DAMASK_EICMD/code/constitutive_nonlocal.f90

3742 lines
188 KiB
Fortran
Raw Normal View History

2013-03-22 23:05:05 +05:30
! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##############################################################
!* $Id$
!************************************
!* Module: CONSTITUTIVE_NONLOCAL *
!************************************
!* contains: *
!* - constitutive equations *
!* - parameters definition *
!************************************
MODULE constitutive_nonlocal
!* Include other modules
2013-05-23 17:55:56 +05:30
use prec, only: &
pReal, &
pInt, &
p_vec
implicit none
private
!* Definition of parameters
character (len=*), parameter, public :: &
CONSTITUTIVE_NONLOCAL_LABEL = 'nonlocal'
character(len=22), dimension(11), parameter, private :: &
BASICSTATES = ['rhoSglEdgePosMobile ', &
'rhoSglEdgeNegMobile ', &
'rhoSglScrewPosMobile ', &
'rhoSglScrewNegMobile ', &
'rhoSglEdgePosImmobile ', &
'rhoSglEdgeNegImmobile ', &
'rhoSglScrewPosImmobile', &
'rhoSglScrewNegImmobile', &
'rhoDipEdge ', &
'rhoDipScrew ', &
'accumulatedshear ' ] !< list of "basic" microstructural state variables that are independent from other state variables
character(len=16), dimension(3), parameter, private :: &
DEPENDENTSTATES = ['rhoForest ', &
'tauThreshold ', &
'tauBack ' ] !< list of microstructural state variables that depend on other state variables
character(len=20), dimension(6), parameter, private :: &
OTHERSTATES = ['velocityEdgePos ', &
'velocityEdgeNeg ', &
'velocityScrewPos ', &
'velocityScrewNeg ', &
'maxDipoleHeightEdge ', &
'maxDipoleHeightScrew' ] !< list of other dependent state variables that are not updated by microstructure
real(pReal), parameter, private :: &
KB = 1.38e-23_pReal !< Physical parameter, Boltzmann constant in J/Kelvin
!* Definition of global variables
integer(pInt), dimension(:), allocatable, public, protected :: &
constitutive_nonlocal_sizeDotState, & !< number of dotStates = number of basic state variables
constitutive_nonlocal_sizeDependentState, & !< number of dependent state variables
constitutive_nonlocal_sizeState, & !< total number of state variables
constitutive_nonlocal_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
constitutive_nonlocal_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
constitutive_nonlocal_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
Noutput !< number of outputs per instance of this plasticity
integer(pInt), dimension(:,:), allocatable, private :: &
iGamma, & !< state indices for accumulated shear
iRhoF, & !< state indices for forest density
iTauF, & !< state indices for critical resolved shear stress
iTauB !< state indices for backstress
integer(pInt), dimension(:,:,:), allocatable, private :: &
iRhoU, & !< state indices for unblocked density
iRhoB, & !< state indices for blocked density
iRhoD, & !< state indices for dipole density
iV, & !< state indices for dislcation velocities
iD !< state indices for stable dipole height
character(len=32), dimension(:), allocatable, public :: &
constitutive_nonlocal_structureName !< name of the lattice structure
integer(pInt), dimension(:), allocatable, public :: &
constitutive_nonlocal_structure !< number representing the kind of lattice structure
integer(pInt), dimension(:), allocatable, private :: &
totalNslip !< total number of active slip systems for each instance
integer(pInt), dimension(:,:), allocatable, private :: &
Nslip, & !< number of active slip systems for each family and instance
slipFamily, & !< lookup table relating active slip system to slip family for each instance
slipSystemLattice, & !< lookup table relating active slip system index to lattice slip system index for each instance
colinearSystem !< colinear system to the active slip system (only valid for fcc!)
real(pReal), dimension(:), allocatable, private :: &
CoverA, & !< c/a ratio for hex type lattice
mu, & !< shear modulus
nu, & !< poisson's ratio
atomicVolume, & !< atomic volume
Dsd0, & !< prefactor for self-diffusion coefficient
selfDiffusionEnergy, & !< activation enthalpy for diffusion
aTolRho, & !< absolute tolerance for dislocation density in state integration
aTolShear, & !< absolute tolerance for accumulated shear in state integration
significantRho, & !< density considered significant
significantN, & !< number of dislocations considered significant
cutoffRadius, & !< cutoff radius for dislocation stress
doublekinkwidth, & !< width of a doubkle kink in multiples of the burgers vector length b
solidSolutionEnergy, & !< activation energy for solid solution in J
solidSolutionSize, & !< solid solution obstacle size in multiples of the burgers vector length
solidSolutionConcentration, & !< concentration of solid solution in atomic parts
pParam, & !< parameter for kinetic law (Kocks,Argon,Ashby)
qParam, & !< parameter for kinetic law (Kocks,Argon,Ashby)
viscosity, & !< viscosity for dislocation glide in Pa s
fattack, & !< attack frequency in Hz
rhoSglScatter, & !< standard deviation of scatter in initial dislocation density
surfaceTransmissivity, & !< transmissivity at free surface
grainboundaryTransmissivity, & !< transmissivity at grain boundary (identified by different texture)
CFLfactor, & !< safety factor for CFL flux condition
fEdgeMultiplication, & !< factor that determines how much edge dislocations contribute to multiplication (0...1)
rhoSglRandom, &
rhoSglRandomBinning, &
linetensionEffect, &
edgeJogFactor
real(pReal), dimension(:,:), allocatable, private :: &
rhoSglEdgePos0, & !< initial edge_pos dislocation density per slip system for each family and instance
rhoSglEdgeNeg0, & !< initial edge_neg dislocation density per slip system for each family and instance
rhoSglScrewPos0, & !< initial screw_pos dislocation density per slip system for each family and instance
rhoSglScrewNeg0, & !< initial screw_neg dislocation density per slip system for each family and instance
rhoDipEdge0, & !< initial edge dipole dislocation density per slip system for each family and instance
rhoDipScrew0, & !< initial screw dipole dislocation density per slip system for each family and instance
lambda0PerSlipFamily, & !< mean free path prefactor for each family and instance
lambda0, & !< mean free path prefactor for each slip system and instance
burgersPerSlipFamily, & !< absolute length of burgers vector [m] for each family and instance
burgers, & !< absolute length of burgers vector [m] for each slip system and instance
interactionSlipSlip !< coefficients for slip-slip interaction for each interaction type and instance
real(pReal), dimension(:,:,:), allocatable, private :: &
Cslip66, & !< elasticity matrix in Mandel notation for each instance
minDipoleHeightPerSlipFamily, & !< minimum stable edge/screw dipole height for each family and instance
minDipoleHeight, & !< minimum stable edge/screw dipole height for each slip system and instance
peierlsStressPerSlipFamily, & !< Peierls stress (edge and screw)
peierlsStress, & !< Peierls stress (edge and screw)
forestProjectionEdge, & !< matrix of forest projections of edge dislocations for each instance
forestProjectionScrew, & !< matrix of forest projections of screw dislocations for each instance
interactionMatrixSlipSlip !< interaction matrix of the different slip systems for each instance
real(pReal), dimension(:,:,:,:), allocatable, private :: &
lattice2slip, & !< orthogonal transformation matrix from lattice coordinate system to slip coordinate system (passive rotation !!!)
rhoDotEdgeJogsOutput, &
sourceProbability
real(pReal), dimension(:,:,:,:,:), allocatable, private :: &
Cslip3333, & !< elasticity matrix for each instance
rhoDotFluxOutput, &
rhoDotMultiplicationOutput, &
rhoDotSingle2DipoleGlideOutput, &
rhoDotAthermalAnnihilationOutput, &
rhoDotThermalAnnihilationOutput, &
nonSchmidProjection !< combined projection of Schmid and non-Schmid contributions to the resolved shear stress (only for screws)
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
compatibility !< slip system compatibility between me and my neighbors
2013-01-22 05:20:28 +05:30
real(pReal), dimension(:,:), allocatable, private :: &
nonSchmidCoeff
2013-01-22 05:20:28 +05:30
logical, dimension(:), allocatable, private :: &
shortRangeStressCorrection, & !< flag indicating the use of the short range stress correction by a excess density gradient term
probabilisticMultiplication
public :: &
constitutive_nonlocal_init, &
constitutive_nonlocal_stateInit, &
constitutive_nonlocal_aTolState, &
constitutive_nonlocal_homogenizedC, &
constitutive_nonlocal_microstructure, &
constitutive_nonlocal_LpAndItsTangent, &
constitutive_nonlocal_dotState, &
constitutive_nonlocal_deltaState, &
constitutive_nonlocal_updateCompatibility, &
constitutive_nonlocal_postResults
private :: &
constitutive_nonlocal_kinetics, &
constitutive_nonlocal_dislocationstress
CONTAINS
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine constitutive_nonlocal_init(myFile)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: math_Mandel3333to66, &
math_Voigt66to3333, &
math_mul3x3, &
math_transpose33
use IO, only: IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_error, &
IO_warning, &
IO_timeStamp
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use material, only: homogenization_maxNgrains, &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput
use lattice
!*** output variables
!*** input variables
integer(pInt), intent(in) :: myFile
!*** local variables
integer(pInt), parameter :: MAXNCHUNKS = LATTICE_maxNinteraction + 1_pInt
integer(pInt), &
dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
integer(pInt), dimension(7) :: configNchunks
