DAMASK_EICMD/src/constitutive.f90

2338 lines
119 KiB
Fortran
Raw Normal View History

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
2013-03-06 20:11:15 +05:30
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
2020-07-15 18:05:21 +05:30
!> @brief elasticity, plasticity, damage & thermal internal microstructure state
!--------------------------------------------------------------------------------------------------
module constitutive
use prec
2019-06-15 19:10:22 +05:30
use math
use rotations
2019-06-15 19:10:22 +05:30
use IO
use config
use material
use results
use lattice
use discretization
use parallelization
use HDF5_utilities
use DAMASK_interface
use FEsolving
use results
2019-06-15 19:10:22 +05:30
implicit none
private
real(pReal), dimension(:,:,:), allocatable, public :: &
crystallite_dt !< requested time increment of each grain
real(pReal), dimension(:,:,:), allocatable :: &
crystallite_subdt, & !< substepped time increment of each grain
crystallite_subFrac, & !< already calculated fraction of increment
crystallite_subStep !< size of next integration step
type(rotation), dimension(:,:,:), allocatable :: &
crystallite_orientation !< current orientation
real(pReal), dimension(:,:,:,:,:), allocatable :: &
crystallite_F0, & !< def grad at start of FE inc
crystallite_subF, & !< def grad to be reached at end of crystallite inc
crystallite_subF0, & !< def grad at start of crystallite inc
!
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
!
crystallite_Fp, & !< current plastic def grad (end of converged time step)
crystallite_Fp0, & !< plastic def grad at start of FE inc
crystallite_partitionedFp0,& !< plastic def grad at start of homog inc
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
!
crystallite_Fi, & !< current intermediate def grad (end of converged time step)
crystallite_Fi0, & !< intermediate def grad at start of FE inc
crystallite_partitionedFi0,& !< intermediate def grad at start of homog inc
crystallite_subFi0,& !< intermediate def grad at start of crystallite inc
!
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
crystallite_partitionedLp0, & !< plastic velocity grad at start of homog inc
!
crystallite_Li, & !< current intermediate velocitiy grad (end of converged time step)
crystallite_Li0, & !< intermediate velocitiy grad at start of FE inc
crystallite_partitionedLi0, & !< intermediate velocity grad at start of homog inc
!
crystallite_S0, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
crystallite_partitionedS0 !< 2nd Piola-Kirchhoff stress vector at start of homog inc
real(pReal), dimension(:,:,:,:,:), allocatable, public, protected :: &
crystallite_P, & !< 1st Piola-Kirchhoff stress per grain
crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step)
crystallite_S, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step)
crystallite_partitionedF0 !< def grad at start of homog inc
real(pReal), dimension(:,:,:,:,:), allocatable, public :: &
crystallite_partitionedF !< def grad to be reached at end of homog inc
logical, dimension(:,:,:), allocatable, public :: &
crystallite_requested !< used by upper level (homogenization) to request crystallite calculation
logical, dimension(:,:,:), allocatable :: &
crystallite_converged !< convergence flag
type :: tOutput !< new requested output (per phase)
character(len=pStringLen), allocatable, dimension(:) :: &
label
end type tOutput
type(tOutput), allocatable, dimension(:) :: output_constituent
type :: tNumerics
integer :: &
iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp
nState, & !< state loop limit
nStress !< stress loop limit
real(pReal) :: &
subStepMinCryst, & !< minimum (relative) size of sub-step allowed during cutback
subStepSizeCryst, & !< size of first substep when cutback
subStepSizeLp, & !< size of first substep when cutback in Lp calculation
subStepSizeLi, & !< size of first substep when cutback in Li calculation
stepIncreaseCryst, & !< increase of next substep size when previous substep converged
rtol_crystalliteState, & !< relative tolerance in state loop
rtol_crystalliteStress, & !< relative tolerance in stress loop
atol_crystalliteStress !< absolute tolerance in stress loop
end type tNumerics
type(tNumerics) :: num ! numerics parameters. Better name?
type :: tDebugOptions
logical :: &
basic, &
extensive, &
selective
integer :: &
element, &
ip, &
grain
end type tDebugOptions
type(tDebugOptions) :: debugCrystallite
procedure(integrateStateFPI), pointer :: integrateState
integer(kind(PLASTICITY_undefined_ID)), dimension(:), allocatable :: &
2020-08-15 19:32:10 +05:30
phase_plasticity !< plasticity of each phase
integer(kind(SOURCE_undefined_ID)), dimension(:,:), allocatable :: &
2020-08-15 19:32:10 +05:30
phase_source, & !< active sources mechanisms of each phase
phase_kinematics !< active kinematic mechanisms of each phase
2020-08-15 19:32:10 +05:30
integer, dimension(:), allocatable, public :: & !< ToDo: should be protected (bug in Intel compiler)
2020-08-15 19:32:10 +05:30
phase_Nsources, & !< number of source mechanisms active in each phase
phase_Nkinematics, & !< number of kinematic mechanisms active in each phase
phase_NstiffnessDegradations, & !< number of stiffness degradation mechanisms active in each phase
phase_plasticityInstance, & !< instance of particular plasticity of each phase
phase_elasticityInstance !< instance of particular elasticity of each phase
logical, dimension(:), allocatable, public :: & ! ToDo: should be protected (bug in Intel Compiler)
2020-08-15 19:32:10 +05:30
phase_localPlasticity !< flags phases with local constitutive law
type(tPlasticState), allocatable, dimension(:), public :: &
plasticState
type(tSourceState), allocatable, dimension(:), public :: &
sourceState
2019-06-15 19:10:22 +05:30
integer, public, protected :: &
constitutive_plasticity_maxSizeDotState, &
constitutive_source_maxSizeDotState
interface
2020-11-03 02:09:33 +05:30
module subroutine mech_init
end subroutine mech_init
module subroutine damage_init
end subroutine damage_init
2020-07-03 20:15:11 +05:30
module subroutine thermal_init
end subroutine thermal_init
2020-12-20 21:02:33 +05:30
module function constitutive_collectDotState(S, FArray, Fi, FpArray, subdt, ipc, ip, el,phase,of) result(broken)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el, & !< element
phase, &
of
real(pReal), intent(in) :: &
subdt !< timestep
real(pReal), intent(in), dimension(3,3,homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems) :: &
FArray, & !< elastic deformation gradient
FpArray !< plastic deformation gradient
real(pReal), intent(in), dimension(3,3) :: &
Fi !< intermediate deformation gradient
real(pReal), intent(in), dimension(3,3) :: &
S !< 2nd Piola Kirchhoff stress (vector notation)
logical :: broken
end function constitutive_collectDotState
2020-12-20 21:41:43 +05:30
module function constitutive_deltaState(S, Fi, ipc, ip, el, phase, of) result(broken)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el, & !< element
phase, &
of
real(pReal), intent(in), dimension(3,3) :: &
S, & !< 2nd Piola Kirchhoff stress
Fi !< intermediate deformation gradient
logical :: &
broken
end function constitutive_deltaState
2020-08-15 19:32:10 +05:30
module function plastic_active(plastic_label) result(active_plastic)
character(len=*), intent(in) :: plastic_label
logical, dimension(:), allocatable :: active_plastic
end function plastic_active
module function source_active(source_label,src_length) result(active_source)
character(len=*), intent(in) :: source_label
integer, intent(in) :: src_length
logical, dimension(:,:), allocatable :: active_source
end function source_active
module function kinematics_active(kinematics_label,kinematics_length) result(active_kinematics)
character(len=*), intent(in) :: kinematics_label
integer, intent(in) :: kinematics_length
logical, dimension(:,:), allocatable :: active_kinematics
end function kinematics_active
module subroutine source_damage_anisoBrittle_dotState(S, ipc, ip, el)
integer, intent(in) :: &
2020-07-12 20:14:26 +05:30
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
S
end subroutine source_damage_anisoBrittle_dotState
module subroutine source_damage_anisoDuctile_dotState(ipc, ip, el)
integer, intent(in) :: &
2020-07-12 20:14:26 +05:30
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
end subroutine source_damage_anisoDuctile_dotState
module subroutine source_damage_isoDuctile_dotState(ipc, ip, el)
integer, intent(in) :: &
2020-07-12 20:14:26 +05:30
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
end subroutine source_damage_isoDuctile_dotState
module subroutine source_thermal_externalheat_dotState(phase, of)
integer, intent(in) :: &
phase, &
of
end subroutine source_thermal_externalheat_dotState
2020-07-15 18:05:21 +05:30
module subroutine constitutive_damage_getRateAndItsTangents(phiDot, dPhiDot_dPhi, phi, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi !< damage parameter
real(pReal), intent(inout) :: &
phiDot, &
dPhiDot_dPhi
end subroutine constitutive_damage_getRateAndItsTangents
module subroutine constitutive_thermal_getRateAndItsTangents(TDot, dTDot_dT, T, S, Lp, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
S, & !< current 2nd Piola Kitchoff stress vector
Lp !< plastic velocity gradient
real(pReal), intent(inout) :: &
TDot, &
dTDot_dT
end subroutine constitutive_thermal_getRateAndItsTangents
module function plastic_dislotwin_homogenizedC(ipc,ip,el) result(homogenizedC)
real(pReal), dimension(6,6) :: &
homogenizedC
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
end function plastic_dislotwin_homogenizedC
2020-07-10 21:59:36 +05:30
module subroutine plastic_nonlocal_updateCompatibility(orientation,instance,i,e)
integer, intent(in) :: &
instance, &
i, &
e
type(rotation), dimension(1,discretization_nIPs,discretization_Nelems), intent(in) :: &
2020-07-10 21:59:36 +05:30
orientation !< crystal orientation
end subroutine plastic_nonlocal_updateCompatibility
2020-07-02 00:52:05 +05:30
module subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dMi,Mi,instance,of)
real(pReal), dimension(3,3), intent(out) :: &
Li !< inleastic velocity gradient
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dMi !< derivative of Li with respect to Mandel stress
real(pReal), dimension(3,3), intent(in) :: &
Mi !< Mandel stress
integer, intent(in) :: &
instance, &
of
end subroutine plastic_isotropic_LiAndItsTangent
module subroutine kinematics_cleavage_opening_LiAndItsTangent(Ld, dLd_dTstar, S, ipc, ip, el)
