.eu2qu), (Rotation.qu2ax,Rotation.ax2qu), (Rotation.qu2ro,Rotation.ro2qu), (Rotation.qu2ho,Rotation.ho2qu), (Rotation.qu2cu,Rotation.cu2qu)]) def test_quaternion_internal(self,default,forward,backward): for rot in default: m = rot.as_quaternion() o = backward(forward(m)) ok = np.allclose(m,o,atol=atol) if np.isclose(rot.as_quaternion()[0],0.0,atol=atol): ok = ok or np.allclose(m*-1.,o,atol=atol) print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o),1.0) @pytest.mark.parametrize('forward,backward',[(Rotation.om2qu,Rotation.qu2om)]) #(Rotation.om2eu,Rotation.eu2om), #(Rotation.om2ax,Rotation.ax2om), #(Rotation.om2ro,Rotation.ro2om), #(Rotation.om2ho,Rotation.ho2om), #(Rotation.om2cu,Rotation.cu2om)]) def test_matrix_internal(self,default,forward,backward): for rot in default: m = rot.as_matrix() o = backward(forward(m)) ok = np.allclose(m,o,atol=atol) print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.det(o),1.0) @pytest.mark.parametrize('forward,backward',[(Rotation.eu2qu,Rotation.qu2eu)]) #(Rotation.eu2om,Rotation.om2eu), #(Rotation.eu2ax,Rotation.ax2eu), #(Rotation.eu2ro,Rotation.ro2eu), #(Rotation.eu2ho,Rotation.ho2eu), #(Rotation.eu2cu,Rotation.cu2eu)]) def test_Eulers_internal(self,default,forward,backward): for rot in default: m = rot.as_Eulers() o = backward(forward(m)) u = np.array([np.pi*2,np.pi,np.pi*2]) ok = np.allclose(m,o,atol=atol) ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol) if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol): sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]]) ok = ok or np.isclose(sum_phi[0],sum_phi[1],atol=atol) print(m,o,rot.as_quaternion()) assert ok and (np.zeros(3)-1.e-9 <= o).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all() @pytest.mark.parametrize('degrees',[True,False]) def test_Eulers(self,default,degrees): for rot in default: m = rot.as_quaternion() o = Rotation.from_Eulers(rot.as_Eulers(degrees),degrees).as_quaternion() ok = np.allclose(m,o,atol=atol) if np.isclose(rot.as_quaternion()[0],0.0,atol=atol): ok = ok or np.allclose(m*-1.,o,atol=atol) print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o),1.0) @pytest.mark.parametrize('P',[1,-1]) @pytest.mark.parametrize('normalise',[True,False]) @pytest.mark.parametrize('degrees',[True,False]) def test_AxisAngle(self,default,degrees,normalise,P): c = np.array([P*-1,P*-1,P*-1,1.]) for rot in default: m = rot.as_Eulers() o = Rotation.from_axis_angle(rot.as_axis_angle(degrees)*c,degrees,normalise,P).as_Eulers() u = np.array([np.pi*2,np.pi,np.pi*2]) ok = np.allclose(m,o,atol=atol) ok = ok or np.allclose(np.where(np.isclose(m,u),m-u,m),np.where(np.isclose(o,u),o-u,o),atol=atol) if np.isclose(m[1],0.0,atol=atol) or np.isclose(m[1],np.pi,atol=atol): sum_phi = np.unwrap([m[0]+m[2],o[0]+o[2]]) ok = ok or np.isclose(sum_phi[0],sum_phi[1],atol=atol) print(m,o,rot.as_quaternion()) assert ok and (np.zeros(3)-1.e-9 <= o).all() and (o <= np.array([np.pi*2.,np.pi,np.pi*2.])+1.e-9).all() def test_Matrix(self,default): for rot in default: m = rot.as_axis_angle() o = Rotation.from_axis_angle(rot.as_axis_angle()).as_axis_angle() ok = np.allclose(m,o,atol=atol) if np.isclose(m[3],np.pi,atol=atol): ok = ok or np.allclose(m*np.array([-1.,-1.,-1.,1.]),o,atol=atol) print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) and o[3]<=np.pi++1.e-9 @pytest.mark.parametrize('P',[1,-1]) @pytest.mark.parametrize('normalise',[True,False]) def test_Rodrigues(self,default,normalise,P): c = np.array([P*-1,P*-1,P*-1,1.]) for rot in default: m = rot.as_matrix() o = Rotation.from_Rodrigues(rot.as_Rodrigues()*c,normalise,P).as_matrix() ok = np.allclose(m,o,atol=atol) print(m,o) assert ok and np.isclose(np.linalg.det(o),1.0) @pytest.mark.parametrize('P',[1,-1]) def test_Homochoric(self,default,P): cutoff = np.tan(np.pi*.5*(1.