integer(pInt) :: section = 0_pInt, &
maxNmatIDs, &
maxTotalNslip, &
structID, &
f, & ! index of my slip family
i, & ! index of my instance of this plasticity
l, &
ns, & ! short notation for total number of active slip systems for the current instance
o, & ! index of my output
s, & ! index of my slip system
s1, & ! index of my slip system
s2, & ! index of my slip system
it, & ! index of my interaction type
t, & ! index of dislocation type
c, & ! index of dislocation character
Nchunks_SlipSlip = 0_pInt, &
Nchunks_SlipFamilies = 0_pInt, &
Nchunks_nonSchmid = 0_pInt, &
mySize = 0_pInt ! to suppress warnings, safe as init is called only once
character(len=65536) tag
character(len=65536) :: line = '' ! to start initialized
write(6,'(/,a)') ' <<<+- constitutive_'//CONSTITUTIVE_NONLOCAL_label//' init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNmatIDs = int(count(phase_plasticity == CONSTITUTIVE_NONLOCAL_LABEL),pInt)
if (maxNmatIDs == 0) return ! we don't have to do anything if there's no instance for this constitutive law
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNmatIDs
!*** memory allocation for global variables
allocate(constitutive_nonlocal_sizeDotState(maxNmatIDs))
allocate(constitutive_nonlocal_sizeDependentState(maxNmatIDs))
allocate(constitutive_nonlocal_sizeState(maxNmatIDs))
allocate(constitutive_nonlocal_sizePostResults(maxNmatIDs))
allocate(constitutive_nonlocal_sizePostResult(maxval(phase_Noutput), maxNmatIDs))
allocate(constitutive_nonlocal_output(maxval(phase_Noutput), maxNmatIDs))
allocate(Noutput(maxNmatIDs))
constitutive_nonlocal_sizeDotState = 0_pInt
constitutive_nonlocal_sizeDependentState = 0_pInt
constitutive_nonlocal_sizeState = 0_pInt
constitutive_nonlocal_sizePostResults = 0_pInt
constitutive_nonlocal_sizePostResult = 0_pInt
constitutive_nonlocal_output = ''
Noutput = 0_pInt
allocate(constitutive_nonlocal_structureName(maxNmatIDs))
allocate(constitutive_nonlocal_structure(maxNmatIDs))
allocate(Nslip(lattice_maxNslipFamily, maxNmatIDs))
allocate(slipFamily(lattice_maxNslip, maxNmatIDs))
allocate(slipSystemLattice(lattice_maxNslip, maxNmatIDs))
allocate(totalNslip(maxNmatIDs))
constitutive_nonlocal_structureName = ''
constitutive_nonlocal_structure = 0_pInt
Nslip = 0_pInt
slipFamily = 0_pInt
slipSystemLattice = 0_pInt
totalNslip = 0_pInt
allocate(CoverA(maxNmatIDs))
allocate(mu(maxNmatIDs))
allocate(nu(maxNmatIDs))
allocate(atomicVolume(maxNmatIDs))
allocate(Dsd0(maxNmatIDs))
allocate(selfDiffusionEnergy(maxNmatIDs))
allocate(aTolRho(maxNmatIDs))
allocate(aTolShear(maxNmatIDs))
allocate(significantRho(maxNmatIDs))
allocate(significantN(maxNmatIDs))
allocate(Cslip66(6,6,maxNmatIDs))
allocate(Cslip3333(3,3,3,3,maxNmatIDs))
allocate(cutoffRadius(maxNmatIDs))
allocate(doublekinkwidth(maxNmatIDs))
allocate(solidSolutionEnergy(maxNmatIDs))
allocate(solidSolutionSize(maxNmatIDs))
allocate(solidSolutionConcentration(maxNmatIDs))
allocate(pParam(maxNmatIDs))
allocate(qParam(maxNmatIDs))
allocate(viscosity(maxNmatIDs))
allocate(fattack(maxNmatIDs))
allocate(rhoSglScatter(maxNmatIDs))
allocate(rhoSglRandom(maxNmatIDs))
allocate(rhoSglRandomBinning(maxNmatIDs))
allocate(surfaceTransmissivity(maxNmatIDs))
allocate(grainboundaryTransmissivity(maxNmatIDs))
allocate(shortRangeStressCorrection(maxNmatIDs))
allocate(probabilisticMultiplication(maxNmatIDs))
allocate(CFLfactor(maxNmatIDs))
allocate(fEdgeMultiplication(maxNmatIDs))
allocate(linetensionEffect(maxNmatIDs))
allocate(edgeJogFactor(maxNmatIDs))
CoverA = 0.0_pReal
mu = 0.0_pReal
atomicVolume = 0.0_pReal
Dsd0 = -1.0_pReal
selfDiffusionEnergy = 0.0_pReal
aTolRho = 0.0_pReal
aTolShear = 0.0_pReal
significantRho = 0.0_pReal
significantN = 0.0_pReal
nu = 0.0_pReal
Cslip66 = 0.0_pReal
Cslip3333 = 0.0_pReal
cutoffRadius = -1.0_pReal
doublekinkwidth = 0.0_pReal
solidSolutionEnergy = 0.0_pReal
solidSolutionSize = 0.0_pReal
solidSolutionConcentration = 0.0_pReal
pParam = 1.0_pReal
qParam = 1.0_pReal
viscosity = 0.0_pReal
fattack = 0.0_pReal
rhoSglScatter = 0.0_pReal
rhoSglRandom = 0.0_pReal
rhoSglRandomBinning = 1.0_pReal
surfaceTransmissivity = 1.0_pReal
grainboundaryTransmissivity = -1.0_pReal
CFLfactor = 2.0_pReal
fEdgeMultiplication = 0.0_pReal
linetensionEffect = 0.0_pReal
edgeJogFactor = 1.0_pReal
shortRangeStressCorrection = .false.
probabilisticMultiplication = .false.
allocate(rhoSglEdgePos0(lattice_maxNslipFamily,maxNmatIDs))
allocate(rhoSglEdgeNeg0(lattice_maxNslipFamily,maxNmatIDs))
allocate(rhoSglScrewPos0(lattice_maxNslipFamily,maxNmatIDs))
allocate(rhoSglScrewNeg0(lattice_maxNslipFamily,maxNmatIDs))
allocate(rhoDipEdge0(lattice_maxNslipFamily,maxNmatIDs))
allocate(rhoDipScrew0(lattice_maxNslipFamily,maxNmatIDs))
allocate(burgersPerSlipFamily(lattice_maxNslipFamily,maxNmatIDs))
allocate(lambda0PerSlipFamily(lattice_maxNslipFamily,maxNmatIDs))
allocate(interactionSlipSlip(lattice_maxNinteraction,maxNmatIDs))
rhoSglEdgePos0 = -1.0_pReal
rhoSglEdgeNeg0 = -1.0_pReal
rhoSglScrewPos0 = -1.0_pReal
rhoSglScrewNeg0 = -1.0_pReal
rhoDipEdge0 = -1.0_pReal
rhoDipScrew0 = -1.0_pReal
burgersPerSlipFamily = 0.0_pReal
lambda0PerSlipFamily = 0.0_pReal
interactionSlipSlip = 0.0_pReal
allocate(minDipoleHeightPerSlipFamily(lattice_maxNslipFamily,2,maxNmatIDs))
allocate(peierlsStressPerSlipFamily(lattice_maxNslipFamily,2,maxNmatIDs))
minDipoleHeightPerSlipFamily = -1.0_pReal
peierlsStressPerSlipFamily = 0.0_pReal
allocate(nonSchmidCoeff(lattice_maxNnonSchmid,maxNmatIDs))
nonSchmidCoeff = 0.0_pReal
2013-01-22 05:20:28 +05:30
!*** readout data from material.config file
rewind(myFile)
2013-08-09 01:03:21 +05:30
do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
line = IO_read(myFile)
enddo
2013-08-09 01:03:21 +05:30
do while (trim(line) /= '#EOF#') ! read thru sections of phase part
line = IO_read(myFile)
2013-08-09 01:03:21 +05:30
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt ! advance section counter
cycle
endif
if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
if (trim(phase_plasticity(section)) == CONSTITUTIVE_NONLOCAL_LABEL) then ! one of my sections
2013-08-09 01:03:21 +05:30
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
2013-08-09 01:03:21 +05:30
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case('plasticity','elasticity','/nonlocal/')
cycle
case ('(output)')
Noutput(i) = Noutput(i) + 1_pInt
constitutive_nonlocal_output(Noutput(i),i) = IO_lc(IO_stringValue(line,positions,2_pInt))
case ('lattice_structure')
constitutive_nonlocal_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
configNchunks = lattice_configNchunks(constitutive_nonlocal_structureName(i))
Nchunks_SlipFamilies = configNchunks(1)
Nchunks_SlipSlip = configNchunks(3)
Nchunks_nonSchmid = configNchunks(7)
case ('c/a_ratio','covera_ratio')
CoverA(i) = IO_floatValue(line,positions,2_pInt)
case ('c11')
Cslip66(1,1,i) = IO_floatValue(line,positions,2_pInt)
case ('c12')
Cslip66(1,2,i) = IO_floatValue(line,positions,2_pInt)
case ('c13')
Cslip66(1,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c22')
Cslip66(2,2,i) = IO_floatValue(line,positions,2_pInt)
case ('c23')
Cslip66(2,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c33')
Cslip66(3,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c44')
Cslip66(4,4,i) = IO_floatValue(line,positions,2_pInt)
case ('c55')
Cslip66(5,5,i) = IO_floatValue(line,positions,2_pInt)
case ('c66')
Cslip66(6,6,i) = IO_floatValue(line,positions,2_pInt)
case ('nslip')
if (positions(1) < 1_pInt + Nchunks_SlipFamilies) &
call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
Nchunks_SlipFamilies = positions(1) - 1_pInt
do f = 1_pInt, Nchunks_SlipFamilies
Nslip(f,i) = IO_intValue(line,positions,1_pInt+f)
enddo
case ('rhosgledgepos0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoSglEdgePos0(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case ('rhosgledgeneg0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoSglEdgeNeg0(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case ('rhosglscrewpos0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoSglScrewPos0(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case ('rhosglscrewneg0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoSglScrewNeg0(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case ('rhodipedge0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoDipEdge0(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case ('rhodipscrew0')
do f = 1_pInt, Nchunks_SlipFamilies
rhoDipScrew0(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case ('lambda0')
do f = 1_pInt, Nchunks_SlipFamilies
lambda0PerSlipFamily(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case ('burgers')
do f = 1_pInt, Nchunks_SlipFamilies
burgersPerSlipFamily(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case('cutoffradius','r')
cutoffRadius(i) = IO_floatValue(line,positions,2_pInt)
case('minimumdipoleheightedge','ddipminedge')
do f = 1_pInt, Nchunks_SlipFamilies
minDipoleHeightPerSlipFamily(f,1_pInt,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case('minimumdipoleheightscrew','ddipminscrew')
do f = 1_pInt, Nchunks_SlipFamilies
minDipoleHeightPerSlipFamily(f,2_pInt,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case('atomicvolume')
atomicVolume(i) = IO_floatValue(line,positions,2_pInt)
case('selfdiffusionprefactor','dsd0')
Dsd0(i) = IO_floatValue(line,positions,2_pInt)
case('selfdiffusionenergy','qsd')
selfDiffusionEnergy(i) = IO_floatValue(line,positions,2_pInt)
case('atol_rho','atol_density','absolutetolerancedensity','absolutetolerance_density')
aTolRho(i) = IO_floatValue(line,positions,2_pInt)