integer, intent(in) :: &
2020-07-12 20:14:26 +05:30
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(3,3) :: &
S
real(pReal), intent(out), dimension(3,3) :: &
2020-07-12 20:14:26 +05:30
Ld !< damage velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
2020-07-12 20:14:26 +05:30
dLd_dTstar !< derivative of Ld with respect to Tstar (4th-order tensor)
end subroutine kinematics_cleavage_opening_LiAndItsTangent
module subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar, S, ipc, ip, el)
integer, intent(in) :: &
2020-07-12 20:14:26 +05:30
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(3,3) :: &
S
real(pReal), intent(out), dimension(3,3) :: &
2020-07-12 20:14:26 +05:30
Ld !< damage velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
2020-07-12 20:14:26 +05:30
dLd_dTstar !< derivative of Ld with respect to Tstar (4th-order tensor)
end subroutine kinematics_slipplane_opening_LiAndItsTangent
module subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar, ipc, ip, el)
integer, intent(in) :: &
2020-07-12 20:14:26 +05:30
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out), dimension(3,3) :: &
2020-07-12 20:14:26 +05:30
Li !< thermal velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
2020-07-12 20:14:26 +05:30
dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero)
end subroutine kinematics_thermal_expansion_LiAndItsTangent
module subroutine source_damage_isoBrittle_deltaState(C, Fe, ipc, ip, el)
integer, intent(in) :: &
2020-07-12 20:14:26 +05:30
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
Fe
real(pReal), intent(in), dimension(6,6) :: &
C
end subroutine source_damage_isoBrittle_deltaState
module subroutine plastic_results
end subroutine plastic_results
module subroutine damage_results
end subroutine damage_results
end interface
2020-07-12 16:57:28 +05:30
interface constitutive_LpAndItsTangents
2020-07-15 18:05:21 +05:30
module subroutine constitutive_plastic_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, &
S, Fi, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
S, & !< 2nd Piola-Kirchhoff stress
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
Lp !< plastic velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLp_dS, &
dLp_dFi !< derivative of Lp with respect to Fi
end subroutine constitutive_plastic_LpAndItsTangents
2020-07-12 16:57:28 +05:30
end interface constitutive_LpAndItsTangents
2020-07-15 18:05:21 +05:30
2020-07-12 16:57:28 +05:30
interface constitutive_dependentState
2020-07-15 18:05:21 +05:30
module subroutine constitutive_plastic_dependentState(F, Fp, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
F, & !< elastic deformation gradient
Fp !< plastic deformation gradient
end subroutine constitutive_plastic_dependentState
2020-07-15 18:05:21 +05:30
2020-07-12 16:57:28 +05:30
end interface constitutive_dependentState
interface constitutive_SandItsTangents
module subroutine constitutive_hooke_SandItsTangents(S, dS_dFe, dS_dFi, Fe, Fi, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
Fe, & !< elastic deformation gradient
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
S !< 2nd Piola-Kirchhoff stress tensor
real(pReal), intent(out), dimension(3,3,3,3) :: &
dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient
dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient
end subroutine constitutive_hooke_SandItsTangents
end interface constitutive_SandItsTangents
2020-07-02 02:21:21 +05:30
type(tDebugOptions) :: debugConstitutive
2019-06-15 19:10:22 +05:30
public :: &
constitutive_init, &
constitutive_homogenizedC, &
constitutive_LpAndItsTangents, &
constitutive_dependentState, &
2019-06-15 19:10:22 +05:30
constitutive_LiAndItsTangents, &
constitutive_SandItsTangents, &
constitutive_collectDotState, &
constitutive_collectDotState_source, &
2020-04-01 11:32:08 +05:30
constitutive_deltaState, &
constitutive_deltaState_source, &
2020-07-15 18:05:21 +05:30
constitutive_damage_getRateAndItsTangents, &
constitutive_thermal_getRateAndItsTangents, &
2020-08-15 19:32:10 +05:30
constitutive_results, &
constitutive_allocateState, &
2020-12-20 13:57:37 +05:30
constitutive_forward, &
constitutive_restore, &
2020-08-15 19:32:10 +05:30
plastic_nonlocal_updateCompatibility, &
plastic_active, &
source_active, &
kinematics_active
public :: &
crystallite_init, &
crystallite_stress, &
crystallite_stressTangent, &
crystallite_orientations, &
crystallite_push33ToRef, &
crystallite_results, &
crystallite_restartWrite, &
crystallite_restartRead, &
crystallite_forward, &
crystallite_initializeRestorationPoints, &
crystallite_windForward, &
crystallite_restore
contains
!--------------------------------------------------------------------------------------------------
!> @brief Initialze constitutive models for individual physics
!--------------------------------------------------------------------------------------------------
2019-04-06 01:56:23 +05:30
subroutine constitutive_init
2019-06-15 19:10:22 +05:30
integer :: &
2020-08-15 19:32:10 +05:30
p, & !< counter in phase loop
2020-11-03 02:09:33 +05:30
s !< counter in source loop
2020-07-02 02:21:21 +05:30
class (tNode), pointer :: &
2020-08-15 19:32:10 +05:30
debug_constitutive, &
2020-11-03 02:09:33 +05:30
phases
2020-07-02 02:21:21 +05:30
debug_constitutive => config_debug%get('constitutive', defaultVal=emptyList)
debugConstitutive%basic = debug_constitutive%contains('basic')
debugConstitutive%extensive = debug_constitutive%contains('extensive')
2020-07-03 20:15:11 +05:30
debugConstitutive%selective = debug_constitutive%contains('selective')
debugConstitutive%element = config_debug%get_asInt('element',defaultVal = 1)
debugConstitutive%ip = config_debug%get_asInt('integrationpoint',defaultVal = 1)
debugConstitutive%grain = config_debug%get_asInt('grain',defaultVal = 1)
2020-07-02 02:21:21 +05:30
2020-08-15 19:32:10 +05:30
!--------------------------------------------------------------------------------------------------
! initialize constitutive laws
2020-11-03 02:09:33 +05:30
call mech_init
call damage_init
call thermal_init
2020-09-22 16:39:12 +05:30
print'(/,a)', ' <<<+- constitutive init -+>>>'; flush(IO_STDOUT)
phases => config_material%get('phase')
2019-06-15 19:10:22 +05:30
constitutive_source_maxSizeDotState = 0
2020-08-15 19:32:10 +05:30
PhaseLoop2:do p = 1,phases%length
!--------------------------------------------------------------------------------------------------
2020-06-26 15:14:17 +05:30
! partition and initialize state
2020-10-08 01:45:13 +05:30
plasticState(p)%partitionedState0 = plasticState(p)%state0
plasticState(p)%state = plasticState(p)%partitionedState0
2020-08-15 19:32:10 +05:30
forall(s = 1:phase_Nsources(p))
2020-10-08 01:45:13 +05:30
sourceState(p)%p(s)%partitionedState0 = sourceState(p)%p(s)%state0
sourceState(p)%p(s)%state = sourceState(p)%p(s)%partitionedState0
2019-06-15 19:10:22 +05:30
end forall
2020-07-13 18:18:23 +05:30
2020-03-16 23:58:50 +05:30
constitutive_source_maxSizeDotState = max(constitutive_source_maxSizeDotState, &
2020-08-15 19:32:10 +05:30
maxval(sourceState(p)%p%sizeDotState))
2019-06-15 19:10:22 +05:30
enddo PhaseLoop2
2020-03-16 23:58:50 +05:30
constitutive_plasticity_maxSizeDotState = maxval(plasticState%sizeDotState)
end subroutine constitutive_init
2009-03-06 15:32:36 +05:30
2020-08-15 19:32:10 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief checks if a source mechanism is active or not
!--------------------------------------------------------------------------------------------------
module function source_active(source_label,src_length) result(active_source)
character(len=*), intent(in) :: source_label !< name of source mechanism
2020-08-15 19:32:10 +05:30
integer, intent(in) :: src_length !< max. number of sources in system
logical, dimension(:,:), allocatable :: active_source
class(tNode), pointer :: &
phases, &
phase, &
sources, &
src
2020-08-15 19:32:10 +05:30
integer :: p,s
phases => config_material%get('phase')
2020-08-15 19:32:10 +05:30
allocate(active_source(src_length,phases%length), source = .false. )
do p = 1, phases%length
phase => phases%get(p)
sources => phase%get('source',defaultVal=emptyList)
do s = 1, sources%length
src => sources%get(s)
if(src%get_asString('type') == source_label) active_source(s,p) = .true.
enddo
enddo
end function source_active
!--------------------------------------------------------------------------------------------------
!> @brief checks if a kinematic mechanism is active or not
!--------------------------------------------------------------------------------------------------
module function kinematics_active(kinematics_label,kinematics_length) result(active_kinematics)
character(len=*), intent(in) :: kinematics_label !< name of kinematic mechanism
integer, intent(in) :: kinematics_length !< max. number of kinematics in system
logical, dimension(:,:), allocatable :: active_kinematics
class(tNode), pointer :: &
phases, &
phase, &
kinematics, &
kinematics_type
2020-08-15 19:32:10 +05:30
integer :: p,k
phases => config_material%get('phase')
2020-08-15 19:32:10 +05:30
allocate(active_kinematics(kinematics_length,phases%length), source = .false. )
do p = 1, phases%length
phase => phases%get(p)
kinematics => phase%get('kinematics',defaultVal=emptyList)
do k = 1, kinematics%length
kinematics_type => kinematics%get(k)
if(kinematics_type%get_asString('type') == kinematics_label) active_kinematics(k,p) = .true.
enddo
enddo
end function kinematics_active
2020-08-15 19:32:10 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief returns the homogenize elasticity matrix
!> ToDo: homogenizedC66 would be more consistent
!--------------------------------------------------------------------------------------------------
function constitutive_homogenizedC(ipc,ip,el)
2020-07-13 18:18:23 +05:30
real(pReal), dimension(6,6) :: &
constitutive_homogenizedC
integer, intent(in) :: &
2020-07-13 18:18:23 +05:30
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
case (PLASTICITY_DISLOTWIN_ID) plasticityType
constitutive_homogenizedC = plastic_dislotwin_homogenizedC(ipc,ip,el)
case default plasticityType
constitutive_homogenizedC = lattice_C66(1:6,1:6,material_phaseAt(ipc,el))
end select plasticityType
end function constitutive_homogenizedC
!--------------------------------------------------------------------------------------------------
2015-10-14 00:22:01 +05:30
!> @brief contains the constitutive equation for calculating the velocity gradient
2018-12-30 17:05:26 +05:30
! ToDo: MD: S is Mi?
