avoid conversion 33<->6 3333<->9
This commit is contained in:
parent
a992b8b1f5
commit
8f99f1ce61
|
@ -479,8 +479,7 @@ subroutine constitutive_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, S6, Fi, ipc, ip, e
|
|||
dLp_dMp = 0.0_pReal
|
||||
|
||||
case (PLASTICITY_ISOTROPIC_ID) plasticityType
|
||||
call plastic_isotropic_LpAndItsTangent (Lp,dLp_dMp99, math_Mandel33to6(Mp),ipc,ip,el)
|
||||
dLp_dMp = math_Plain99to3333(dLp_dMp99) ! ToDo: We revert here the last statement in plastic_xx_LpAndItsTanget
|
||||
call plastic_isotropic_LpAndItsTangent (Lp,dLp_dMp,Mp,ipc,ip,el)
|
||||
|
||||
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
|
||||
of = phasememberAt(ipc,ip,el)
|
||||
|
@ -527,6 +526,7 @@ end subroutine constitutive_LpAndItsTangents
|
|||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief contains the constitutive equation for calculating the velocity gradient
|
||||
! ToDo: MD: S is Mi?
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, S6, Fi, ipc, ip, el)
|
||||
use prec, only: &
|
||||
|
@ -535,7 +535,8 @@ subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, S6, Fi, ipc, ip, e
|
|||
math_I3, &
|
||||
math_inv33, &
|
||||
math_det33, &
|
||||
math_mul33x33
|
||||
math_mul33x33, &
|
||||
math_Mandel6to33
|
||||
use material, only: &
|
||||
phase_plasticity, &
|
||||
material_phase, &
|
||||
|
@ -588,7 +589,7 @@ subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, S6, Fi, ipc, ip, e
|
|||
|
||||
plasticityType: select case (phase_plasticity(material_phase(ipc,ip,el)))
|
||||
case (PLASTICITY_isotropic_ID) plasticityType
|
||||
call plastic_isotropic_LiAndItsTangent(my_Li, my_dLi_dS, S6, ipc, ip, el)
|
||||
call plastic_isotropic_LiAndItsTangent(my_Li, my_dLi_dS, math_Mandel6to33(S6), ipc, ip, el)
|
||||
case default plasticityType
|
||||
my_Li = 0.0_pReal
|
||||
my_dLi_dS = 0.0_pReal
|
||||
|
|
|
@ -231,7 +231,7 @@ end subroutine plastic_isotropic_init
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates plastic velocity gradient and its tangent
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
||||
subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dMp,Mp,ipc,ip,el)
|
||||
use debug, only: &
|
||||
debug_level, &
|
||||
debug_constitutive, &
|
||||
|
@ -242,9 +242,6 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
|||
debug_i, &
|
||||
debug_g
|
||||
use math, only: &
|
||||
math_mul6x6, &
|
||||
math_Mandel6to33, &
|
||||
math_Plain3333to99, &
|
||||
math_deviatoric33, &
|
||||
math_mul33xx33
|
||||
use material, only: &
|
||||
|
@ -253,13 +250,13 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
|||
phase_plasticityInstance
|
||||
|
||||
implicit none
|
||||
real(pReal), dimension(3,3), intent(out) :: &
|
||||
real(pReal), dimension(3,3), intent(out) :: &
|
||||
Lp !< plastic velocity gradient
|
||||
real(pReal), dimension(9,9), intent(out) :: &
|
||||
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
|
||||
real(pReal), dimension(3,3,3,3), intent(out) :: &
|
||||
dLp_dMp !< derivative of Lp with respect to the Mandel stress
|
||||
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Mp
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
|
@ -267,13 +264,11 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
|||
|
||||
|
||||
real(pReal), dimension(3,3) :: &
|
||||
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
|
||||
real(pReal), dimension(3,3,3,3) :: &
|
||||
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
|
||||
Mp_dev !< deviatoric part of the Mandel stress
|
||||
real(pReal) :: &
|
||||
gamma_dot, & !< strainrate
|
||||
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
|
||||
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
|
||||
norm_Mp_dev, & !< euclidean norm of the Mandel stress
|
||||
squarenorm_Mp_dev !< square of the euclidean norm of the Mandel stress
|
||||
integer(pInt) :: &
|
||||
instance, of, &
|
||||
k, l, m, n
|
||||
|
@ -282,40 +277,38 @@ subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
|
|||
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
associate(prm => param(instance))
|
||||
|
||||
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
|
||||
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
|
||||
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
|
||||
Mp_dev = math_deviatoric33(Mp)
|
||||
squarenorm_Mp_dev = math_mul33xx33(Mp_dev,Mp_dev)
|
||||
norm_Mp_dev = sqrt(squarenorm_Mp_dev)
|
||||
|
||||
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
|
||||
if (norm_Mp_dev <= 0.0_pReal) then
|
||||
Lp = 0.0_pReal
|
||||
dLp_dTstar99 = 0.0_pReal
|
||||
dLp_dMp = 0.0_pReal
|
||||
else
|
||||
gamma_dot = prm%gdot0 &
|
||||
* ( sqrt(1.5_pReal) * norm_Tstar_dev / prm%fTaylor / state(instance)%flowstress(of) ) &
|
||||
* ( sqrt(1.5_pReal) * norm_Mp_dev / prm%fTaylor / state(instance)%flowstress(of) ) &
|
||||
**prm%n
|
||||
|
||||
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/prm%fTaylor
|
||||
Lp = Mp_dev/norm_Mp_dev * gamma_dot/prm%fTaylor
|
||||
|
||||
if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt &
|
||||
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
|