case('atol_shear','atol_plasticshear','atol_accumulatedshear','absolutetoleranceshear','absolutetolerance_shear')
aTolShear(i) = IO_floatValue(line,positions,2_pInt)
case('significantrho','significant_rho','significantdensity','significant_density')
significantRho(i) = IO_floatValue(line,positions,2_pInt)
case('significantn','significant_n','significantdislocations','significant_dislcations')
significantN(i) = IO_floatValue(line,positions,2_pInt)
case ('interaction_slipslip')
if (positions(1) < 1_pInt + Nchunks_SlipSlip) &
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
do it = 1_pInt,Nchunks_SlipSlip
interactionSlipSlip(it,i) = IO_floatValue(line,positions,1_pInt+it)
enddo
case('linetension','linetensioneffect','linetension_effect')
linetensionEffect(i) = IO_floatValue(line,positions,2_pInt)
case('edgejog','edgejogs','edgejogeffect','edgejog_effect')
edgeJogFactor(i) = IO_floatValue(line,positions,2_pInt)
case('peierlsstressedge','peierlsstress_edge')
do f = 1_pInt, Nchunks_SlipFamilies
peierlsStressPerSlipFamily(f,1_pInt,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case('peierlsstressscrew','peierlsstress_screw')
do f = 1_pInt, Nchunks_SlipFamilies
peierlsStressPerSlipFamily(f,2_pInt,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case('doublekinkwidth')
doublekinkwidth(i) = IO_floatValue(line,positions,2_pInt)
case('solidsolutionenergy')
solidSolutionEnergy(i) = IO_floatValue(line,positions,2_pInt)
case('solidsolutionsize')
solidSolutionSize(i) = IO_floatValue(line,positions,2_pInt)
case('solidsolutionconcentration')
solidSolutionConcentration(i) = IO_floatValue(line,positions,2_pInt)
case('p')
pParam(i) = IO_floatValue(line,positions,2_pInt)
case('q')
qParam(i) = IO_floatValue(line,positions,2_pInt)
case('viscosity','glideviscosity')
viscosity(i) = IO_floatValue(line,positions,2_pInt)
case('attackfrequency','fattack')
fattack(i) = IO_floatValue(line,positions,2_pInt)
case('rhosglscatter')
rhoSglScatter(i) = IO_floatValue(line,positions,2_pInt)
case('rhosglrandom')
rhoSglRandom(i) = IO_floatValue(line,positions,2_pInt)
case('rhosglrandombinning')
rhoSglRandomBinning(i) = IO_floatValue(line,positions,2_pInt)
case('surfacetransmissivity')
surfaceTransmissivity(i) = IO_floatValue(line,positions,2_pInt)
case('grainboundarytransmissivity')
grainboundaryTransmissivity(i) = IO_floatValue(line,positions,2_pInt)
case('cflfactor')
CFLfactor(i) = IO_floatValue(line,positions,2_pInt)
case('fedgemultiplication','edgemultiplicationfactor','edgemultiplication')
fEdgeMultiplication(i) = IO_floatValue(line,positions,2_pInt)
case('shortrangestresscorrection')
shortRangeStressCorrection(i) = IO_floatValue(line,positions,2_pInt) > 0.0_pReal
case ('nonschmid_coefficients')
if (positions(1) < 1_pInt + Nchunks_nonSchmid) &
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
do f = 1_pInt,Nchunks_nonSchmid
nonSchmidCoeff(f,i) = IO_floatValue(line,positions,1_pInt+f)
enddo
case('probabilisticmultiplication','randomsources','randommultiplication','discretesources')
probabilisticMultiplication(i) = IO_floatValue(line,positions,2_pInt) > 0.0_pReal
case default
call IO_error(210_pInt,ext_msg=trim(tag)//' ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
end select
endif
endif
enddo
do i = 1_pInt,maxNmatIDs
constitutive_nonlocal_structure(i) = &
lattice_initializeStructure(constitutive_nonlocal_structureName(i), CoverA(i)) ! our lattice structure is defined in the material.config file by the structureName (and the c/a ratio)
structID = constitutive_nonlocal_structure(i)
!*** sanity checks
if (structID < 1_pInt) &
call IO_error(205_pInt,el=i)
if (sum(Nslip(:,i)) <= 0_pInt) &
call IO_error(211_pInt,ext_msg='Nslip ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
do o = 1_pInt,maxval(phase_Noutput)
if(len(constitutive_nonlocal_output(o,i)) > 64_pInt) &
call IO_error(666_pInt)
enddo
do f = 1_pInt,lattice_maxNslipFamily
if (Nslip(f,i) > 0_pInt) then
if (rhoSglEdgePos0(f,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglEdgePos0 ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (rhoSglEdgeNeg0(f,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglEdgeNeg0 ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (rhoSglScrewPos0(f,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglScrewPos0 ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (rhoSglScrewNeg0(f,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglScrewNeg0 ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (rhoDipEdge0(f,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoDipEdge0 ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (rhoDipScrew0(f,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoDipScrew0 ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (burgersPerSlipFamily(f,i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='Burgers ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (lambda0PerSlipFamily(f,i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='lambda0 ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (minDipoleHeightPerSlipFamily(f,1,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='minimumDipoleHeightEdge ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (minDipoleHeightPerSlipFamily(f,2,i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='minimumDipoleHeightScrew ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (peierlsStressPerSlipFamily(f,1,i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='peierlsStressEdge ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (peierlsStressPerSlipFamily(f,2,i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='peierlsStressScrew ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
endif
enddo
if (any(interactionSlipSlip(1:maxval(lattice_interactionSlipSlip(:,:,structID)),i) < 0.0_pReal)) &
call IO_error(211_pInt,ext_msg='interaction_SlipSlip ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (linetensionEffect(i) < 0.0_pReal .or. linetensionEffect(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='linetension ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (edgeJogFactor(i) < 0.0_pReal .or. edgeJogFactor(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='edgejog ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (cutoffRadius(i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='r ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (atomicVolume(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='atomicVolume ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (Dsd0(i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='selfDiffusionPrefactor ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (selfDiffusionEnergy(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='selfDiffusionEnergy ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (aTolRho(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='aTol_rho ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (aTolShear(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='aTol_shear ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (significantRho(i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='significantRho ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (significantN(i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='significantN ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (doublekinkwidth(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='doublekinkwidth ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (solidSolutionEnergy(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='solidSolutionEnergy ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (solidSolutionSize(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='solidSolutionSize ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (solidSolutionConcentration(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='solidSolutionConcentration ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (pParam(i) <= 0.0_pReal .or. pParam(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='p ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (qParam(i) < 1.0_pReal .or. qParam(i) > 2.0_pReal) &
call IO_error(211_pInt,ext_msg='q ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (viscosity(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='viscosity ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (fattack(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='attackFrequency ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (rhoSglScatter(i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglScatter ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (rhoSglRandom(i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglRandom ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (rhoSglRandomBinning(i) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg='rhoSglRandomBinning ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (surfaceTransmissivity(i) < 0.0_pReal .or. surfaceTransmissivity(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='surfaceTransmissivity ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (grainboundaryTransmissivity(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='grainboundaryTransmissivity ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (CFLfactor(i) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg='CFLfactor ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
if (fEdgeMultiplication(i) < 0.0_pReal .or. fEdgeMultiplication(i) > 1.0_pReal) &
call IO_error(211_pInt,ext_msg='edgemultiplicationfactor ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
!*** determine total number of active slip systems