!--------------------------------------------------------------------------------------------------
subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, &
S, Fi, ipc, ip, el)
2015-10-14 00:22:01 +05:30
2019-06-15 19:10:22 +05:30
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
S !< 2nd Piola-Kirchhoff stress
real(pReal), intent(in), dimension(3,3) :: &
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
Li !< intermediate velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dS, & !< derivative of Li with respect to S
dLi_dFi
2019-06-15 19:10:22 +05:30
real(pReal), dimension(3,3) :: &
my_Li, & !< intermediate velocity gradient
FiInv, &
temp_33
real(pReal), dimension(3,3,3,3) :: &
my_dLi_dS
real(pReal) :: &
detFi
integer :: &
k, i, j, &
instance, of
2020-07-03 20:15:11 +05:30
2019-06-15 19:10:22 +05:30
Li = 0.0_pReal
dLi_dS = 0.0_pReal
dLi_dFi = 0.0_pReal
2019-06-15 19:10:22 +05:30
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
case (PLASTICITY_isotropic_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
2020-07-02 00:52:05 +05:30
call plastic_isotropic_LiAndItsTangent(my_Li, my_dLi_dS, S ,instance,of)
2019-06-15 19:10:22 +05:30
case default plasticityType
my_Li = 0.0_pReal
my_dLi_dS = 0.0_pReal
end select plasticityType
2019-06-15 19:10:22 +05:30
Li = Li + my_Li
dLi_dS = dLi_dS + my_dLi_dS
2019-06-15 19:10:22 +05:30
KinematicsLoop: do k = 1, phase_Nkinematics(material_phaseAt(ipc,el))
kinematicsType: select case (phase_kinematics(k,material_phaseAt(ipc,el)))
case (KINEMATICS_cleavage_opening_ID) kinematicsType
call kinematics_cleavage_opening_LiAndItsTangent(my_Li, my_dLi_dS, S, ipc, ip, el)
case (KINEMATICS_slipplane_opening_ID) kinematicsType
call kinematics_slipplane_opening_LiAndItsTangent(my_Li, my_dLi_dS, S, ipc, ip, el)
case (KINEMATICS_thermal_expansion_ID) kinematicsType
call kinematics_thermal_expansion_LiAndItsTangent(my_Li, my_dLi_dS, ipc, ip, el)
case default kinematicsType
my_Li = 0.0_pReal
my_dLi_dS = 0.0_pReal
end select kinematicsType
Li = Li + my_Li
dLi_dS = dLi_dS + my_dLi_dS
enddo KinematicsLoop
2019-06-15 19:10:22 +05:30
FiInv = math_inv33(Fi)
detFi = math_det33(Fi)
Li = matmul(matmul(Fi,Li),FiInv)*detFi !< push forward to intermediate configuration
temp_33 = matmul(FiInv,Li)
2019-06-15 19:10:22 +05:30
do i = 1,3; do j = 1,3
dLi_dS(1:3,1:3,i,j) = matmul(matmul(Fi,dLi_dS(1:3,1:3,i,j)),FiInv)*detFi
dLi_dFi(1:3,1:3,i,j) = dLi_dFi(1:3,1:3,i,j) + Li*FiInv(j,i)
dLi_dFi(1:3,i,1:3,j) = dLi_dFi(1:3,i,1:3,j) + math_I3*temp_33(j,i) + Li*FiInv(j,i)
2019-07-01 10:39:51 +05:30
enddo; enddo
2015-10-14 00:22:01 +05:30
2018-08-28 18:37:39 +05:30
end subroutine constitutive_LiAndItsTangents
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
2020-12-20 14:14:25 +05:30
function constitutive_collectDotState_source(S, ipc, ip, el,phase,of) result(broken)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el, & !< element
phase, &
of
real(pReal), intent(in), dimension(3,3) :: &
S !< 2nd Piola Kirchhoff stress (vector notation)
integer :: &
2020-12-20 14:14:25 +05:30
i !< counter in source loop
logical :: broken
broken = .false.
SourceLoop: do i = 1, phase_Nsources(phase)
sourceType: select case (phase_source(i,phase))
case (SOURCE_damage_anisoBrittle_ID) sourceType
2020-08-15 19:32:10 +05:30
call source_damage_anisoBrittle_dotState(S, ipc, ip, el) ! correct stress?
case (SOURCE_damage_isoDuctile_ID) sourceType
2020-08-15 19:32:10 +05:30
call source_damage_isoDuctile_dotState(ipc, ip, el)
case (SOURCE_damage_anisoDuctile_ID) sourceType
2020-08-15 19:32:10 +05:30
call source_damage_anisoDuctile_dotState(ipc, ip, el)
case (SOURCE_thermal_externalheat_ID) sourceType
call source_thermal_externalheat_dotState(phase,of)
end select sourceType
broken = broken .or. any(IEEE_is_NaN(sourceState(phase)%p(i)%dotState(:,of)))
enddo SourceLoop
2020-04-01 11:11:55 +05:30
end function constitutive_collectDotState_source
2009-03-06 15:32:36 +05:30
2019-06-15 19:10:22 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief for constitutive models having an instantaneous change of state
!> will return false if delta state is not needed/supported by the constitutive model
!--------------------------------------------------------------------------------------------------
2020-12-20 14:14:25 +05:30
function constitutive_deltaState_source(Fe, ipc, ip, el, phase, of) result(broken)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el, & !< element
phase, &
of
real(pReal), intent(in), dimension(3,3) :: &
2020-12-20 14:14:25 +05:30
Fe !< elastic deformation gradient
integer :: &
i, &
myOffset, &
mySize
logical :: &
broken
broken = .false.
2020-04-01 11:32:08 +05:30
sourceLoop: do i = 1, phase_Nsources(phase)
2020-04-01 11:32:08 +05:30
sourceType: select case (phase_source(i,phase))
2019-06-15 19:10:22 +05:30
case (SOURCE_damage_isoBrittle_ID) sourceType
call source_damage_isoBrittle_deltaState (constitutive_homogenizedC(ipc,ip,el), Fe, &
ipc, ip, el)
broken = any(IEEE_is_NaN(sourceState(phase)%p(i)%deltaState(:,of)))
if(.not. broken) then
myOffset = sourceState(phase)%p(i)%offsetDeltaState
mySize = sourceState(phase)%p(i)%sizeDeltaState
sourceState(phase)%p(i)%state(myOffset + 1: myOffset + mySize,of) = &
sourceState(phase)%p(i)%state(myOffset + 1: myOffset + mySize,of) + sourceState(phase)%p(i)%deltaState(1:mySize,of)
endif
2019-06-15 19:10:22 +05:30
end select sourceType
2019-06-15 19:10:22 +05:30
enddo SourceLoop
end function constitutive_deltaState_source
2020-08-15 19:32:10 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief Allocate the components of the state structure for a given phase
!--------------------------------------------------------------------------------------------------
subroutine constitutive_allocateState(state, &
Nconstituents,sizeState,sizeDotState,sizeDeltaState)
2020-08-15 19:32:10 +05:30
class(tState), intent(out) :: &
state
integer, intent(in) :: &
Nconstituents, &
2020-08-15 19:32:10 +05:30
sizeState, &
sizeDotState, &
sizeDeltaState
state%sizeState = sizeState
state%sizeDotState = sizeDotState
state%sizeDeltaState = sizeDeltaState
state%offsetDeltaState = sizeState-sizeDeltaState ! deltaState occupies latter part of state by definition
allocate(state%atol (sizeState), source=0.0_pReal)
allocate(state%state0 (sizeState,Nconstituents), source=0.0_pReal)
allocate(state%partitionedState0(sizeState,Nconstituents), source=0.0_pReal)
allocate(state%subState0 (sizeState,Nconstituents), source=0.0_pReal)
allocate(state%state (sizeState,Nconstituents), source=0.0_pReal)
2020-08-15 19:32:10 +05:30
allocate(state%dotState (sizeDotState,Nconstituents), source=0.0_pReal)
2020-08-15 19:32:10 +05:30
allocate(state%deltaState(sizeDeltaState,Nconstituents), source=0.0_pReal)
2020-08-15 19:32:10 +05:30
end subroutine constitutive_allocateState
2020-12-20 13:57:37 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief Restore data after homog cutback.
!--------------------------------------------------------------------------------------------------
subroutine constitutive_restore(i,e)
integer, intent(in) :: &
i, & !< integration point number
e !< element number
integer :: &
c, & !< constituent number
s
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState(material_phaseAt(c,e))%p(s)%state( :,material_phasememberAt(c,i,e)) = &
sourceState(material_phaseAt(c,e))%p(s)%partitionedState0(:,material_phasememberAt(c,i,e))
enddo
enddo
end subroutine constitutive_restore
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
! ToDo: Any guessing for the current states possible?
!--------------------------------------------------------------------------------------------------
subroutine constitutive_forward
integer :: i, j
do i = 1, size(sourceState)
do j = 1,phase_Nsources(i)
sourceState(i)%p(j)%state0 = sourceState(i)%p(j)%state
enddo; enddo
end subroutine constitutive_forward
2018-12-05 04:25:39 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief writes constitutive results to HDF5 output file
2018-12-05 04:25:39 +05:30
!--------------------------------------------------------------------------------------------------
subroutine constitutive_results
2019-12-19 00:35:51 +05:30
call plastic_results
call damage_results
2019-12-19 00:35:51 +05:30
2018-12-05 04:25:39 +05:30
end subroutine constitutive_results
2020-08-15 19:32:10 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief allocates and initialize per grain variables
!--------------------------------------------------------------------------------------------------
subroutine crystallite_init
integer :: &
p, &
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
cMax, & !< maximum number of integration point components
iMax, & !< maximum number of integration points
eMax !< maximum number of elements
class(tNode), pointer :: &
num_crystallite, &
debug_crystallite, & ! pointer to debug options for crystallite
phases, &
phase, &
mech
print'(/,a)', ' <<<+- crystallite init -+>>>'
debug_crystallite => config_debug%get('crystallite', defaultVal=emptyList)
debugCrystallite%basic = debug_crystallite%contains('basic')
debugCrystallite%extensive = debug_crystallite%contains('extensive')
debugCrystallite%selective = debug_crystallite%contains('selective')
debugCrystallite%element = config_debug%get_asInt('element', defaultVal=1)
debugCrystallite%ip = config_debug%get_asInt('integrationpoint', defaultVal=1)
debugCrystallite%grain = config_debug%get_asInt('grain', defaultVal=1)
cMax = homogenization_maxNconstituents
iMax = discretization_nIPs
eMax = discretization_Nelems
allocate(crystallite_partitionedF(3,3,cMax,iMax,eMax),source=0.0_pReal)
allocate(crystallite_S0, &
crystallite_F0, crystallite_Fi0,crystallite_Fp0, &
crystallite_Li0,crystallite_Lp0, &
crystallite_partitionedS0, &
crystallite_partitionedF0,crystallite_partitionedFp0,crystallite_partitionedFi0, &
crystallite_partitionedLp0,crystallite_partitionedLi0, &
crystallite_S,crystallite_P, &
crystallite_Fe,crystallite_Fi,crystallite_Fp, &
crystallite_Li,crystallite_Lp, &
crystallite_subF,crystallite_subF0, &
crystallite_subFp0,crystallite_subFi0, &
source = crystallite_partitionedF)
allocate(crystallite_dt(cMax,iMax,eMax),source=0.0_pReal)
allocate(crystallite_subdt,crystallite_subFrac,crystallite_subStep, &
source = crystallite_dt)
allocate(crystallite_orientation(cMax,iMax,eMax))
allocate(crystallite_requested(cMax,iMax,eMax), source=.false.)