-1e-4)) for rot in default: m = rot.as_Rodrigues() o = Rotation.from_homochoric(rot.as_homochoric()*P*-1,P).as_Rodrigues() ok = np.allclose(np.clip(m,None,cutoff),np.clip(o,None,cutoff),atol=atol) ok = ok or np.isclose(m[3],0.0,atol=atol) print(m,o,rot.as_quaternion()) assert ok and np.isclose(np.linalg.norm(o[:3]),1.0) @pytest.mark.parametrize('P',[1,-1]) def test_Cubochoric(self,default,P): for rot in default: m = rot.as_homochoric() o = Rotation.from_cubochoric(rot.as_cubochoric()*P*-1,P).as_homochoric() ok = np.allclose(m,o,atol=atol) print(m,o,rot.as_quaternion()) assert ok and np.linalg.norm(o) < (3.*np.pi/4.)**(1./3.) + 1.e-9 @pytest.mark.parametrize('P',[1,-1]) def test_Quaternion(self,default,P): c = np.array([1,P*-1,P*-1,P*-1]) for rot in default: m = rot.as_cubochoric() o = Rotation.from_quaternion(rot.as_quaternion()*c,False,P).as_cubochoric() ok = np.allclose(m,o,atol=atol) print(m,o,rot.as_quaternion()) assert ok and o.max() < np.pi**(2./3.)*0.5+1.e-9 @pytest.mark.parametrize('function',[Rotation.from_quaternion, Rotation.from_Eulers, Rotation.from_axis_angle, Rotation.from_matrix, Rotation.from_Rodrigues, Rotation.from_homochoric]) def test_invalid_shape(self,function): invalid_shape = np.random.random(np.random.randint(8,32,(3))) with pytest.raises(ValueError): function(invalid_shape) @pytest.mark.parametrize('function,invalid',[(Rotation.from_quaternion, np.array([-1,0,0,0])), (Rotation.from_quaternion, np.array([1,1,1,0])), (Rotation.from_Eulers, np.array([1,4,0])), (Rotation.from_axis_angle, np.array([1,0,0,4])), (Rotation.from_axis_angle, np.array([1,1,0,1])), (Rotation.from_matrix, np.random.rand(3,3)), (Rotation.from_Rodrigues, np.array([1,0,0,-1])), (Rotation.from_Rodrigues, np.array([1,1,0,1])), (Rotation.from_homochoric, np.array([2,2,2])) ]) def test_invalid_value(self,function,invalid): with pytest.raises(ValueError): function(invalid) @pytest.mark.parametrize('vectorized, single',[(Rotation.qu2om,rotation_conversion.qu2om), (Rotation.qu2eu,rotation_conversion.qu2eu), (Rotation.qu2ax,rotation_conversion.qu2ax), (Rotation.qu2ro,rotation_conversion.qu2ro), (Rotation.qu2ho,rotation_conversion.qu2ho)]) def test_quaternion_vectorization(self,default,vectorized,single): qu = np.array([rot.as_quaternion() for rot in default]) vectorized(qu.reshape(qu.shape[0]//2,-1,4)) co = vectorized(qu) for q,c in zip(qu,co): print(q,c) assert np.allclose(single(q),c) and np.allclose(single(q),vectorized(q)) @pytest.mark.parametrize('vectorized, single',[(Rotation.om2qu,rotation_conversion.om2qu), (Rotation.om2eu,rotation_conversion.om2eu), (Rotation.om2ax,rotation_conversion.om2ax)]) def test_matrix_vectorization(self,default,vectorized,single): om = np.array([rot.as_matrix() for rot in default]) vectorized(om.reshape(om.shape[0]//2,-1,3,3)) co = vectorized(om) for o,c in zip(om,co): print(o,c) assert np.allclose(single(o),c) and np.allclose(single(o),vectorized(o)) @pytest.mark.parametrize('vectorized, single',[(Rotation.eu2qu,rotation_conversion.eu2qu), (Rotation.eu2om,rotation_conversion.eu2om), (Rotation.eu2ax,rotation_conversion.eu2ax), (Rotation.eu2ro,rotation_conversion.eu2ro)]) def test_Euler_vectorization(self,default,vectorized,single): eu = np.array([rot.as_Eulers() for rot in