Nslip(1:lattice_maxNslipFamily,i) = min(lattice_NslipSystem(1:lattice_maxNslipFamily,structID), &
Nslip(1:lattice_maxNslipFamily,i) ) ! we can't use more slip systems per family than specified in lattice
totalNslip(i) = sum(Nslip(1:lattice_maxNslipFamily,i))
enddo
!*** allocation of variables whose size depends on the total number of active slip systems
maxTotalNslip = maxval(totalNslip)
allocate(iRhoU(maxTotalNslip,4,maxNmatIDs))
allocate(iRhoB(maxTotalNslip,4,maxNmatIDs))
allocate(iRhoD(maxTotalNslip,2,maxNmatIDs))
allocate(iV(maxTotalNslip,4,maxNmatIDs))
allocate(iD(maxTotalNslip,2,maxNmatIDs))
allocate(iGamma(maxTotalNslip,maxNmatIDs))
allocate(iRhoF(maxTotalNslip,maxNmatIDs))
allocate(iTauF(maxTotalNslip,maxNmatIDs))
allocate(iTauB(maxTotalNslip,maxNmatIDs))
iRhoU = 0_pInt
iRhoB = 0_pInt
iRhoD = 0_pInt
iV = 0_pInt
iD = 0_pInt
iGamma = 0_pInt
iRhoF = 0_pInt
iTauF = 0_pInt
iTauB = 0_pInt
allocate(burgers(maxTotalNslip,maxNmatIDs))
burgers = 0.0_pReal
allocate(lambda0(maxTotalNslip,maxNmatIDs))
lambda0 = 0.0_pReal
allocate(minDipoleHeight(maxTotalNslip,2,maxNmatIDs))
minDipoleHeight = -1.0_pReal
allocate(forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNmatIDs))
forestProjectionEdge = 0.0_pReal
allocate(forestProjectionScrew(maxTotalNslip,maxTotalNslip,maxNmatIDs))
forestProjectionScrew = 0.0_pReal
allocate(interactionMatrixSlipSlip(maxTotalNslip,maxTotalNslip,maxNmatIDs))
interactionMatrixSlipSlip = 0.0_pReal
allocate(lattice2slip(1:3, 1:3, maxTotalNslip, maxNmatIDs))
lattice2slip = 0.0_pReal
allocate(sourceProbability(maxTotalNslip, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
sourceProbability = 2.0_pReal
allocate(rhoDotFluxOutput(maxTotalNslip, 8, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(rhoDotMultiplicationOutput(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(rhoDotSingle2DipoleGlideOutput(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(rhoDotAthermalAnnihilationOutput(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(rhoDotThermalAnnihilationOutput(maxTotalNslip, 2, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
allocate(rhoDotEdgeJogsOutput(maxTotalNslip, homogenization_maxNgrains, mesh_maxNips, mesh_NcpElems))
rhoDotFluxOutput = 0.0_pReal
rhoDotMultiplicationOutput = 0.0_pReal
rhoDotSingle2DipoleGlideOutput = 0.0_pReal
rhoDotAthermalAnnihilationOutput = 0.0_pReal
rhoDotThermalAnnihilationOutput = 0.0_pReal
rhoDotEdgeJogsOutput = 0.0_pReal
allocate(compatibility(2,maxTotalNslip, maxTotalNslip, mesh_maxNipNeighbors, mesh_maxNips, mesh_NcpElems))
compatibility = 0.0_pReal
allocate(peierlsStress(maxTotalNslip,2,maxNmatIDs))
peierlsStress = 0.0_pReal
allocate(colinearSystem(maxTotalNslip,maxNmatIDs))
colinearSystem = 0_pInt
allocate(nonSchmidProjection(3,3,4,maxTotalNslip,maxNmatIDs))
nonSchmidProjection = 0.0_pReal
do i = 1,maxNmatIDs
structID = constitutive_nonlocal_structure(i) ! lattice structure of this instance
!*** Inverse lookup of my slip system family and the slip system in lattice
l = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily
do s = 1_pInt,Nslip(f,i)
l = l + 1_pInt
slipFamily(l,i) = f
slipSystemLattice(l,i) = sum(lattice_NslipSystem(1:f-1_pInt, structID)) + s
enddo; enddo
!*** determine size of state array
ns = totalNslip(i)
constitutive_nonlocal_sizeDotState(i) = int(size(BASICSTATES),pInt) * ns
constitutive_nonlocal_sizeDependentState(i) = int(size(DEPENDENTSTATES),pInt) * ns
constitutive_nonlocal_sizeState(i) = constitutive_nonlocal_sizeDotState(i) &
+ constitutive_nonlocal_sizeDependentState(i) &
+ int(size(OTHERSTATES),pInt) * ns
!*** determine indices to state array
l = 0_pInt
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iRhoU(s,t,i) = l
enddo
enddo
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iRhoB(s,t,i) = l
enddo
enddo
do c = 1_pInt,2_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iRhoD(s,c,i) = l
enddo
enddo
do s = 1_pInt,ns
l = l + 1_pInt
iGamma(s,i) = l
enddo
do s = 1_pInt,ns
l = l + 1_pInt
iRhoF(s,i) = l
enddo
do s = 1_pInt,ns
l = l + 1_pInt
iTauF(s,i) = l
enddo
do s = 1_pInt,ns
l = l + 1_pInt
iTauB(s,i) = l
enddo
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iV(s,t,i) = l
enddo
enddo
do c = 1_pInt,2_pInt
do s = 1_pInt,ns
l = l + 1_pInt
iD(s,c,i) = l
enddo
enddo
if (iD(ns,2,i) /= constitutive_nonlocal_sizeState(i)) & ! check if last index is equal to size of state
call IO_error(0_pInt, ext_msg = 'state indices not properly set ('//CONSTITUTIVE_NONLOCAL_LABEL//')')
!*** determine size of postResults array
do o = 1_pInt,Noutput(i)
select case(constitutive_nonlocal_output(o,i))
case( 'rho', &
'delta', &
'rho_edge', &
'rho_screw', &
'rho_sgl', &
'delta_sgl', &
'rho_sgl_edge', &
'rho_sgl_edge_pos', &
'rho_sgl_edge_neg', &
'rho_sgl_screw', &
'rho_sgl_screw_pos', &
'rho_sgl_screw_neg', &
'rho_sgl_mobile', &
'rho_sgl_edge_mobile', &
'rho_sgl_edge_pos_mobile', &
'rho_sgl_edge_neg_mobile', &
'rho_sgl_screw_mobile', &
'rho_sgl_screw_pos_mobile', &
'rho_sgl_screw_neg_mobile', &
'rho_sgl_immobile', &
'rho_sgl_edge_immobile', &
'rho_sgl_edge_pos_immobile', &
'rho_sgl_edge_neg_immobile', &
'rho_sgl_screw_immobile', &
'rho_sgl_screw_pos_immobile', &
'rho_sgl_screw_neg_immobile', &
'rho_dip', &
'delta_dip', &
'rho_dip_edge', &
'rho_dip_screw', &
'excess_rho', &
'excess_rho_edge', &
'excess_rho_screw', &
'rho_forest', &
'shearrate', &
'resolvedstress', &
'resolvedstress_external', &
'resolvedstress_back', &
'resistance', &
'rho_dot', &
'rho_dot_sgl', &
'rho_dot_dip', &
'rho_dot_gen', &
'rho_dot_gen_edge', &
'rho_dot_gen_screw', &
'rho_dot_sgl2dip', &
'rho_dot_sgl2dip_edge', &
'rho_dot_sgl2dip_screw', &
'rho_dot_ann_ath', &
'rho_dot_ann_the', &
'rho_dot_ann_the_edge', &
'rho_dot_ann_the_screw', &
'rho_dot_edgejogs', &
'rho_dot_flux', &
'rho_dot_flux_edge', &
'rho_dot_flux_screw', &
'velocity_edge_pos', &
'velocity_edge_neg', &
'velocity_screw_pos', &
'velocity_screw_neg', &
'slipdirection.x', &
'slipdirection.y', &
'slipdirection.z', &
'slipnormal.x', &
'slipnormal.y', &
'slipnormal.z', &
'fluxdensity_edge_pos.x', &
'fluxdensity_edge_pos.y', &
'fluxdensity_edge_pos.z', &
'fluxdensity_edge_neg.x', &
'fluxdensity_edge_neg.y', &
'fluxdensity_edge_neg.z', &
'fluxdensity_screw_pos.x', &
'fluxdensity_screw_pos.y', &
'fluxdensity_screw_pos.z', &
'fluxdensity_screw_neg.x', &
'fluxdensity_screw_neg.y', &
'fluxdensity_screw_neg.z', &
2012-01-26 18:20:04 +05:30
'maximumdipoleheight_edge', &
'maximumdipoleheight_screw', &
'accumulatedshear', &
'boundarylayer' )
mySize = totalNslip(i)
case('dislocationstress')
mySize = 6_pInt
case default
call IO_error(212_pInt,ext_msg=constitutive_nonlocal_output(o,i)//&
'('//CONSTITUTIVE_NONLOCAL_LABEL//')')
end select
if (mySize > 0_pInt) then ! any meaningful output found
constitutive_nonlocal_sizePostResult(o,i) = mySize
constitutive_nonlocal_sizePostResults(i) = constitutive_nonlocal_sizePostResults(i) + mySize
endif
enddo
!*** elasticity matrix and shear modulus according to material.config
Cslip66(:,:,i) = lattice_symmetrizeC66(constitutive_nonlocal_structureName(i), Cslip66(:,:,i))
mu(i) = 0.2_pReal * ( Cslip66(1,1,i) - Cslip66(1,2,i) + 3.0_pReal*Cslip66(4,4,i)) ! (C11iso-C12iso)/2 with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5
nu(i) = (Cslip66(1,1,i) + 4.0_pReal*Cslip66(1,2,i) - 2.0_pReal*Cslip66(4,4,i)) &
/ (4.0_pReal*Cslip66(1,1,i) + 6.0_pReal*Cslip66(1,2,i) + 2.0_pReal*Cslip66(4,4,i)) ! C12iso/(C11iso+C12iso) with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5
Cslip66(1:6,1:6,i) = math_Mandel3333to66(math_Voigt66to3333(Cslip66(1:6,1:6,i)))
Cslip3333(1:3,1:3,1:3,1:3,i) = math_Voigt66to3333(Cslip66(1:6,1:6,i))
do s1 = 1_pInt,ns
f = slipFamily(s1,i)
!*** burgers vector, mean free path prefactor and minimum dipole distance for each slip system
burgers(s1,i) = burgersPerSlipFamily(f,i)
lambda0(s1,i) = lambda0PerSlipFamily(f,i)
minDipoleHeight(s1,1:2,i) = minDipoleHeightPerSlipFamily(f,1:2,i)
peierlsStress(s1,1:2,i) = peierlsStressPerSlipFamily(f,1:2,i)
do s2 = 1_pInt,ns
!*** calculation of forest projections for edge and screw dislocations. s2 acts as forest for s1
forestProjectionEdge(s1,s2,i) &
= abs(math_mul3x3(lattice_sn(1:3,slipSystemLattice(s1,i),structID), &
lattice_st(1:3,slipSystemLattice(s2,i),structID))) ! forest projection of edge dislocations is the projection of (t = b x n) onto the slip normal of the respective slip plane
forestProjectionScrew(s1,s2,i) &
= abs(math_mul3x3(lattice_sn(1:3,slipSystemLattice(s1,i),structID), &
lattice_sd(1:3,slipSystemLattice(s2,i),structID))) ! forest projection of screw dislocations is the projection of b onto the slip normal of the respective splip plane
!*** calculation of interaction matrices
interactionMatrixSlipSlip(s1,s2,i) &
= interactionSlipSlip(lattice_interactionSlipSlip(slipSystemLattice(s1,i), &
slipSystemLattice(s2,i), &
structID), i)
!*** colinear slip system (only makes sense for fcc like it is defined here)
if (lattice_interactionSlipSlip(slipSystemLattice(s1,i), &
slipSystemLattice(s2,i), &
structID) == 3_pInt) then
colinearSystem(s1,i) = s2
endif
enddo
!*** rotation matrix from lattice configuration to slip system
lattice2slip(1:3,1:3,s1,i) &
= math_transpose33( reshape([ lattice_sd(1:3, slipSystemLattice(s1,i), structID), &
-lattice_st(1:3, slipSystemLattice(s1,i), structID), &
lattice_sn(1:3, slipSystemLattice(s1,i), structID)], [3,3]))
enddo
!*** combined projection of Schmid and non-Schmid contributions to the resolved shear stress (only for screws)
!* four types t:
!* 1) positive screw at positive resolved stress
!* 2) positive screw at negative resolved stress
!* 3) negative screw at positive resolved stress
!* 4) negative screw at negative resolved stress