allocate(crystallite_converged(cMax,iMax,eMax), source=.true.)
num_crystallite => config_numerics%get('crystallite',defaultVal=emptyDict)
num%subStepMinCryst = num_crystallite%get_asFloat ('subStepMin', defaultVal=1.0e-3_pReal)
num%subStepSizeCryst = num_crystallite%get_asFloat ('subStepSize', defaultVal=0.25_pReal)
num%stepIncreaseCryst = num_crystallite%get_asFloat ('stepIncrease', defaultVal=1.5_pReal)
num%subStepSizeLp = num_crystallite%get_asFloat ('subStepSizeLp', defaultVal=0.5_pReal)
num%subStepSizeLi = num_crystallite%get_asFloat ('subStepSizeLi', defaultVal=0.5_pReal)
num%rtol_crystalliteState = num_crystallite%get_asFloat ('rtol_State', defaultVal=1.0e-6_pReal)
num%rtol_crystalliteStress = num_crystallite%get_asFloat ('rtol_Stress', defaultVal=1.0e-6_pReal)
num%atol_crystalliteStress = num_crystallite%get_asFloat ('atol_Stress', defaultVal=1.0e-8_pReal)
num%iJacoLpresiduum = num_crystallite%get_asInt ('iJacoLpresiduum', defaultVal=1)
num%nState = num_crystallite%get_asInt ('nState', defaultVal=20)
num%nStress = num_crystallite%get_asInt ('nStress', defaultVal=40)
if(num%subStepMinCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinCryst')
if(num%subStepSizeCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeCryst')
if(num%stepIncreaseCryst <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseCryst')
if(num%subStepSizeLp <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLp')
if(num%subStepSizeLi <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLi')
if(num%rtol_crystalliteState <= 0.0_pReal) call IO_error(301,ext_msg='rtol_crystalliteState')
if(num%rtol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='rtol_crystalliteStress')
if(num%atol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='atol_crystalliteStress')
if(num%iJacoLpresiduum < 1) call IO_error(301,ext_msg='iJacoLpresiduum')
if(num%nState < 1) call IO_error(301,ext_msg='nState')
if(num%nStress< 1) call IO_error(301,ext_msg='nStress')
select case(num_crystallite%get_asString('integrator',defaultVal='FPI'))
case('FPI')
integrateState => integrateStateFPI
case('Euler')
integrateState => integrateStateEuler
case('AdaptiveEuler')
integrateState => integrateStateAdaptiveEuler
case('RK4')
integrateState => integrateStateRK4
case('RKCK45')
integrateState => integrateStateRKCK45
case default
call IO_error(301,ext_msg='integrator')
end select
phases => config_material%get('phase')
allocate(output_constituent(phases%length))
do p = 1, phases%length
phase => phases%get(p)
mech => phase%get('mechanics',defaultVal = emptyDict)
#if defined(__GFORTRAN__)
output_constituent(p)%label = output_asStrings(mech)
#else
output_constituent(p)%label = mech%get_asStrings('output',defaultVal=emptyStringArray)
#endif
enddo
#ifdef DEBUG
if (debugCrystallite%basic) then
print'(a42,1x,i10)', ' # of elements: ', eMax
print'(a42,1x,i10)', ' # of integration points/element: ', iMax
print'(a42,1x,i10)', 'max # of constituents/integration point: ', cMax
flush(IO_STDOUT)
endif
#endif
!$OMP PARALLEL DO PRIVATE(i,c)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1), FEsolving_execIP(2); do c = 1, homogenization_Nconstituents(material_homogenizationAt(e))
crystallite_Fp0(1:3,1:3,c,i,e) = material_orientation0(c,i,e)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005)
crystallite_Fp0(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e) &
/ math_det33(crystallite_Fp0(1:3,1:3,c,i,e))**(1.0_pReal/3.0_pReal)
crystallite_Fi0(1:3,1:3,c,i,e) = math_I3
crystallite_F0(1:3,1:3,c,i,e) = math_I3
crystallite_Fe(1:3,1:3,c,i,e) = math_inv33(matmul(crystallite_Fi0(1:3,1:3,c,i,e), &
crystallite_Fp0(1:3,1:3,c,i,e))) ! assuming that euler angles are given in internal strain free configuration
crystallite_Fp(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e)
crystallite_Fi(1:3,1:3,c,i,e) = crystallite_Fi0(1:3,1:3,c,i,e)
crystallite_requested(c,i,e) = .true.
enddo; enddo
enddo
!$OMP END PARALLEL DO
crystallite_partitionedFp0 = crystallite_Fp0
crystallite_partitionedFi0 = crystallite_Fi0
crystallite_partitionedF0 = crystallite_F0
crystallite_partitionedF = crystallite_F0
call crystallite_orientations()
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
call constitutive_dependentState(crystallite_partitionedF0(1:3,1:3,c,i,e), &
crystallite_partitionedFp0(1:3,1:3,c,i,e), &
c,i,e) ! update dependent state variables to be consistent with basic states
enddo
enddo
enddo
!$OMP END PARALLEL DO
end subroutine crystallite_init
!--------------------------------------------------------------------------------------------------
!> @brief calculate stress (P)
!--------------------------------------------------------------------------------------------------
function crystallite_stress()
logical, dimension(discretization_nIPs,discretization_Nelems) :: crystallite_stress
real(pReal) :: &
formerSubStep
integer :: &
NiterationCrystallite, & ! number of iterations in crystallite loop
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
s
logical, dimension(homogenization_maxNconstituents,discretization_nIPs,discretization_Nelems) :: todo !ToDo: need to set some values to false for different Ngrains
real(pReal), dimension(:,:,:,:,:), allocatable :: &
subLp0,& !< plastic velocity grad at start of crystallite inc
subLi0 !< intermediate velocity grad at start of crystallite inc
todo = .false.
subLp0 = crystallite_partitionedLp0
subLi0 = crystallite_partitionedLi0
!--------------------------------------------------------------------------------------------------
! initialize to starting condition
crystallite_subStep = 0.0_pReal
!$OMP PARALLEL DO
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2); do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
homogenizationRequestsCalculation: if (crystallite_requested(c,i,e)) then
plasticState (material_phaseAt(c,e))%subState0( :,material_phaseMemberAt(c,i,e)) = &
plasticState (material_phaseAt(c,e))%partitionedState0(:,material_phaseMemberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState(material_phaseAt(c,e))%p(s)%subState0( :,material_phaseMemberAt(c,i,e)) = &
sourceState(material_phaseAt(c,e))%p(s)%partitionedState0(:,material_phaseMemberAt(c,i,e))
enddo
crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_partitionedFp0(1:3,1:3,c,i,e)
crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_partitionedFi0(1:3,1:3,c,i,e)
crystallite_subF0(1:3,1:3,c,i,e) = crystallite_partitionedF0(1:3,1:3,c,i,e)
crystallite_subFrac(c,i,e) = 0.0_pReal
crystallite_subStep(c,i,e) = 1.0_pReal/num%subStepSizeCryst
todo(c,i,e) = .true.
crystallite_converged(c,i,e) = .false. ! pretend failed step of 1/subStepSizeCryst
endif homogenizationRequestsCalculation
enddo; enddo
enddo elementLooping1
!$OMP END PARALLEL DO
NiterationCrystallite = 0
cutbackLooping: do while (any(todo(:,FEsolving_execIP(1):FEsolving_execIP(2),FEsolving_execELem(1):FEsolving_execElem(2))))
NiterationCrystallite = NiterationCrystallite + 1
#ifdef DEBUG
if (debugCrystallite%extensive) &
print'(a,i6)', '<< CRYST stress >> crystallite iteration ',NiterationCrystallite
#endif
!$OMP PARALLEL DO PRIVATE(formerSubStep)
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
!--------------------------------------------------------------------------------------------------
! wind forward
if (crystallite_converged(c,i,e)) then
formerSubStep = crystallite_subStep(c,i,e)
crystallite_subFrac(c,i,e) = crystallite_subFrac(c,i,e) + crystallite_subStep(c,i,e)
crystallite_subStep(c,i,e) = min(1.0_pReal - crystallite_subFrac(c,i,e), &
num%stepIncreaseCryst * crystallite_subStep(c,i,e))
todo(c,i,e) = crystallite_subStep(c,i,e) > 0.0_pReal ! still time left to integrate on?
if (todo(c,i,e)) then
crystallite_subF0 (1:3,1:3,c,i,e) = crystallite_subF(1:3,1:3,c,i,e)
subLp0(1:3,1:3,c,i,e) = crystallite_Lp (1:3,1:3,c,i,e)
subLi0(1:3,1:3,c,i,e) = crystallite_Li (1:3,1:3,c,i,e)
crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_Fp (1:3,1:3,c,i,e)
crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_Fi (1:3,1:3,c,i,e)
plasticState( material_phaseAt(c,e))%subState0(:,material_phaseMemberAt(c,i,e)) &
= plasticState(material_phaseAt(c,e))%state( :,material_phaseMemberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState( material_phaseAt(c,e))%p(s)%subState0(:,material_phaseMemberAt(c,i,e)) &
= sourceState(material_phaseAt(c,e))%p(s)%state( :,material_phaseMemberAt(c,i,e))
enddo
endif
!--------------------------------------------------------------------------------------------------
! cut back (reduced time and restore)
else
crystallite_subStep(c,i,e) = num%subStepSizeCryst * crystallite_subStep(c,i,e)
crystallite_Fp (1:3,1:3,c,i,e) = crystallite_subFp0(1:3,1:3,c,i,e)
crystallite_Fi (1:3,1:3,c,i,e) = crystallite_subFi0(1:3,1:3,c,i,e)
crystallite_S (1:3,1:3,c,i,e) = crystallite_S0 (1:3,1:3,c,i,e)
if (crystallite_subStep(c,i,e) < 1.0_pReal) then ! actual (not initial) cutback
crystallite_Lp (1:3,1:3,c,i,e) = subLp0(1:3,1:3,c,i,e)
crystallite_Li (1:3,1:3,c,i,e) = subLi0(1:3,1:3,c,i,e)
endif
plasticState (material_phaseAt(c,e))%state( :,material_phaseMemberAt(c,i,e)) &
= plasticState(material_phaseAt(c,e))%subState0(:,material_phaseMemberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState( material_phaseAt(c,e))%p(s)%state( :,material_phaseMemberAt(c,i,e)) &
= sourceState(material_phaseAt(c,e))%p(s)%subState0(:,material_phaseMemberAt(c,i,e))
enddo
! cant restore dotState here, since not yet calculated in first cutback after initialization
todo(c,i,e) = crystallite_subStep(c,i,e) > num%subStepMinCryst ! still on track or already done (beyond repair)
endif
!--------------------------------------------------------------------------------------------------
! prepare for integration
if (todo(c,i,e)) then
crystallite_subF(1:3,1:3,c,i,e) = crystallite_subF0(1:3,1:3,c,i,e) &
+ crystallite_subStep(c,i,e) *( crystallite_partitionedF (1:3,1:3,c,i,e) &
-crystallite_partitionedF0(1:3,1:3,c,i,e))
crystallite_Fe(1:3,1:3,c,i,e) = matmul(crystallite_subF(1:3,1:3,c,i,e), &
math_inv33(matmul(crystallite_Fi(1:3,1:3,c,i,e), &
crystallite_Fp(1:3,1:3,c,i,e))))
crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e)
crystallite_converged(c,i,e) = .false.