default]) vectorized(eu.reshape(eu.shape[0]//2,-1,3)) co = vectorized(eu) for e,c in zip(eu,co): print(e,c) assert np.allclose(single(e),c) and np.allclose(single(e),vectorized(e)) @pytest.mark.parametrize('vectorized, single',[(Rotation.ax2qu,rotation_conversion.ax2qu), (Rotation.ax2om,rotation_conversion.ax2om), (Rotation.ax2ro,rotation_conversion.ax2ro), (Rotation.ax2ho,rotation_conversion.ax2ho)]) def test_axisAngle_vectorization(self,default,vectorized,single): ax = np.array([rot.as_axis_angle() for rot in default]) vectorized(ax.reshape(ax.shape[0]//2,-1,4)) co = vectorized(ax) for a,c in zip(ax,co): print(a,c) assert np.allclose(single(a),c) and np.allclose(single(a),vectorized(a)) @pytest.mark.parametrize('vectorized, single',[(Rotation.ro2ax,rotation_conversion.ro2ax), (Rotation.ro2ho,rotation_conversion.ro2ho)]) def test_Rodrigues_vectorization(self,default,vectorized,single): ro = np.array([rot.as_Rodrigues() for rot in default]) vectorized(ro.reshape(ro.shape[0]//2,-1,4)) co = vectorized(ro) for r,c in zip(ro,co): print(r,c) assert np.allclose(single(r),c) and np.allclose(single(r),vectorized(r)) @pytest.mark.parametrize('vectorized, single',[(Rotation.ho2ax,rotation_conversion.ho2ax), (Rotation.ho2cu,rotation_conversion.ho2cu)]) def test_homochoric_vectorization(self,default,vectorized,single): ho = np.array([rot.as_homochoric() for rot in default]) vectorized(ho.reshape(ho.shape[0]//2,-1,3)) co = vectorized(ho) for h,c in zip(ho,co): print(h,c) assert np.allclose(single(h),c) and np.allclose(single(h),vectorized(h)) @pytest.mark.parametrize('vectorized, single',[(Rotation.cu2ho,rotation_conversion.cu2ho)]) def test_cubochoric_vectorization(self,default,vectorized,single): cu = np.array([rot.as_cubochoric() for rot in default]) vectorized(cu.reshape(cu.shape[0]//2,-1,3)) co = vectorized(cu) for u,c in zip(cu,co): print(u,c) assert np.allclose(single(u),c) and np.allclose(single(u),vectorized(u)) @pytest.mark.parametrize('direction',['forward', 'backward']) def test_pyramid_vectorization(self,direction): p = np.random.rand(n,3) o = Rotation._get_pyramid_order(p,direction) for i,o_i in enumerate(o): assert np.all(o_i==Rotation._get_pyramid_order(p[i],direction)) def test_pyramid_invariant(self): a = np.random.rand(n,3) f = Rotation._get_pyramid_order(a,'forward') b = Rotation._get_pyramid_order(a,'backward') assert np.all(np.take_along_axis(np.take_along_axis(a,f,-1),b,-1) == a) @pytest.mark.parametrize('data',[np.random.rand(3), np.random.rand(3,3), np.random.rand(3,3,3,3)]) def test_rotate_identity(self,data): R = Rotation() assert np.allclose(data,R*data) @pytest.mark.parametrize('data',[np.random.rand(3), np.random.rand(3,3), np.random.rand(3,3,3,3)]) def test_rotate_360deg(self,data): phi_1 = np.random.random() * np.pi phi_2 = 2*np.pi - phi_1 R_1 = Rotation.from_Eulers(np.array([phi_1,0.,0.])) R_2 = Rotation.from_Eulers(np.array([0.,0.,phi_2])) assert np.allclose(data,R_2*(R_1*data)) @pytest.mark.parametrize('data',[np.random.rand(3), np.random.rand(3,3), np.random.rand(3,3,3,3)]) def test_rotate_inverse(self,data): R = Rotation.from_random() assert np.allclose(data,R.inversed()*(R*data)) @pytest.mark.parametrize('data',[np.random.rand(4), np.random.rand(3,2), np.random.rand(3,2,3,3)]) def test_rotate_invalid_shape(self,data): R = Rotation.from_random() with pytest.raises(ValueError): R*data @pytest.mark.parametrize('data',['does_not_work', (1,2), 5]) def test_rotate_invalid_type(self,data): R = Rotation.from_random() with pytest.raises(TypeError): R*data