do s = 1_pInt,ns
do l = 1_pInt,lattice_NnonSchmid(structID)
nonSchmidProjection(1:3,1:3,1,s,i) = nonSchmidProjection(1:3,1:3,1,s,i) &
+ nonSchmidCoeff(l,i) * lattice_Sslip(1:3,1:3,2*l,slipSystemLattice(s,i),structID)
nonSchmidProjection(1:3,1:3,2,s,i) = nonSchmidProjection(1:3,1:3,2,s,i) &
+ nonSchmidCoeff(l,i) * lattice_Sslip(1:3,1:3,2*l+1,slipSystemLattice(s,i),structID)
enddo
nonSchmidProjection(1:3,1:3,3,s,i) = -nonSchmidProjection(1:3,1:3,2,s,i)
nonSchmidProjection(1:3,1:3,4,s,i) = -nonSchmidProjection(1:3,1:3,1,s,i)
forall (t = 1:4) &
nonSchmidProjection(1:3,1:3,t,s,i) = nonSchmidProjection(1:3,1:3,t,s,i) &
+ lattice_Sslip(1:3,1:3,1,slipSystemLattice(s,i),structID)
enddo
enddo
end subroutine constitutive_nonlocal_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the initial microstructural state for a given instance of this plasticity
!--------------------------------------------------------------------------------------------------
subroutine constitutive_nonlocal_stateInit(state)
use IO, only: IO_error
use lattice, only: lattice_maxNslipFamily
use math, only: math_sampleGaussVar
use mesh, only: mesh_ipVolume, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
FE_Nips, &
FE_geomtype
use material, only: material_phase, &
phase_plasticityInstance, &
phase_plasticity
implicit none
!*** input/output variables
type(p_vec), dimension(1,mesh_maxNips,mesh_NcpElems), intent(inout) :: &
state ! microstructural state
!*** local variables
integer(pInt) el, &
ip, &
e, &
i, &
ns, & ! short notation for total number of active slip systems
f, & ! index of lattice family
from, &
upto, &
s, & ! index of slip system
t, &
j, &
matID, &
maxNmatIDs
real(pReal), dimension(2) :: noise
real(pReal), dimension(4) :: rnd
real(pReal) meanDensity, &
totalVolume, &
densityBinning, &
minimumIpVolume
maxNmatIDs = int(count(phase_plasticity == CONSTITUTIVE_NONLOCAL_LABEL),pInt)
! ititalize all states to zero
do e = 1_pInt,mesh_NcpElems
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
if (CONSTITUTIVE_NONLOCAL_LABEL == phase_plasticity(material_phase(1,i,e))) &
state(1,i,e)%p = 0.0_pReal
enddo
enddo
do matID = 1_pInt,maxNmatIDs
ns = totalNslip(matID)
! randomly distribute dislocation segments on random slip system and of random type in the volume
if (rhoSglRandom(matID) > 0.0_pReal) then
! get the total volume of the instance
minimumIpVolume = 1e99_pReal
totalVolume = 0.0_pReal
do e = 1_pInt,mesh_NcpElems
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
if (CONSTITUTIVE_NONLOCAL_LABEL == phase_plasticity(material_phase(1,i,e)) &
.and. matID == phase_plasticityInstance(material_phase(1,i,e))) then
totalVolume = totalVolume + mesh_ipVolume(i,e)
minimumIpVolume = min(minimumIpVolume, mesh_ipVolume(i,e))
endif
enddo
enddo
densityBinning = rhoSglRandomBinning(matID) / minimumIpVolume ** (2.0_pReal / 3.0_pReal)
! subsequently fill random ips with dislocation segments until we reach the desired overall density
meanDensity = 0.0_pReal
do while(meanDensity < rhoSglRandom(matID))
call random_number(rnd)
el = nint(rnd(1)*real(mesh_NcpElems,pReal)+0.5_pReal,pInt)
ip = nint(rnd(2)*real(FE_Nips(FE_geomtype(mesh_element(2,el))),pReal)+0.5_pReal,pInt)
if (CONSTITUTIVE_NONLOCAL_LABEL == phase_plasticity(material_phase(1,ip,el)) &
.and. matID == phase_plasticityInstance(material_phase(1,ip,el))) then
s = nint(rnd(3)*real(ns,pReal)+0.5_pReal,pInt)
t = nint(rnd(4)*4.0_pReal+0.5_pReal,pInt)
meanDensity = meanDensity + densityBinning * mesh_ipVolume(ip,el) / totalVolume
state(1,ip,el)%p(iRhoU(s,t,matID)) = state(1,ip,el)%p(iRhoU(s,t,matID)) + densityBinning
endif
enddo
! homogeneous distribution of density with some noise
else
do e = 1_pInt,mesh_NcpElems
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
if (CONSTITUTIVE_NONLOCAL_LABEL == phase_plasticity(material_phase(1,i,e)) &
.and. matID == phase_plasticityInstance(material_phase(1,i,e))) then
do f = 1_pInt,lattice_maxNslipFamily
from = 1_pInt + sum(Nslip(1:f-1_pInt,matID))
upto = sum(Nslip(1:f,matID))
do s = from,upto
do j = 1_pInt,2_pInt
noise(j) = math_sampleGaussVar(0.0_pReal, rhoSglScatter(matID))
enddo
state(1,i,e)%p(iRhoU(s,1,matID)) = rhoSglEdgePos0(f,matID) + noise(1)
state(1,i,e)%p(iRhoU(s,2,matID)) = rhoSglEdgeNeg0(f,matID) + noise(1)
state(1,i,e)%p(iRhoU(s,3,matID)) = rhoSglScrewPos0(f,matID) + noise(2)
state(1,i,e)%p(iRhoU(s,4,matID)) = rhoSglScrewNeg0(f,matID) + noise(2)
enddo
state(1,i,e)%p(iRhoD(from:upto,1,matID)) = rhoDipEdge0(f,matID)
state(1,i,e)%p(iRhoD(from:upto,2,matID)) = rhoDipScrew0(f,matID)
enddo
endif
enddo
enddo
endif
enddo
end subroutine constitutive_nonlocal_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this plasticity
!--------------------------------------------------------------------------------------------------
pure function constitutive_nonlocal_aTolState(matID)
implicit none
!*** input variables
integer(pInt), intent(in) :: matID ! number specifying the current instance of the plasticity
!*** output variables
real(pReal), dimension(constitutive_nonlocal_sizeState(matID)) :: &
constitutive_nonlocal_aTolState ! absolute state tolerance for the current instance of this plasticity
!*** local variables
integer(pInt) :: ns, t, c
ns = totalNslip(matID)
constitutive_nonlocal_aTolState = 0.0_pReal
forall (t = 1_pInt:4_pInt)
constitutive_nonlocal_aTolState(iRhoU(1:ns,t,matID)) = aTolRho(matID)
constitutive_nonlocal_aTolState(iRhoB(1:ns,t,matID)) = aTolRho(matID)
endforall
forall (c = 1_pInt:2_pInt) &
constitutive_nonlocal_aTolState(iRhoD(1:ns,c,matID)) = aTolRho(matID)
constitutive_nonlocal_aTolState(iGamma(1:ns,matID)) = aTolShear(matID)
end function constitutive_nonlocal_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief returns the homogenized elasticity matrix
!--------------------------------------------------------------------------------------------------
pure function constitutive_nonlocal_homogenizedC(ipc,ip,el)
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
integer(pInt), intent(in) :: &
ipc, & ! current grain ID
ip, & ! current integration point
el ! current element
real(pReal), dimension(6,6) :: &
constitutive_nonlocal_homogenizedC
constitutive_nonlocal_homogenizedC = &
Cslip66(1:6,1:6,phase_plasticityInstance(material_phase(ipc,ip,el)))
end function constitutive_nonlocal_homogenizedC
!--------------------------------------------------------------------------------------------------
!> @brief calculates quantities characterizing the microstructure
!--------------------------------------------------------------------------------------------------
subroutine constitutive_nonlocal_microstructure(state, Fe, Fp, gr, ip, el)
2013-05-23 17:55:56 +05:30
use IO, only: &
IO_error
use math, only: &
pi, &
math_mul33x3, &
math_mul3x3, &
math_norm3, &
math_invert33, &
math_transpose33
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
mesh_ipNeighborhood, &
mesh_ipCoordinates, &
mesh_ipVolume, &
mesh_ipAreaNormal, &
mesh_ipArea, &
FE_NipNeighbors, &
mesh_maxNipNeighbors, &
2013-05-23 17:55:56 +05:30
FE_geomtype, &
FE_celltype
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_localPlasticity, &
phase_plasticityInstance
use lattice, only: &
lattice_sd, &
lattice_st
implicit none
!*** input variables
integer(pInt), intent(in) :: gr, & ! current grain ID
ip, & ! current integration point
el ! current element
real(pReal), dimension(3,3), intent(in) :: &
Fe, & ! elastic deformation gradient
Fp ! elastic deformation gradient
!*** input/output variables
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: &
state ! microstructural state
!*** output variables
!*** local variables
integer(pInt) neighbor_el, & ! element number of neighboring material point
neighbor_ip, & ! integration point of neighboring material point
matID, & ! my instance of this plasticity
neighbor_matID, & ! instance of this plasticity of neighboring material point
structID, & ! my lattice structure
neighbor_structID, & ! lattice structure of neighboring material point
phase, &
neighbor_phaseID, &
ns, & ! total number of active slip systems at my material point
neighbor_ns, & ! total number of active slip systems at neighboring material point
c, & ! index of dilsocation character (edge, screw)
s, & ! slip system index
t, & ! index of dilsocation type (e+, e-, s+, s-, used e+, used e-, used s+, used s-)
dir, &
n, &
nRealNeighbors ! number of really existing neighbors
integer(pInt), dimension(2) :: neighbors
real(pReal) detFe, &
detFp, &
FVsize, &
temp, &
correction, &
myRhoForest
real(pReal), dimension(2) :: rhoExcessGradient, &
rhoExcessGradient_over_rho, &
rhoTotal
real(pReal), dimension(3) :: rhoExcessDifferences, &
normal_latticeConf
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(gr,ip,el)))) :: &
rhoForest, & ! forest dislocation density
tauBack, & ! back stress from pileup on same slip system
2011-04-13 19:46:22 +05:30
tauThreshold ! threshold shear stress
real(pReal), dimension(3,3) :: invFe, & ! inverse of elastic deformation gradient
invFp, & ! inverse of plastic deformation gradient
connections, &
invConnections
real(pReal), dimension(3,mesh_maxNipNeighbors) :: &
connection_latticeConf
real(pReal), dimension(2,totalNslip(phase_plasticityInstance(material_phase(gr,ip,el)))) :: &
rhoExcess
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(gr,ip,el))),2) :: &
rhoDip ! dipole dislocation density (edge, screw)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(gr,ip,el))),8) :: &
rhoSgl ! single dislocation density (edge+, edge-, screw+, screw-, used edge+, used edge-, used screw+, used screw-)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(gr,ip,el))), &