call integrateState(c,i,e)
call integrateSourceState(c,i,e)
endif
enddo
enddo
enddo elementLooping3
!$OMP END PARALLEL DO
!--------------------------------------------------------------------------------------------------
! integrate --- requires fully defined state array (basic + dependent state)
where(.not. crystallite_converged .and. crystallite_subStep > num%subStepMinCryst) & ! do not try non-converged but fully cutbacked any further
todo = .true. ! TODO: again unroll this into proper elementloop to avoid N^2 for single point evaluation
enddo cutbackLooping
! return whether converged or not
crystallite_stress = .false.
elementLooping5: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
crystallite_stress(i,e) = all(crystallite_converged(:,i,e))
enddo
enddo elementLooping5
end function crystallite_stress
!--------------------------------------------------------------------------------------------------
!> @brief Backup data for homog cutback.
!--------------------------------------------------------------------------------------------------
subroutine crystallite_initializeRestorationPoints(i,e)
integer, intent(in) :: &
i, & !< integration point number
e !< element number
integer :: &
c, & !< constituent number
s
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
crystallite_partitionedFp0(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e)
crystallite_partitionedLp0(1:3,1:3,c,i,e) = crystallite_Lp0(1:3,1:3,c,i,e)
crystallite_partitionedFi0(1:3,1:3,c,i,e) = crystallite_Fi0(1:3,1:3,c,i,e)
crystallite_partitionedLi0(1:3,1:3,c,i,e) = crystallite_Li0(1:3,1:3,c,i,e)
crystallite_partitionedF0(1:3,1:3,c,i,e) = crystallite_F0(1:3,1:3,c,i,e)
crystallite_partitionedS0(1:3,1:3,c,i,e) = crystallite_S0(1:3,1:3,c,i,e)
plasticState(material_phaseAt(c,e))%partitionedState0(:,material_phasememberAt(c,i,e)) = &
plasticState(material_phaseAt(c,e))%state0( :,material_phasememberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState(material_phaseAt(c,e))%p(s)%partitionedState0(:,material_phasememberAt(c,i,e)) = &
sourceState(material_phaseAt(c,e))%p(s)%state0( :,material_phasememberAt(c,i,e))
enddo
enddo
end subroutine crystallite_initializeRestorationPoints
!--------------------------------------------------------------------------------------------------
!> @brief Wind homog inc forward.
!--------------------------------------------------------------------------------------------------
subroutine crystallite_windForward(i,e)
integer, intent(in) :: &
i, & !< integration point number
e !< element number
integer :: &
c, & !< constituent number
s
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
crystallite_partitionedF0 (1:3,1:3,c,i,e) = crystallite_partitionedF(1:3,1:3,c,i,e)
crystallite_partitionedFp0(1:3,1:3,c,i,e) = crystallite_Fp (1:3,1:3,c,i,e)
crystallite_partitionedLp0(1:3,1:3,c,i,e) = crystallite_Lp (1:3,1:3,c,i,e)
crystallite_partitionedFi0(1:3,1:3,c,i,e) = crystallite_Fi (1:3,1:3,c,i,e)
crystallite_partitionedLi0(1:3,1:3,c,i,e) = crystallite_Li (1:3,1:3,c,i,e)
crystallite_partitionedS0 (1:3,1:3,c,i,e) = crystallite_S (1:3,1:3,c,i,e)
plasticState (material_phaseAt(c,e))%partitionedState0(:,material_phasememberAt(c,i,e)) = &
plasticState (material_phaseAt(c,e))%state (:,material_phasememberAt(c,i,e))
do s = 1, phase_Nsources(material_phaseAt(c,e))
sourceState(material_phaseAt(c,e))%p(s)%partitionedState0(:,material_phasememberAt(c,i,e)) = &
sourceState(material_phaseAt(c,e))%p(s)%state (:,material_phasememberAt(c,i,e))
enddo
enddo
end subroutine crystallite_windForward
!--------------------------------------------------------------------------------------------------
!> @brief Restore data after homog cutback.
!--------------------------------------------------------------------------------------------------
subroutine crystallite_restore(i,e,includeL)
integer, intent(in) :: &
i, & !< integration point number
e !< element number
logical, intent(in) :: &
includeL !< protect agains fake cutback
integer :: &
c !< constituent number
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
if (includeL) then
crystallite_Lp(1:3,1:3,c,i,e) = crystallite_partitionedLp0(1:3,1:3,c,i,e)
crystallite_Li(1:3,1:3,c,i,e) = crystallite_partitionedLi0(1:3,1:3,c,i,e)
endif ! maybe protecting everything from overwriting makes more sense
crystallite_Fp(1:3,1:3,c,i,e) = crystallite_partitionedFp0(1:3,1:3,c,i,e)
crystallite_Fi(1:3,1:3,c,i,e) = crystallite_partitionedFi0(1:3,1:3,c,i,e)
crystallite_S (1:3,1:3,c,i,e) = crystallite_partitionedS0 (1:3,1:3,c,i,e)
plasticState (material_phaseAt(c,e))%state( :,material_phasememberAt(c,i,e)) = &
plasticState (material_phaseAt(c,e))%partitionedState0(:,material_phasememberAt(c,i,e))
enddo
end subroutine crystallite_restore
!--------------------------------------------------------------------------------------------------
!> @brief Calculate tangent (dPdF).
!--------------------------------------------------------------------------------------------------
function crystallite_stressTangent(c,i,e) result(dPdF)
real(pReal), dimension(3,3,3,3) :: dPdF
integer, intent(in) :: &
c, & !< counter in constituent loop
i, & !< counter in integration point loop
e !< counter in element loop
integer :: &
o, &
p
real(pReal), dimension(3,3) :: devNull, &
invSubFp0,invSubFi0,invFp,invFi, &
temp_33_1, temp_33_2, temp_33_3, temp_33_4
real(pReal), dimension(3,3,3,3) :: dSdFe, &
dSdF, &
dSdFi, &
dLidS, & ! tangent in lattice configuration
dLidFi, &
dLpdS, &
dLpdFi, &
dFidS, &
dFpinvdF, &
rhs_3333, &
lhs_3333, &
temp_3333
real(pReal), dimension(9,9):: temp_99
logical :: error
call constitutive_SandItsTangents(devNull,dSdFe,dSdFi, &
crystallite_Fe(1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e),c,i,e)
call constitutive_LiAndItsTangents(devNull,dLidS,dLidFi, &
crystallite_S (1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e), &
c,i,e)
invFp = math_inv33(crystallite_Fp(1:3,1:3,c,i,e))
invFi = math_inv33(crystallite_Fi(1:3,1:3,c,i,e))
invSubFp0 = math_inv33(crystallite_subFp0(1:3,1:3,c,i,e))
invSubFi0 = math_inv33(crystallite_subFi0(1:3,1:3,c,i,e))
if (sum(abs(dLidS)) < tol_math_check) then
dFidS = 0.0_pReal
else
lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal
do o=1,3; do p=1,3
lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) &
+ crystallite_subdt(c,i,e)*matmul(invSubFi0,dLidFi(1:3,1:3,o,p))
lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) &
+ invFi*invFi(p,o)
rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) &
- crystallite_subdt(c,i,e)*matmul(invSubFi0,dLidS(1:3,1:3,o,p))
enddo; enddo
call math_invert(temp_99,error,math_3333to99(lhs_3333))
if (error) then
call IO_warning(warning_ID=600,el=e,ip=i,g=c, &
ext_msg='inversion error in analytic tangent calculation')
dFidS = 0.0_pReal
else
dFidS = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333)
endif
dLidS = math_mul3333xx3333(dLidFi,dFidS) + dLidS
endif
call constitutive_LpAndItsTangents(devNull,dLpdS,dLpdFi, &
crystallite_S (1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate Lp tangent in lattice configuration
dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS
!--------------------------------------------------------------------------------------------------
! calculate dSdF
temp_33_1 = transpose(matmul(invFp,invFi))
temp_33_2 = matmul(crystallite_subF(1:3,1:3,c,i,e),invSubFp0)
temp_33_3 = matmul(matmul(crystallite_subF(1:3,1:3,c,i,e),invFp), invSubFi0)
do o=1,3; do p=1,3
rhs_3333(p,o,1:3,1:3) = matmul(dSdFe(p,o,1:3,1:3),temp_33_1)
temp_3333(1:3,1:3,p,o) = matmul(matmul(temp_33_2,dLpdS(1:3,1:3,p,o)), invFi) &
+ matmul(temp_33_3,dLidS(1:3,1:3,p,o))
enddo; enddo
lhs_3333 = crystallite_subdt(c,i,e)*math_mul3333xx3333(dSdFe,temp_3333) &
+ math_mul3333xx3333(dSdFi,dFidS)
call math_invert(temp_99,error,math_eye(9)+math_3333to99(lhs_3333))
if (error) then
call IO_warning(warning_ID=600,el=e,ip=i,g=c, &
ext_msg='inversion error in analytic tangent calculation')
dSdF = rhs_3333
else
dSdF = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333)
endif
!--------------------------------------------------------------------------------------------------
! calculate dFpinvdF
temp_3333 = math_mul3333xx3333(dLpdS,dSdF)
do o=1,3; do p=1,3
dFpinvdF(1:3,1:3,p,o) = -crystallite_subdt(c,i,e) &
* matmul(invSubFp0, matmul(temp_3333(1:3,1:3,p,o),invFi))
enddo; enddo
!--------------------------------------------------------------------------------------------------
! assemble dPdF
temp_33_1 = matmul(crystallite_S(1:3,1:3,c,i,e),transpose(invFp))
temp_33_2 = matmul(invFp,temp_33_1)
temp_33_3 = matmul(crystallite_subF(1:3,1:3,c,i,e),invFp)
temp_33_4 = matmul(temp_33_3,crystallite_S(1:3,1:3,c,i,e))
dPdF = 0.0_pReal
do p=1,3
dPdF(p,1:3,p,1:3) = transpose(temp_33_2)
enddo
do o=1,3; do p=1,3
dPdF(1:3,1:3,p,o) = dPdF(1:3,1:3,p,o) &
+ matmul(matmul(crystallite_subF(1:3,1:3,c,i,e), &
dFpinvdF(1:3,1:3,p,o)),temp_33_1) &
+ matmul(matmul(temp_33_3,dSdF(1:3,1:3,p,o)), &
transpose(invFp)) &
+ matmul(temp_33_4,transpose(dFpinvdF(1:3,1:3,p,o)))
enddo; enddo
end function crystallite_stressTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates orientations
!--------------------------------------------------------------------------------------------------
subroutine crystallite_orientations
integer &
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e !< counter in element loop
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2)
do c = 1,homogenization_Nconstituents(material_homogenizationAt(e))
call crystallite_orientation(c,i,e)%fromMatrix(transpose(math_rotationalPart(crystallite_Fe(1:3,1:3,c,i,e))))
enddo; enddo; enddo
!$OMP END PARALLEL DO
nonlocalPresent: if (any(plasticState%nonlocal)) then
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
if (plasticState(material_phaseAt(1,e))%nonlocal) then
do i = FEsolving_execIP(1),FEsolving_execIP(2)
call plastic_nonlocal_updateCompatibility(crystallite_orientation, &
phase_plasticityInstance(material_phaseAt(1,e)),i,e)
enddo
endif
enddo
!$OMP END PARALLEL DO
endif nonlocalPresent
end subroutine crystallite_orientations
!--------------------------------------------------------------------------------------------------
!> @brief Map 2nd order tensor to reference config
!--------------------------------------------------------------------------------------------------
function crystallite_push33ToRef(ipc,ip,el, tensor33)
real(pReal), dimension(3,3) :: crystallite_push33ToRef
real(pReal), dimension(3,3), intent(in) :: tensor33
real(pReal), dimension(3,3) :: T
integer, intent(in):: &
el, &
ip, &
ipc
T = matmul(material_orientation0(ipc,ip,el)%asMatrix(), & ! ToDo: initial orientation correct?