||||
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
|
||||
write(6,'(a,i8,1x,i2,1x,i3)') '<< CONST isotropic >> at el ip g ',el,ip,ipc
|
||||
write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CONST isotropic >> Tstar (dev) / MPa', &
|
||||
transpose(Tstar_dev_33(1:3,1:3))*1.0e-6_pReal
|
||||
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> norm Tstar / MPa', norm_Tstar_dev*1.0e-6_pReal
|
||||
transpose(Mp_dev)*1.0e-6_pReal
|
||||
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> norm Tstar / MPa', norm_Mp_dev*1.0e-6_pReal
|
||||
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> gdot', gamma_dot
|
||||
end if
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of the tangent of Lp
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLp_dTstar_3333(k,l,m,n) = (prm%n-1.0_pReal) * &
|
||||
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
|
||||
dLp_dMp(k,l,m,n) = (prm%n-1.0_pReal) * Mp_dev(k,l)*Mp_dev(m,n) / squarenorm_Mp_dev
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
|
||||
dLp_dMp(k,l,k,l) = dLp_dMp(k,l,k,l) + 1.0_pReal
|
||||
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
|
||||
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
|
||||
dLp_dTstar99 = math_Plain3333to99(gamma_dot / prm%fTaylor * &
|
||||
dLp_dTstar_3333 / norm_Tstar_dev)
|
||||
dLp_dMp(k,k,m,m) = dLp_dMp(k,k,m,m) - 1.0_pReal/3.0_pReal
|
||||
dLp_dMp = gamma_dot / prm%fTaylor * dLp_dMp / norm_Mp_dev
|
||||
end if
|
||||
|
||||
end associate
|
||||
|
@ -324,7 +317,7 @@ end subroutine plastic_isotropic_LpAndItsTangent
|
|||
!--------------------------------------------------------------------------------------------------
|
||||
!> @brief calculates plastic velocity gradient and its tangent
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,el)
|
||||
subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar,Tstar,ipc,ip,el)
|
||||
use math, only: &
|
||||
math_mul6x6, &
|
||||
math_Mandel6to33, &
|
||||
|
@ -340,16 +333,16 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,e
|
|||
real(pReal), dimension(3,3), intent(out) :: &
|
||||
Li !< plastic velocity gradient
|
||||
real(pReal), dimension(3,3,3,3), intent(out) :: &
|
||||
dLi_dTstar_3333 !< derivative of Li with respect to Tstar as 4th order tensor
|
||||
real(pReal), dimension(6), intent(in) :: &
|
||||
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
dLi_dTstar !< derivative of Li with respect to Tstar as 4th order tensor
|
||||
real(pReal), dimension(3,3), intent(in) :: &
|
||||
Tstar !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||||
integer(pInt), intent(in) :: &
|
||||
ipc, & !< component-ID of integration point
|
||||
ip, & !< integration point
|
||||
el !< element
|
||||
|
||||
real(pReal), dimension(3,3) :: &
|
||||
Tstar_sph_33 !< sphiatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
|
||||
Tstar_sph !< sphiatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
|
||||
real(pReal) :: &
|
||||
gamma_dot, & !< strainrate
|
||||
norm_Tstar_sph, & !< euclidean norm of Tstar_sph
|
||||
|
@ -362,30 +355,28 @@ subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,e
|
|||
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
|
||||
associate(prm => param(instance))
|
||||
|
||||
Tstar_sph_33 = math_spherical33(math_Mandel6to33(Tstar_v)) ! spherical part of 2nd Piola-Kirchhoff stress
|
||||
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33)
|
||||
Tstar_sph = math_spherical33(Tstar)
|
||||
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph,Tstar_sph)
|
||||
norm_Tstar_sph = sqrt(squarenorm_Tstar_sph)
|
||||
|
||||
if (prm%dilatation .and. norm_Tstar_sph > 0.0_pReal) then ! Tstar == 0 or J2 plascitiy --> both Li and dLi_dTstar are zero
|
||||
if (prm%dilatation .and. norm_Tstar_sph > 0.0_pReal) then ! Tstar == 0 or J2 plascitiy --> both Li and dLi_dTstar are zero
|
||||
gamma_dot = prm%gdot0 &
|
||||
* (sqrt(1.5_pReal) * norm_Tstar_sph / prm%fTaylor / state(instance)%flowstress(of) ) &
|
||||
**prm%n
|
||||
|
||||
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/prm%fTaylor
|
||||
Li = Tstar_sph/norm_Tstar_sph * gamma_dot/prm%fTaylor
|
||||
|
||||
!--------------------------------------------------------------------------------------------------
|
||||
! Calculation of the tangent of Li
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||||
dLi_dTstar_3333(k,l,m,n) = (prm%n-1.0_pReal) * &
|
||||
Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph
|
||||
dLi_dTstar(k,l,m,n) = (prm%n-1.0_pReal) * Tstar_sph(k,l)*Tstar_sph(m,n) / squarenorm_Tstar_sph
|
||||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
||||
dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal
|
||||
dLi_dTstar(k,l,k,l) = dLi_dTstar(k,l,k,l) + 1.0_pReal
|
||||
|
||||
dLi_dTstar_3333 = gamma_dot / prm%fTaylor * &
|
||||
dLi_dTstar_3333 / norm_Tstar_sph
|
||||
dLi_dTstar = gamma_dot / prm%fTaylor * dLi_dTstar / norm_Tstar_sph
|
||||
else
|
||||
Li = 0.0_pReal
|
||||
dLi_dTstar_3333 = 0.0_pReal
|
||||
Li = 0.0_pReal
|
||||
dLi_dTstar = 0.0_pReal
|
||||
endif
|
||||
|
||||
end associate
|
||||
|
|
Loading…
Reference in New Issue