totalNslip(phase_plasticityInstance(material_phase(gr,ip,el)))) :: &
myInteractionMatrix ! corrected slip interaction matrix
real(pReal), dimension(2,maxval(totalNslip),mesh_maxNipNeighbors) :: &
neighbor_rhoExcess, & ! excess density at neighboring material point
neighbor_rhoTotal ! total density at neighboring material point
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(gr,ip,el))),2) :: &
m ! direction of dislocation motion
logical inversionError
2013-05-23 17:55:56 +05:30
phase = material_phase(gr,ip,el)
matID = phase_plasticityInstance(phase)
structID = constitutive_nonlocal_structure(matID)
ns = totalNslip(matID)
!*** get basic states
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(state(gr,ip,el)%p(iRhoU(s,t,matID)), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = state(gr,ip,el)%p(iRhoB(s,t,matID))
endforall
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
rhoDip(s,c) = max(state(gr,ip,el)%p(iRhoD(s,c,matID)), 0.0_pReal) ! ensure positive dipole densities
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(matID) &
.or. abs(rhoSgl) < significantRho(matID)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(matID) &
.or. abs(rhoDip) < significantRho(matID)) &
rhoDip = 0.0_pReal
!*** calculate the forest dislocation density
!*** (= projection of screw and edge dislocations)
forall (s = 1_pInt:ns) &
rhoForest(s) = dot_product((sum(abs(rhoSgl(1:ns,[1,2,5,6])),2) + rhoDip(1:ns,1)), &
forestProjectionEdge(s,1:ns,matID)) &
+ dot_product((sum(abs(rhoSgl(1:ns,[3,4,7,8])),2) + rhoDip(1:ns,2)), &
forestProjectionScrew(s,1:ns,matID))
!*** calculate the threshold shear stress for dislocation slip
!*** coefficients are corrected for the line tension effect
!*** (see Kubin,Devincre,Hoc; 2008; Modeling dislocation storage rates and mean free paths in face-centered cubic crystals)
myInteractionMatrix = 0.0_pReal
myInteractionMatrix(1:ns,1:ns) = interactionMatrixSlipSlip(1:ns,1:ns,matID)
if (structID < 3_pInt) then ! only fcc and bcc
do s = 1_pInt,ns
myRhoForest = max(rhoForest(s),significantRho(matID))
correction = ( 1.0_pReal - linetensionEffect(matID) &
+ linetensionEffect(matID) &
* log(0.35_pReal * burgers(s,matID) * sqrt(myRhoForest)) &
/ log(0.35_pReal * burgers(s,matID) * 1e6_pReal)) ** 2.0_pReal
myInteractionMatrix(s,1:ns) = correction * myInteractionMatrix(s,1:ns)
enddo
endif
forall (s = 1_pInt:ns) &
tauThreshold(s) = mu(matID) * burgers(s,matID) &
* sqrt(dot_product((sum(abs(rhoSgl),2) + sum(abs(rhoDip),2)), myInteractionMatrix(s,1:ns)))
!*** calculate the dislocation stress of the neighboring excess dislocation densities
!*** zero for material points of local plasticity
tauBack = 0.0_pReal
if (.not. phase_localPlasticity(phase) .and. shortRangeStressCorrection(matID)) then
call math_invert33(Fe, invFe, detFe, inversionError)
call math_invert33(Fp, invFp, detFp, inversionError)
rhoExcess(1,1:ns) = rhoSgl(1:ns,1) - rhoSgl(1:ns,2)
rhoExcess(2,1:ns) = rhoSgl(1:ns,3) - rhoSgl(1:ns,4)
FVsize = mesh_ipVolume(ip,el) ** (1.0_pReal/3.0_pReal)
!* loop through my neighborhood and get the connection vectors (in lattice frame) and the excess densities
nRealNeighbors = 0_pInt
neighbor_rhoTotal = 0.0_pReal
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))
neighbor_el = mesh_ipNeighborhood(1,n,ip,el)
neighbor_ip = mesh_ipNeighborhood(2,n,ip,el)
if (neighbor_el > 0 .and. neighbor_ip > 0) then
neighbor_phaseID = material_phase(gr,neighbor_ip,neighbor_el)
neighbor_matID = phase_plasticityInstance(neighbor_phaseID)
neighbor_structID = constitutive_nonlocal_structure(neighbor_matID)
neighbor_ns = totalNslip(neighbor_matID)
if (.not. phase_localPlasticity(neighbor_phaseID) &
.and. neighbor_structID == structID &
.and. neighbor_matID == matID) then
if (neighbor_ns == ns) then
nRealNeighbors = nRealNeighbors + 1_pInt
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
neighbor_rhoExcess(c,s,n) = &
max(state(gr,neighbor_ip,neighbor_el)%p(iRhoU(s,2*c-1,neighbor_matID)), 0.0_pReal) &! positive mobiles
- max(state(gr,neighbor_ip,neighbor_el)%p(iRhoU(s,2*c,neighbor_matID)), 0.0_pReal) ! negative mobiles
neighbor_rhoTotal(c,s,n) = &
max(state(gr,neighbor_ip,neighbor_el)%p(iRhoU(s,2*c-1,neighbor_matID)), 0.0_pReal) &! positive mobiles
+ max(state(gr,neighbor_ip,neighbor_el)%p(iRhoU(s,2*c,neighbor_matID)), 0.0_pReal) & ! negative mobiles
+ abs(state(gr,neighbor_ip,neighbor_el)%p(iRhoB(s,2*c-1,neighbor_matID))) & ! positive deads
+ abs(state(gr,neighbor_ip,neighbor_el)%p(iRhoB(s,2*c,neighbor_matID))) & ! negative deads
+ max(state(gr,neighbor_ip,neighbor_el)%p(iRhoD(s,c,neighbor_matID)), 0.0_pReal) ! dipoles
endforall
connection_latticeConf(1:3,n) = &
math_mul33x3(invFe, mesh_ipCoordinates(1:3,neighbor_ip,neighbor_el) &
- mesh_ipCoordinates(1:3,ip,el))
normal_latticeConf = math_mul33x3(math_transpose33(invFp), mesh_ipAreaNormal(1:3,n,ip,el))
if (math_mul3x3(normal_latticeConf,connection_latticeConf(1:3,n)) < 0.0_pReal) then ! neighboring connection points in opposite direction to face normal: must be periodic image
connection_latticeConf(1:3,n) = normal_latticeConf * mesh_ipVolume(ip,el) &
/ mesh_ipArea(n,ip,el) ! instead take the surface normal scaled with the diameter of the cell
endif
else
! different number of active slip systems
call IO_error(-1_pInt,ext_msg='different number of active slip systems in neighboring IPs of same crystal structure')
endif
else
! local neighbor or different lattice structure or different constitution instance -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pReal
neighbor_rhoExcess(1:2,1:ns,n) = rhoExcess
endif
else
! free surface -> use central values instead
connection_latticeConf(1:3,n) = 0.0_pReal
neighbor_rhoExcess(1:2,1:ns,n) = rhoExcess
endif
enddo
!* loop through the slip systems and calculate the dislocation gradient by
!* 1. interpolation of the excess density in the neighorhood
!* 2. interpolation of the dead dislocation density in the central volume
m(1:3,1:ns,1) = lattice_sd(1:3,slipSystemLattice(1:ns,matID),structID)
m(1:3,1:ns,2) = -lattice_st(1:3,slipSystemLattice(1:ns,matID),structID)
do s = 1_pInt,ns
!* gradient from interpolation of neighboring excess density
do c = 1_pInt,2_pInt
do dir = 1_pInt,3_pInt
neighbors(1) = 2_pInt * dir - 1_pInt
neighbors(2) = 2_pInt * dir
connections(dir,1:3) = connection_latticeConf(1:3,neighbors(1)) &
- connection_latticeConf(1:3,neighbors(2))
rhoExcessDifferences(dir) = neighbor_rhoExcess(c,s,neighbors(1)) &
- neighbor_rhoExcess(c,s,neighbors(2))
enddo
call math_invert33(connections,invConnections,temp,inversionError)
if (inversionError) then
call IO_error(-1_pInt,ext_msg='back stress calculation: inversion error')
endif
2013-05-23 17:55:56 +05:30
rhoExcessGradient(c) = math_mul3x3(m(1:3,s,c), &
math_mul33x3(invConnections,rhoExcessDifferences))
enddo
!* plus gradient from deads
do t = 1_pInt,4_pInt
c = (t - 1_pInt) / 2_pInt + 1_pInt
rhoExcessGradient(c) = rhoExcessGradient(c) + rhoSgl(s,t+4_pInt) / FVsize
enddo
!* normalized with the total density
rhoExcessGradient_over_rho = 0.0_pReal
forall (c = 1_pInt:2_pInt) &
rhoTotal(c) = (sum(abs(rhoSgl(s,[2*c-1,2*c,2*c+3,2*c+4]))) + rhoDip(s,c) + sum(neighbor_rhoTotal(c,s,:))) &
/ real(1_pInt + nRealNeighbors,pReal)
forall (c = 1_pInt:2_pInt, rhoTotal(c) > 0.0_pReal) &
rhoExcessGradient_over_rho(c) = rhoExcessGradient(c) / rhoTotal(c)
!* gives the local stress correction when multiplied with a factor
tauBack(s) = - mu(matID) * burgers(s,matID) / (2.0_pReal * pi) &
* (rhoExcessGradient_over_rho(1) / (1.0_pReal - nu(matID)) + rhoExcessGradient_over_rho(2))
enddo
endif
!*** set dependent states
state(gr,ip,el)%p(iRhoF(1:ns,matID)) = rhoForest
state(gr,ip,el)%p(iTauF(1:ns,matID)) = tauThreshold
state(gr,ip,el)%p(iTauB(1:ns,matID)) = tauBack
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
2013-05-23 17:55:56 +05:30
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == gr)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,*)
2013-05-23 17:55:56 +05:30
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_microstructure at el ip g',el,ip,gr
write(6,*)
write(6,'(a,/,12x,12(e10.3,1x))') '<< CONST >> rhoForest', rhoForest
write(6,'(a,/,12x,12(f10.5,1x))') '<< CONST >> tauThreshold / MPa', tauThreshold/1e6
write(6,'(a,/,12x,12(f10.5,1x))') '<< CONST >> tauBack / MPa', tauBack/1e6
write(6,*)
endif
#endif
end subroutine constitutive_nonlocal_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief calculates kinetics
!--------------------------------------------------------------------------------------------------
subroutine constitutive_nonlocal_kinetics(v, dv_dtau, dv_dtauNS, tau, tauNS, &
tauThreshold, c, Temperature, ipc, ip, el)
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use material, only: material_phase, &
phase_plasticityInstance
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & !< current grain number
ip, & !< current integration point
el, & !< current element number
c !< dislocation character (1:edge, 2:screw)
real(pReal), intent(in) :: Temperature !< temperature
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))), &
intent(in) :: tau, & !< resolved external shear stress (without non Schmid effects)
tauNS, & !< resolved external shear stress (including non Schmid effects)
tauThreshold !< threshold shear stress
!*** output variables
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))), &
intent(out) :: v, & !< velocity
dv_dtau, & !< velocity derivative with respect to resolved shear stress (without non Schmid contributions)
dv_dtauNS !< velocity derivative with respect to resolved shear stress (including non Schmid contributions)