transpose(math_inv33(crystallite_subF(1:3,1:3,ipc,ip,el))))
crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T))
end function crystallite_push33ToRef
!--------------------------------------------------------------------------------------------------
!> @brief writes crystallite results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine crystallite_results
integer :: p,o
real(pReal), allocatable, dimension(:,:,:) :: selected_tensors
real(pReal), allocatable, dimension(:,:) :: selected_rotations
character(len=:), allocatable :: group,structureLabel
do p=1,size(material_name_phase)
group = trim('current/phase')//'/'//trim(material_name_phase(p))//'/mechanics'
call results_closeGroup(results_addGroup(group))
do o = 1, size(output_constituent(p)%label)
select case (output_constituent(p)%label(o))
case('F')
selected_tensors = select_tensors(crystallite_partitionedF,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'deformation gradient','1')
case('F_e')
selected_tensors = select_tensors(crystallite_Fe,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'elastic deformation gradient','1')
case('F_p')
selected_tensors = select_tensors(crystallite_Fp,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'plastic deformation gradient','1')
case('F_i')
selected_tensors = select_tensors(crystallite_Fi,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'inelastic deformation gradient','1')
case('L_p')
selected_tensors = select_tensors(crystallite_Lp,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'plastic velocity gradient','1/s')
case('L_i')
selected_tensors = select_tensors(crystallite_Li,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'inelastic velocity gradient','1/s')
case('P')
selected_tensors = select_tensors(crystallite_P,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'First Piola-Kirchhoff stress','Pa')
case('S')
selected_tensors = select_tensors(crystallite_S,p)
call results_writeDataset(group,selected_tensors,output_constituent(p)%label(o),&
'Second Piola-Kirchhoff stress','Pa')
case('O')
select case(lattice_structure(p))
case(lattice_ISO_ID)
structureLabel = 'aP'
case(lattice_FCC_ID)
structureLabel = 'cF'
case(lattice_BCC_ID)
structureLabel = 'cI'
case(lattice_BCT_ID)
structureLabel = 'tI'
case(lattice_HEX_ID)
structureLabel = 'hP'
case(lattice_ORT_ID)
structureLabel = 'oP'
end select
selected_rotations = select_rotations(crystallite_orientation,p)
call results_writeDataset(group,selected_rotations,output_constituent(p)%label(o),&
'crystal orientation as quaternion','q_0 <q_1 q_2 q_3>')
call results_addAttribute('Lattice',structureLabel,group//'/'//output_constituent(p)%label(o))
end select
enddo
enddo
contains
!------------------------------------------------------------------------------------------------
!> @brief select tensors for output
!------------------------------------------------------------------------------------------------
function select_tensors(dataset,instance)
integer, intent(in) :: instance
real(pReal), dimension(:,:,:,:,:), intent(in) :: dataset
real(pReal), allocatable, dimension(:,:,:) :: select_tensors
integer :: e,i,c,j
allocate(select_tensors(3,3,count(material_phaseAt==instance)*discretization_nIPs))
j=0
do e = 1, size(material_phaseAt,2)
do i = 1, discretization_nIPs
do c = 1, size(material_phaseAt,1) !ToDo: this needs to be changed for varying Ngrains
if (material_phaseAt(c,e) == instance) then
j = j + 1
select_tensors(1:3,1:3,j) = dataset(1:3,1:3,c,i,e)
endif
enddo
enddo
enddo
end function select_tensors
!--------------------------------------------------------------------------------------------------
!> @brief select rotations for output
!--------------------------------------------------------------------------------------------------
function select_rotations(dataset,instance)
integer, intent(in) :: instance
type(rotation), dimension(:,:,:), intent(in) :: dataset
real(pReal), allocatable, dimension(:,:) :: select_rotations
integer :: e,i,c,j
allocate(select_rotations(4,count(material_phaseAt==instance)*homogenization_maxNconstituents*discretization_nIPs))
j=0
do e = 1, size(material_phaseAt,2)
do i = 1, discretization_nIPs
do c = 1, size(material_phaseAt,1) !ToDo: this needs to be changed for varying Ngrains
if (material_phaseAt(c,e) == instance) then
j = j + 1
select_rotations(1:4,j) = dataset(c,i,e)%asQuaternion()
endif
enddo
enddo
enddo
end function select_rotations
end subroutine crystallite_results
!--------------------------------------------------------------------------------------------------
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
!> intermediate acceleration of the Newton-Raphson correction
!--------------------------------------------------------------------------------------------------
function integrateStress(ipc,ip,el,timeFraction) result(broken)
integer, intent(in):: el, & ! element index
ip, & ! integration point index
ipc ! grain index
real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep
real(pReal), dimension(3,3):: F, & ! deformation gradient at end of timestep
Fp_new, & ! plastic deformation gradient at end of timestep
invFp_new, & ! inverse of Fp_new
invFp_current, & ! inverse of Fp_current
Lpguess, & ! current guess for plastic velocity gradient
Lpguess_old, & ! known last good guess for plastic velocity gradient
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
residuumLp, & ! current residuum of plastic velocity gradient
residuumLp_old, & ! last residuum of plastic velocity gradient
deltaLp, & ! direction of next guess
Fi_new, & ! gradient of intermediate deformation stages
invFi_new, &
invFi_current, & ! inverse of Fi_current
Liguess, & ! current guess for intermediate velocity gradient
Liguess_old, & ! known last good guess for intermediate velocity gradient
Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law
residuumLi, & ! current residuum of intermediate velocity gradient
residuumLi_old, & ! last residuum of intermediate velocity gradient
deltaLi, & ! direction of next guess
Fe, & ! elastic deformation gradient
S, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration
A, &
B, &
temp_33
real(pReal), dimension(9) :: temp_9 ! needed for matrix inversion by LAPACK
integer, dimension(9) :: devNull_9 ! needed for matrix inversion by LAPACK
real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for Newton-Raphson scheme)
dRLi_dLi ! partial derivative of residuumI (Jacobian for Newton-Raphson scheme)
real(pReal), dimension(3,3,3,3):: dS_dFe, & ! partial derivative of 2nd Piola-Kirchhoff stress
dS_dFi, &
dFe_dLp, & ! partial derivative of elastic deformation gradient
dFe_dLi, &
dFi_dLi, &
dLp_dFi, &
dLi_dFi, &
dLp_dS, &
dLi_dS
real(pReal) steplengthLp, &
steplengthLi, &
dt, & ! time increment
atol_Lp, &
atol_Li, &
devNull
integer NiterationStressLp, & ! number of stress integrations
NiterationStressLi, & ! number of inner stress integrations
ierr, & ! error indicator for LAPACK
o, &
p, &
jacoCounterLp, &
jacoCounterLi ! counters to check for Jacobian update
logical :: error,broken
broken = .true.
if (present(timeFraction)) then
dt = crystallite_subdt(ipc,ip,el) * timeFraction
F = crystallite_subF0(1:3,1:3,ipc,ip,el) &
+ (crystallite_subF(1:3,1:3,ipc,ip,el) - crystallite_subF0(1:3,1:3,ipc,ip,el)) * timeFraction
else
dt = crystallite_subdt(ipc,ip,el)
F = crystallite_subF(1:3,1:3,ipc,ip,el)
endif
call constitutive_dependentState(crystallite_partitionedF(1:3,1:3,ipc,ip,el), &
crystallite_Fp(1:3,1:3,ipc,ip,el),ipc,ip,el)
Lpguess = crystallite_Lp(1:3,1:3,ipc,ip,el) ! take as first guess
Liguess = crystallite_Li(1:3,1:3,ipc,ip,el) ! take as first guess
call math_invert33(invFp_current,devNull,error,crystallite_subFp0(1:3,1:3,ipc,ip,el))
if (error) return ! error
call math_invert33(invFi_current,devNull,error,crystallite_subFi0(1:3,1:3,ipc,ip,el))
if (error) return ! error
A = matmul(F,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
jacoCounterLi = 0
steplengthLi = 1.0_pReal
residuumLi_old = 0.0_pReal
Liguess_old = Liguess
NiterationStressLi = 0
LiLoop: do
NiterationStressLi = NiterationStressLi + 1
if (NiterationStressLi>num%nStress) return ! error
invFi_new = matmul(invFi_current,math_I3 - dt*Liguess)
Fi_new = math_inv33(invFi_new)
jacoCounterLp = 0
steplengthLp = 1.0_pReal
residuumLp_old = 0.0_pReal
Lpguess_old = Lpguess
NiterationStressLp = 0
LpLoop: do
NiterationStressLp = NiterationStressLp + 1
if (NiterationStressLp>num%nStress) return ! error
B = math_I3 - dt*Lpguess
Fe = matmul(matmul(A,B), invFi_new)
call constitutive_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi_new, ipc, ip, el)
call constitutive_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, &
S, Fi_new, ipc, ip, el)
!* update current residuum and check for convergence of loop
atol_Lp = max(num%rtol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%atol_crystalliteStress) ! minimum lower cutoff
residuumLp = Lpguess - Lp_constitutive
if (any(IEEE_is_NaN(residuumLp))) then
return ! error
elseif (norm2(residuumLp) < atol_Lp) then ! converged if below absolute tolerance
exit LpLoop
elseif (NiterationStressLp == 1 .or. norm2(residuumLp) < norm2(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLp_old = residuumLp ! ...remember old values and...
Lpguess_old = Lpguess
steplengthLp = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLp = num%subStepSizeLp * steplengthLp ! ...try with smaller step length in same direction
Lpguess = Lpguess_old &
+ deltaLp * stepLengthLp
cycle LpLoop
endif
calculateJacobiLi: if (mod(jacoCounterLp, num%iJacoLpresiduum) == 0) then
jacoCounterLp = jacoCounterLp + 1
do o=1,3; do p=1,3
dFe_dLp(o,1:3,p,1:3) = - dt * A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
enddo; enddo
dRLp_dLp = math_eye(9) &
- math_3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dS,dS_dFe),dFe_dLp))
temp_9 = math_33to9(residuumLp)
call dgesv(9,1,dRLp_dLp,9,devNull_9,temp_9,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
if (ierr /= 0) return ! error
deltaLp = - math_9to33(temp_9)
endif calculateJacobiLi
Lpguess = Lpguess &
+ deltaLp * steplengthLp
enddo LpLoop
call constitutive_LiAndItsTangents(Li_constitutive, dLi_dS, dLi_dFi, &
S, Fi_new, ipc, ip, el)
!* update current residuum and check for convergence of loop
atol_Li = max(num%rtol_crystalliteStress * max(norm2(Liguess),norm2(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%atol_crystalliteStress) ! minimum lower cutoff
residuumLi = Liguess - Li_constitutive
if (any(IEEE_is_NaN(residuumLi))) then
return ! error
elseif (norm2(residuumLi) < atol_Li) then ! converged if below absolute tolerance
exit LiLoop
elseif (NiterationStressLi == 1 .or. norm2(residuumLi) < norm2(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLi_old = residuumLi ! ...remember old values and...
Liguess_old = Liguess
steplengthLi = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLi = num%subStepSizeLi * steplengthLi ! ...try with smaller step length in same direction
Liguess = Liguess_old &
+ deltaLi * steplengthLi
cycle LiLoop
endif
calculateJacobiLp: if (mod(jacoCounterLi, num%iJacoLpresiduum) == 0) then
jacoCounterLi = jacoCounterLi + 1
temp_33 = matmul(matmul(A,B),invFi_current)
do o=1,3; do p=1,3
dFe_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
dFi_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*invFi_current
enddo; enddo
do o=1,3; do p=1,3
dFi_dLi(1:3,1:3,o,p) = matmul(matmul(Fi_new,dFi_dLi(1:3,1:3,o,p)),Fi_new)
enddo; enddo
dRLi_dLi = math_eye(9) &
- math_3333to99(math_mul3333xx3333(dLi_dS, math_mul3333xx3333(dS_dFe, dFe_dLi) &
+ math_mul3333xx3333(dS_dFi, dFi_dLi))) &
- math_3333to99(math_mul3333xx3333(dLi_dFi, dFi_dLi))
temp_9 = math_33to9(residuumLi)
call dgesv(9,1,dRLi_dLi,9,devNull_9,temp_9,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
if (ierr /= 0) return ! error
deltaLi = - math_9to33(temp_9)
endif calculateJacobiLp
Liguess = Liguess &
+ deltaLi * steplengthLi
enddo LiLoop
invFp_new = matmul(invFp_current,B)
call math_invert33(Fp_new,devNull,error,invFp_new)
if (error) return ! error
crystallite_P (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new)))
crystallite_S (1:3,1:3,ipc,ip,el) = S
crystallite_Lp (1:3,1:3,ipc,ip,el) = Lpguess
crystallite_Li (1:3,1:3,ipc,ip,el) = Liguess
crystallite_Fp (1:3,1:3,ipc,ip,el) = Fp_new / math_det33(Fp_new)**(1.0_pReal/3.0_pReal) ! regularize
crystallite_Fi (1:3,1:3,ipc,ip,el) = Fi_new
crystallite_Fe (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),invFi_new)
broken = .false.
end function integrateStress
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
subroutine integrateStateFPI(g,i,e)
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
NiterationState, & !< number of iterations in state loop
p, &
c, &
s, &
size_pl
integer, dimension(maxval(phase_Nsources)) :: &
size_so
real(pReal) :: &
zeta
real(pReal), dimension(max(constitutive_plasticity_maxSizeDotState,constitutive_source_maxSizeDotState)) :: &
r ! state residuum
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,2) :: &
plastic_dotState
real(pReal), dimension(constitutive_source_maxSizeDotState,2,maxval(phase_Nsources)) :: source_dotState
logical :: &
broken
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
size_pl = plasticState(p)%sizeDotState
plasticState(p)%state(1:size_pl,c) = plasticState(p)%subState0(1:size_pl,c) &
+ plasticState(p)%dotState (1:size_pl,c) &
* crystallite_subdt(g,i,e)
plastic_dotState(1:size_pl,2) = 0.0_pReal
iteration: do NiterationState = 1, num%nState
if(nIterationState > 1) plastic_dotState(1:size_pl,2) = plastic_dotState(1:size_pl,1)
plastic_dotState(1:size_pl,1) = plasticState(p)%dotState(:,c)
broken = integrateStress(g,i,e)
if(broken) exit iteration
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) exit iteration
zeta = damper(plasticState(p)%dotState(:,c),plastic_dotState(1:size_pl,1),&
plastic_dotState(1:size_pl,2))
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * zeta &
+ plastic_dotState(1:size_pl,1) * (1.0_pReal - zeta)
r(1:size_pl) = plasticState(p)%state (1:size_pl,c) &
- plasticState(p)%subState0(1:size_pl,c) &
- plasticState(p)%dotState (1:size_pl,c) * crystallite_subdt(g,i,e)
plasticState(p)%state(1:size_pl,c) = plasticState(p)%state(1:size_pl,c) &
- r(1:size_pl)
crystallite_converged(g,i,e) = converged(r(1:size_pl), &
plasticState(p)%state(1:size_pl,c), &
plasticState(p)%atol(1:size_pl))
if(crystallite_converged(g,i,e)) then
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
exit iteration
endif
enddo iteration
contains
!--------------------------------------------------------------------------------------------------
!> @brief calculate the damping for correction of state and dot state
!--------------------------------------------------------------------------------------------------
real(pReal) pure function damper(current,previous,previous2)
real(pReal), dimension(:), intent(in) ::&
current, previous, previous2
real(pReal) :: dot_prod12, dot_prod22
dot_prod12 = dot_product(current - previous, previous - previous2)
dot_prod22 = dot_product(previous - previous2, previous - previous2)
if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then
damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
damper = 1.0_pReal
endif
end function damper
end subroutine integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
subroutine integrateSourceState(g,i,e)
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
NiterationState, & !< number of iterations in state loop
p, &
c, &
s, &
size_pl
integer, dimension(maxval(phase_Nsources)) :: &
size_so
real(pReal) :: &
zeta
real(pReal), dimension(max(constitutive_plasticity_maxSizeDotState,constitutive_source_maxSizeDotState)) :: &
r ! state residuum
real(pReal), dimension(constitutive_source_maxSizeDotState,2,maxval(phase_Nsources)) :: source_dotState
logical :: &
broken
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState_source(crystallite_S(1:3,1:3,g,i,e), g,i,e,p,c)
if(broken) return
do s = 1, phase_Nsources(p)
size_so(s) = sourceState(p)%p(s)%sizeDotState
sourceState(p)%p(s)%state(1:size_so(s),c) = sourceState(p)%p(s)%subState0(1:size_so(s),c) &
+ sourceState(p)%p(s)%dotState (1:size_so(s),c) &
* crystallite_subdt(g,i,e)
source_dotState(1:size_so(s),2,s) = 0.0_pReal
enddo
iteration: do NiterationState = 1, num%nState
do s = 1, phase_Nsources(p)
if(nIterationState > 1) source_dotState(1:size_so(s),2,s) = source_dotState(1:size_so(s),1,s)
source_dotState(1:size_so(s),1,s) = sourceState(p)%p(s)%dotState(:,c)
enddo
broken = constitutive_collectDotState_source(crystallite_S(1:3,1:3,g,i,e), g,i,e,p,c)
if(broken) exit iteration
do s = 1, phase_Nsources(p)
zeta = damper(sourceState(p)%p(s)%dotState(:,c), &
source_dotState(1:size_so(s),1,s),&
source_dotState(1:size_so(s),2,s))
sourceState(p)%p(s)%dotState(:,c) = sourceState(p)%p(s)%dotState(:,c) * zeta &
+ source_dotState(1:size_so(s),1,s)* (1.0_pReal - zeta)
r(1:size_so(s)) = sourceState(p)%p(s)%state (1:size_so(s),c) &
- sourceState(p)%p(s)%subState0(1:size_so(s),c) &
- sourceState(p)%p(s)%dotState (1:size_so(s),c) * crystallite_subdt(g,i,e)
sourceState(p)%p(s)%state(1:size_so(s),c) = sourceState(p)%p(s)%state(1:size_so(s),c) &
- r(1:size_so(s))
crystallite_converged(g,i,e) = &
crystallite_converged(g,i,e) .and. converged(r(1:size_so(s)), &
sourceState(p)%p(s)%state(1:size_so(s),c), &
sourceState(p)%p(s)%atol(1:size_so(s)))
enddo
if(crystallite_converged(g,i,e)) then
broken = constitutive_deltaState_source(crystallite_Fe(1:3,1:3,g,i,e),g,i,e,p,c)
exit iteration
endif
enddo iteration
contains
!--------------------------------------------------------------------------------------------------
!> @brief calculate the damping for correction of state and dot state
!--------------------------------------------------------------------------------------------------
real(pReal) pure function damper(current,previous,previous2)
real(pReal), dimension(:), intent(in) ::&
current, previous, previous2
real(pReal) :: dot_prod12, dot_prod22
dot_prod12 = dot_product(current - previous, previous - previous2)
dot_prod22 = dot_product(previous - previous2, previous - previous2)
if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then
damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
damper = 1.0_pReal
endif
end function damper
end subroutine integrateSourceState
!--------------------------------------------------------------------------------------------------
!> @brief integrate state with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
subroutine integrateStateEuler(g,i,e)
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
p, &
c, &
sizeDotState
logical :: &
broken
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
crystallite_converged(g,i,e) = .not. broken