!*** local variables
integer(pInt) :: matID, & !< current instance of this plasticity
ns, & !< short notation for the total number of active slip systems
s !< index of my current slip system
real(pReal) tauRel_P, &
tauRel_S, &
tauEff, & !< effective shear stress
tPeierls, & !< waiting time in front of a peierls barriers
tSolidSolution, & !< waiting time in front of a solid solution obstacle
vViscous, & !< viscous glide velocity
dtPeierls_dtau, & !< derivative with respect to resolved shear stress
dtSolidSolution_dtau, & !< derivative with respect to resolved shear stress
meanfreepath_S, & !< mean free travel distance for dislocations between two solid solution obstacles
meanfreepath_P, & !< mean free travel distance for dislocations between two Peierls barriers
jumpWidth_P, & !< depth of activated area
jumpWidth_S, & !< depth of activated area
activationLength_P, & !< length of activated dislocation line
activationLength_S, & !< length of activated dislocation line
activationVolume_P, & !< volume that needs to be activated to overcome barrier
activationVolume_S, & !< volume that needs to be activated to overcome barrier
activationEnergy_P, & !< energy that is needed to overcome barrier
activationEnergy_S, & !< energy that is needed to overcome barrier
criticalStress_P, & !< maximum obstacle strength
criticalStress_S, & !< maximum obstacle strength
mobility !< dislocation mobility
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
ns = totalNslip(matID)
v = 0.0_pReal
dv_dtau = 0.0_pReal
dv_dtauNS = 0.0_pReal
if (Temperature > 0.0_pReal) then
do s = 1_pInt,ns
if (abs(tau(s)) > tauThreshold(s)) then
!* Peierls contribution
!* Effective stress includes non Schmid constributions
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
tauEff = max(0.0_pReal, abs(tauNS(s)) - tauThreshold(s)) ! ensure that the effective stress is positive
meanfreepath_P = burgers(s,matID)
jumpWidth_P = burgers(s,matID)
activationLength_P = doublekinkwidth(matID) * burgers(s,matID)
activationVolume_P = activationLength_P * jumpWidth_P * burgers(s,matID)
criticalStress_P = peierlsStress(s,c,matID)
activationEnergy_P = criticalStress_P * activationVolume_P
tauRel_P = min(1.0_pReal, tauEff / criticalStress_P) ! ensure that the activation probability cannot become greater than one
tPeierls = 1.0_pReal / fattack(matID) &
* exp(activationEnergy_P / (KB * Temperature) &
* (1.0_pReal - tauRel_P**pParam(matID))**qParam(matID))
if (tauEff < criticalStress_P) then
dtPeierls_dtau = tPeierls * pParam(matID) * qParam(matID) * activationVolume_P / (KB * Temperature) &
* (1.0_pReal - tauRel_P**pParam(matID))**(qParam(matID)-1.0_pReal) &
* tauRel_P**(pParam(matID)-1.0_pReal)
else
dtPeierls_dtau = 0.0_pReal
endif
!* Contribution from solid solution strengthening
!* The derivative only gives absolute values; the correct sign is taken care of in the formula for the derivative of the velocity
tauEff = abs(tau(s)) - tauThreshold(s)
meanfreepath_S = burgers(s,matID) / sqrt(solidSolutionConcentration(matID))
jumpWidth_S = solidSolutionSize(matID) * burgers(s,matID)
activationLength_S = burgers(s,matID) / sqrt(solidSolutionConcentration(matID))
activationVolume_S = activationLength_S * jumpWidth_S * burgers(s,matID)
activationEnergy_S = solidSolutionEnergy(matID)
criticalStress_S = activationEnergy_S / activationVolume_S
tauRel_S = min(1.0_pReal, tauEff / criticalStress_S) ! ensure that the activation probability cannot become greater than one
tSolidSolution = 1.0_pReal / fattack(matID) &
* exp(activationEnergy_S / (KB * Temperature) &
* (1.0_pReal - tauRel_S**pParam(matID))**qParam(matID))
if (tauEff < criticalStress_S) then
dtSolidSolution_dtau = tSolidSolution * pParam(matID) * qParam(matID) &
* activationVolume_S / (KB * Temperature) &
* (1.0_pReal - tauRel_S**pParam(matID))**(qParam(matID)-1.0_pReal) &
* tauRel_S**(pParam(matID)-1.0_pReal)
else
dtSolidSolution_dtau = 0.0_pReal
endif
!* viscous glide velocity
tauEff = abs(tau(s)) - tauThreshold(s)
mobility = burgers(s,matID) / viscosity(matID)
vViscous = mobility * tauEff
!* Mean velocity results from waiting time at peierls barriers and solid solution obstacles with respective meanfreepath of
!* free flight at glide velocity in between.
!* adopt sign from resolved stress
v(s) = sign(1.0_pReal,tau(s)) &
/ (tPeierls / meanfreepath_P + tSolidSolution / meanfreepath_S + 1.0_pReal / vViscous)
dv_dtau(s) = v(s) * v(s) * (dtSolidSolution_dtau / meanfreepath_S &
+ mobility / (vViscous * vViscous))
dv_dtauNS(s) = v(s) * v(s) * dtPeierls_dtau / meanfreepath_P
endif
enddo
endif
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == ipc)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_kinetics at el ip ipc',el,ip,ipc
write(6,*)
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauThreshold / MPa', tauThreshold / 1e6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tau / MPa', tau / 1e6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> tauNS / MPa', tauNS / 1e6_pReal
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> v / 1e-3m/s', v * 1e3
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtau', dv_dtau
write(6,'(a,/,12x,12(e12.5,1x))') '<< CONST >> dv_dtauNS', dv_dtauNS
endif
#endif
end subroutine constitutive_nonlocal_kinetics
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine constitutive_nonlocal_LpAndItsTangent(Lp, dLp_dTstar99, Tstar_v, Temperature, state, ipc, ip, el)
use math, only: math_Plain3333to99, &
2013-01-22 05:20:28 +05:30
math_mul6x6, &
math_mul33xx33, &
2013-01-22 05:20:28 +05:30
math_Mandel6to33
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use material, only: material_phase, &
phase_plasticityInstance
use lattice, only: lattice_Sslip, &
2013-01-22 05:20:28 +05:30
lattice_Sslip_v, &
lattice_NnonSchmid
use mesh, only: mesh_ipVolume
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & !< current grain number
ip, & !< current integration point
el !< current element number
real(pReal), intent(in) :: Temperature !< temperature
real(pReal), dimension(6), intent(in) :: Tstar_v !< 2nd Piola-Kirchhoff stress in Mandel notation
!*** input/output variables
type(p_vec), intent(inout) :: state !< microstructural state
!*** output variables
real(pReal), dimension(3,3), intent(out) :: Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99 !< derivative of Lp with respect to Tstar (9x9 matrix)
!*** local variables
integer(pInt) matID, & !< current instance of this plasticity
structID, & !< current lattice structure
ns, & !< short notation for the total number of active slip systems
i, &
j, &
k, &
l, &
t, & !< dislocation type
s, & !< index of my current slip system
sLattice !< index of my current slip system according to lattice order
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 !< derivative of Lp with respect to Tstar (3x3x3x3 matrix)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),8) :: &
rhoSgl !< single dislocation densities (including blocked)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),4) :: &
v, & !< velocity
tauNS, & !< resolved shear stress including non Schmid and backstress terms
dv_dtau, & !< velocity derivative with respect to the shear stress
dv_dtauNS !< velocity derivative with respect to the shear stress
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
tau, & !< resolved shear stress including backstress terms
gdotTotal, & !< shear rate
tauBack, & !< back stress from dislocation gradients on same slip system
2013-08-21 14:09:43 +05:30
tauThreshold !< threshold shear stress
!*** initialize local variables
Lp = 0.0_pReal
dLp_dTstar3333 = 0.0_pReal
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
structID = constitutive_nonlocal_structure(matID)
ns = totalNslip(matID)
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(state%p(iRhoU(s,t,matID)), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = state%p(iRhoB(s,t,matID))
endforall
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(matID) &
.or. abs(rhoSgl) < significantRho(matID)) &
rhoSgl = 0.0_pReal
tauBack = state%p(iTauB(1:ns,matID))
tauThreshold = state%p(iTauF(1:ns,matID))
!*** get resolved shear stress
!*** for screws possible non-schmid contributions are also taken into account
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,matID)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,structID))
tauNS(s,1) = tau(s)
tauNS(s,2) = tau(s)
if (tau(s) > 0.0_pReal) then
tauNS(s,3) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,1,s,matID))
tauNS(s,4) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,3,s,matID))
else
tauNS(s,3) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,2,s,matID))
tauNS(s,4) = math_mul33xx33(math_Mandel6to33(Tstar_v), nonSchmidProjection(1:3,1:3,4,s,matID))
endif
enddo
forall (t = 1_pInt:4_pInt) &
tauNS(1:ns,t) = tauNS(1:ns,t) + tauBack ! add backstress
tau = tau + tauBack ! add backstress
!*** get dislocation velocity and its tangent and store the velocity in the state array
! edges
call constitutive_nonlocal_kinetics(v(1:ns,1), dv_dtau(1:ns,1), dv_dtauNS(1:ns,1), &
tau(1:ns), tauNS(1:ns,1), tauThreshold(1:ns), &
1_pInt, Temperature, ipc, ip, el)
v(1:ns,2) = v(1:ns,1)
dv_dtau(1:ns,2) = dv_dtau(1:ns,1)
dv_dtauNS(1:ns,2) = dv_dtauNS(1:ns,1)
!screws
if (lattice_NnonSchmid(structID) == 0_pInt) then ! no non-Schmid contributions
forall(t = 3_pInt:4_pInt)
v(1:ns,t) = v(1:ns,1)
dv_dtau(1:ns,t) = dv_dtau(1:ns,1)
dv_dtauNS(1:ns,t) = dv_dtauNS(1:ns,1)
endforall
else ! take non-Schmid contributions into account
do t = 3_pInt,4_pInt
call constitutive_nonlocal_kinetics(v(1:ns,t), dv_dtau(1:ns,t), dv_dtauNS(1:ns,t), &
tau(1:ns), tauNS(1:ns,t), tauThreshold(1:ns), &