end subroutine integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
subroutine integrateStateAdaptiveEuler(g,i,e)
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
p, &
c, &
sizeDotState
logical :: &
broken
real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: residuum_plastic
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
sizeDotState = plasticState(p)%sizeDotState
residuum_plastic(1:sizeDotState) = - plasticState(p)%dotstate(1:sizeDotState,c) * 0.5_pReal * crystallite_subdt(g,i,e)
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e)
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
if(broken) return
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
sizeDotState = plasticState(p)%sizeDotState
crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState) &
+ 0.5_pReal * plasticState(p)%dotState(:,c) * crystallite_subdt(g,i,e), &
plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%atol(1:sizeDotState))
end subroutine integrateStateAdaptiveEuler
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method
!---------------------------------------------------------------------------------------------------
subroutine integrateStateRK4(g,i,e)
integer, intent(in) :: g,i,e
real(pReal), dimension(3,3), parameter :: &
A = reshape([&
0.5_pReal, 0.0_pReal, 0.0_pReal, &
0.0_pReal, 0.5_pReal, 0.0_pReal, &
0.0_pReal, 0.0_pReal, 1.0_pReal],&
shape(A))
real(pReal), dimension(3), parameter :: &
C = [0.5_pReal, 0.5_pReal, 1.0_pReal]
real(pReal), dimension(4), parameter :: &
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal]
call integrateStateRK(g,i,e,A,B,C)
end subroutine integrateStateRK4
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the Cash-Carp method
!---------------------------------------------------------------------------------------------------
subroutine integrateStateRKCK45(g,i,e)
integer, intent(in) :: g,i,e
real(pReal), dimension(5,5), parameter :: &
A = reshape([&
1._pReal/5._pReal, .0_pReal, .0_pReal, .0_pReal, .0_pReal, &
3._pReal/40._pReal, 9._pReal/40._pReal, .0_pReal, .0_pReal, .0_pReal, &
3_pReal/10._pReal, -9._pReal/10._pReal, 6._pReal/5._pReal, .0_pReal, .0_pReal, &
-11._pReal/54._pReal, 5._pReal/2._pReal, -70.0_pReal/27.0_pReal, 35.0_pReal/27.0_pReal, .0_pReal, &
1631._pReal/55296._pReal,175._pReal/512._pReal,575._pReal/13824._pReal,44275._pReal/110592._pReal,253._pReal/4096._pReal],&
shape(A))
real(pReal), dimension(5), parameter :: &
C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal]
real(pReal), dimension(6), parameter :: &
B = &
[37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, &
125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], &
DB = B - &
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal]
call integrateStateRK(g,i,e,A,B,C,DB)
end subroutine integrateStateRKCK45
!--------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
!! embedded explicit Runge-Kutta method
!--------------------------------------------------------------------------------------------------
subroutine integrateStateRK(g,i,e,A,B,CC,DB)
real(pReal), dimension(:,:), intent(in) :: A
real(pReal), dimension(:), intent(in) :: B, CC
real(pReal), dimension(:), intent(in), optional :: DB
integer, intent(in) :: &
e, & !< element index in element loop
i, & !< integration point index in ip loop
g !< grain index in grain loop
integer :: &
stage, & ! stage index in integration stage loop
n, &
p, &
c, &
sizeDotState
logical :: &
broken
real(pReal), dimension(constitutive_plasticity_maxSizeDotState,size(B)) :: plastic_RKdotState
p = material_phaseAt(g,e)
c = material_phaseMemberAt(g,i,e)
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e), g,i,e,p,c)
if(broken) return
do stage = 1,size(A,1)
sizeDotState = plasticState(p)%sizeDotState
plastic_RKdotState(1:sizeDotState,stage) = plasticState(p)%dotState(:,c)
plasticState(p)%dotState(:,c) = A(1,stage) * plastic_RKdotState(1:sizeDotState,1)
do n = 2, stage
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) &
+ A(n,stage) * plastic_RKdotState(1:sizeDotState,n)
enddo
sizeDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
broken = integrateStress(g,i,e,CC(stage))
if(broken) exit
broken = constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_partitionedF0, &
crystallite_Fi(1:3,1:3,g,i,e), &
crystallite_partitionedFp0, &
crystallite_subdt(g,i,e)*CC(stage), g,i,e,p,c)
if(broken) exit
enddo
if(broken) return
sizeDotState = plasticState(p)%sizeDotState
plastic_RKdotState(1:sizeDotState,size(B)) = plasticState (p)%dotState(:,c)
plasticState(p)%dotState(:,c) = matmul(plastic_RKdotState(1:sizeDotState,1:size(B)),B)
plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%subState0(1:sizeDotState,c) &
+ plasticState(p)%dotState (1:sizeDotState,c) &
* crystallite_subdt(g,i,e)
if(present(DB)) &
broken = .not. converged( matmul(plastic_RKdotState(1:sizeDotState,1:size(DB)),DB) &
* crystallite_subdt(g,i,e), &
plasticState(p)%state(1:sizeDotState,c), &
plasticState(p)%atol(1:sizeDotState))
if(broken) return
broken = constitutive_deltaState(crystallite_S(1:3,1:3,g,i,e), &
crystallite_Fi(1:3,1:3,g,i,e),g,i,e,p,c)
if(broken) return
broken = integrateStress(g,i,e)
crystallite_converged(g,i,e) = .not. broken
end subroutine integrateStateRK
!--------------------------------------------------------------------------------------------------
!> @brief determines whether a point is converged
!--------------------------------------------------------------------------------------------------
logical pure function converged(residuum,state,atol)
real(pReal), intent(in), dimension(:) ::&
residuum, state, atol
real(pReal) :: &
rTol
rTol = num%rTol_crystalliteState
converged = all(abs(residuum) <= max(atol, rtol*abs(state)))
end function converged
!--------------------------------------------------------------------------------------------------
!> @brief Write current restart information (Field and constitutive data) to file.
! ToDo: Merge data into one file for MPI, move state to constitutive and homogenization, respectively
!--------------------------------------------------------------------------------------------------
subroutine crystallite_restartWrite
integer :: i
integer(HID_T) :: fileHandle, groupHandle
character(len=pStringLen) :: fileName, datasetName
print*, ' writing field and constitutive data required for restart to file';flush(IO_STDOUT)
write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5'
fileHandle = HDF5_openFile(fileName,'a')
call HDF5_write(fileHandle,crystallite_partitionedF,'F')
call HDF5_write(fileHandle,crystallite_Fp, 'F_p')
call HDF5_write(fileHandle,crystallite_Fi, 'F_i')
call HDF5_write(fileHandle,crystallite_Lp, 'L_p')
call HDF5_write(fileHandle,crystallite_Li, 'L_i')
call HDF5_write(fileHandle,crystallite_S, 'S')
groupHandle = HDF5_addGroup(fileHandle,'phase')
do i = 1,size(material_name_phase)
write(datasetName,'(i0,a)') i,'_omega'
call HDF5_write(groupHandle,plasticState(i)%state,datasetName)
enddo
call HDF5_closeGroup(groupHandle)
groupHandle = HDF5_addGroup(fileHandle,'homogenization')
do i = 1, size(material_name_homogenization)
write(datasetName,'(i0,a)') i,'_omega'
call HDF5_write(groupHandle,homogState(i)%state,datasetName)
enddo
call HDF5_closeGroup(groupHandle)
call HDF5_closeFile(fileHandle)
end subroutine crystallite_restartWrite
!--------------------------------------------------------------------------------------------------
!> @brief Read data for restart
! ToDo: Merge data into one file for MPI, move state to constitutive and homogenization, respectively
!--------------------------------------------------------------------------------------------------
subroutine crystallite_restartRead
integer :: i
integer(HID_T) :: fileHandle, groupHandle
character(len=pStringLen) :: fileName, datasetName
print'(/,a,i0,a)', ' reading restart information of increment from file'
write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5'
fileHandle = HDF5_openFile(fileName)
call HDF5_read(fileHandle,crystallite_F0, 'F')
call HDF5_read(fileHandle,crystallite_Fp0,'F_p')
call HDF5_read(fileHandle,crystallite_Fi0,'F_i')
call HDF5_read(fileHandle,crystallite_Lp0,'L_p')
call HDF5_read(fileHandle,crystallite_Li0,'L_i')
call HDF5_read(fileHandle,crystallite_S0, 'S')
groupHandle = HDF5_openGroup(fileHandle,'phase')
do i = 1,size(material_name_phase)
write(datasetName,'(i0,a)') i,'_omega'
call HDF5_read(groupHandle,plasticState(i)%state0,datasetName)
enddo
call HDF5_closeGroup(groupHandle)
groupHandle = HDF5_openGroup(fileHandle,'homogenization')
do i = 1,size(material_name_homogenization)
write(datasetName,'(i0,a)') i,'_omega'
call HDF5_read(groupHandle,homogState(i)%state0,datasetName)
enddo
call HDF5_closeGroup(groupHandle)
call HDF5_closeFile(fileHandle)
end subroutine crystallite_restartRead
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
! ToDo: Any guessing for the current states possible?
!--------------------------------------------------------------------------------------------------
subroutine crystallite_forward
integer :: i, j
crystallite_F0 = crystallite_partitionedF
crystallite_Fp0 = crystallite_Fp
crystallite_Lp0 = crystallite_Lp
crystallite_Fi0 = crystallite_Fi
crystallite_Li0 = crystallite_Li
crystallite_S0 = crystallite_S
do i = 1, size(plasticState)
plasticState(i)%state0 = plasticState(i)%state
enddo
do i = 1,size(material_name_homogenization)
homogState (i)%state0 = homogState (i)%state
damageState (i)%state0 = damageState (i)%state
enddo
end subroutine crystallite_forward
end module constitutive