2_pInt , Temperature, ipc, ip, el)
enddo
endif
!*** store velocity in state
forall (t = 1_pInt:4_pInt) &
state%p(iV(1:ns,t,matID)) = v(1:ns,t)
!*** Bauschinger effect
forall (s = 1_pInt:ns, t = 5_pInt:8_pInt, rhoSgl(s,t) * v(s,t-4_pInt) < 0.0_pReal) &
rhoSgl(s,t-4_pInt) = rhoSgl(s,t-4_pInt) + abs(rhoSgl(s,t))
!*** Calculation of Lp and its tangent
gdotTotal = sum(rhoSgl(1:ns,1:4) * v, 2) * burgers(1:ns,matID)
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,matID)
Lp = Lp + gdotTotal(s) * lattice_Sslip(1:3,1:3,1,sLattice,structID)
! Schmid contributions to tangent
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
+ lattice_Sslip(i,j,1,sLattice,structID) * lattice_Sslip(k,l,1,sLattice,structID) &
* sum(rhoSgl(s,1:4) * dv_dtau(s,1:4)) * burgers(s,matID)
! non Schmid contributions to tangent
if (tau(s) > 0.0_pReal) then
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
+ lattice_Sslip(i,j,1,sLattice,structID) &
* ( nonSchmidProjection(k,l,1,s,matID) * rhoSgl(s,3) * dv_dtauNS(s,3) &
+ nonSchmidProjection(k,l,3,s,matID) * rhoSgl(s,4) * dv_dtauNS(s,4) ) &
* burgers(s,matID)
else
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar3333(i,j,k,l) = dLp_dTstar3333(i,j,k,l) &
+ lattice_Sslip(i,j,1,sLattice,structID) &
* ( nonSchmidProjection(k,l,2,s,matID) * rhoSgl(s,3) * dv_dtauNS(s,3) &
+ nonSchmidProjection(k,l,4,s,matID) * rhoSgl(s,4) * dv_dtauNS(s,4) ) &
* burgers(s,matID)
endif
enddo
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == ipc)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,*)
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_LpandItsTangent at el ip ipc ',el,ip,ipc
write(6,*)
write(6,'(a,/,12x,12(f12.5,1x))') '<< CONST >> gdot total / 1e-3',gdotTotal*1e3_pReal
write(6,'(a,/,3(12x,3(f12.7,1x),/))') '<< CONST >> Lp',transpose(Lp)
endif
#endif
end subroutine constitutive_nonlocal_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief (instantaneous) incremental change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine constitutive_nonlocal_deltaState(deltaState, state, Tstar_v, ipc,ip,el)
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use math, only: pi, &
math_mul6x6
use lattice, only: lattice_Sslip_v
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_ipVolume
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
!*** input/output variables
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: &
state ! current microstructural state
!*** output variables
type(p_vec), intent(out) :: deltaState ! change of state variables / microstructure
!*** local variables
integer(pInt) matID, & ! current instance of this plasticity
structID, & ! current lattice structure
ns, & ! short notation for the total number of active slip systems
c, & ! character of dislocation
t, & ! type of dislocation
s, & ! index of my current slip system
sLattice ! index of my current slip system according to lattice order
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),10) :: &
deltaRho, & ! density increment
deltaRhoRemobilization, & ! density increment by remobilization
deltaRhoDipole2SingleStress ! density increment by dipole dissociation (by stress change)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),8) :: &
rhoSgl ! current single dislocation densities (positive/negative screw and edge without dipoles)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),4) :: &
v ! dislocation glide velocity
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
tau, & ! current resolved shear stress
tauBack ! current back stress from pileups on same slip system
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),2) :: &
rhoDip, & ! current dipole dislocation densities (screw and edge dipoles)
dLower, & ! minimum stable dipole distance for edges and screws
dUpper, & ! current maximum stable dipole distance for edges and screws
dUpperOld, & ! old maximum stable dipole distance for edges and screws
deltaDUpper ! change in maximum stable dipole distance for edges and screws
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == ipc)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_deltaState at el ip ipc ',el,ip,ipc
write(6,*)
endif
#endif
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
structID = constitutive_nonlocal_structure(matID)
ns = totalNslip(matID)
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(state(ipc,ip,el)%p(iRhoU(s,t,matID)), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = state(ipc,ip,el)%p(iRhoB(s,t,matID))
v(s,t) = state(ipc,ip,el)%p(iV(s,t,matID))
endforall
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
rhoDip(s,c) = max(state(ipc,ip,el)%p(iRhoD(s,c,matID)), 0.0_pReal) ! ensure positive dipole densities
dUpperOld(s,c) = state(ipc,ip,el)%p(iD(s,c,matID))
endforall
tauBack = state(ipc,ip,el)%p(iTauB(1:ns,matID))
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(matID) &
.or. abs(rhoSgl) < significantRho(matID)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(matID) &
.or. abs(rhoDip) < significantRho(matID)) &
rhoDip = 0.0_pReal
!****************************************************************************
!*** dislocation remobilization (bauschinger effect)
deltaRhoRemobilization = 0.0_pReal
do t = 1_pInt,4_pInt
do s = 1_pInt,ns
if (rhoSgl(s,t+4_pInt) * v(s,t) < 0.0_pReal) then
deltaRhoRemobilization(s,t) = abs(rhoSgl(s,t+4_pInt))
rhoSgl(s,t) = rhoSgl(s,t) + abs(rhoSgl(s,t+4_pInt))
deltaRhoRemobilization(s,t+4_pInt) = - rhoSgl(s,t+4_pInt)
rhoSgl(s,t+4_pInt) = 0.0_pReal
endif
enddo
enddo
!****************************************************************************
!*** calculate dipole formation and dissociation by stress change
!*** calculate limits for stable dipole height
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,matID)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,structID)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = minDipoleHeight(1:ns,1:2,matID)
dUpper(1:ns,1) = mu(matID) * burgers(1:ns,matID) &
/ (8.0_pReal * pi * (1.0_pReal - nu(matID)) * abs(tau))
dUpper(1:ns,2) = mu(matID) * burgers(1:ns,matID) / (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
dUpper = max(dUpper,dLower)
deltaDUpper = dUpper - dUpperOld
!*** dissociation by stress increase
deltaRhoDipole2SingleStress = 0.0_pReal
forall (c=1_pInt:2_pInt, s=1_pInt:ns, deltaDUpper(s,c) < 0.0_pReal) &
deltaRhoDipole2SingleStress(s,8_pInt+c) = rhoDip(s,c) * deltaDUpper(s,c) / (dUpperOld(s,c) - dLower(s,c))
forall (t=1_pInt:4_pInt) &
deltaRhoDipole2SingleStress(1_pInt:ns,t) = -0.5_pReal * deltaRhoDipole2SingleStress(1_pInt:ns,(t-1_pInt)/2_pInt+9_pInt)
!*** store new maximum dipole height in state
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
state(ipc,ip,el)%p(iD(s,c,matID)) = dUpper(s,c)
!****************************************************************************
!*** assign the changes in the dislocation densities to deltaState
deltaRho = deltaRhoRemobilization &
+ deltaRhoDipole2SingleStress
deltaState%p = 0.0_pReal
forall (s = 1:ns, t = 1_pInt:4_pInt)
deltaState%p(iRhoU(s,t,matID)) = deltaRho(s,t)
deltaState%p(iRhoB(s,t,matID)) = deltaRho(s,t+4_pInt)
endforall
forall (s = 1:ns, c = 1_pInt:2_pInt) &
deltaState%p(iRhoD(s,c,matID)) = deltaRho(s,c+8_pInt)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == ipc)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation remobilization', deltaRhoRemobilization(1:ns,1:8)
2012-05-30 13:35:36 +05:30
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> dipole dissociation by stress increase', deltaRhoDipole2SingleStress
write(6,*)
endif
#endif
end subroutine constitutive_nonlocal_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
function constitutive_nonlocal_dotState(Tstar_v, Fe, Fp, Temperature, state, state0, timestep, subfrac, ipc,ip,el)
2013-05-23 17:55:56 +05:30
use prec, only: DAMASK_NaN
use numerics, only: numerics_integrationMode, &
numerics_timeSyncing
use IO, only: IO_error
use debug, only: debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_g, &
debug_i, &
debug_e
use math, only: math_norm3, &
math_mul6x6, &
math_mul3x3, &
math_mul33x3, &
math_mul33x33, &
math_inv33, &
math_det33, &
math_transpose33, &
pi
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
mesh_ipNeighborhood, &
mesh_ipVolume, &
mesh_ipArea, &
mesh_ipAreaNormal, &
FE_NipNeighbors, &
FE_geomtype, &
FE_celltype
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance, &
phase_localPlasticity, &
phase_plasticity
use lattice, only: lattice_Sslip_v, &
lattice_sd, &
lattice_st
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & !< current grain number
2013-01-22 16:36:39 +05:30
ip, & !< current integration point
el !< current element number
real(pReal), intent(in) :: Temperature, & !< temperature
timestep !< substepped crystallite time increment
real(pReal), dimension(6), intent(in) :: Tstar_v !< current 2nd Piola-Kirchhoff stress in Mandel notation
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
2013-01-22 16:36:39 +05:30
subfrac !< fraction of timestep at the beginning of the substepped crystallite time increment
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
2013-01-22 16:36:39 +05:30
Fe, & !< elastic deformation gradient
Fp !< plastic deformation gradient
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
2013-01-22 16:36:39 +05:30
state, & !< current microstructural state
state0 !< microstructural state at beginning of crystallite increment
!*** input/output variables
!*** output variables
real(pReal), dimension(constitutive_nonlocal_sizeDotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
2013-01-22 16:36:39 +05:30
constitutive_nonlocal_dotState !< evolution of state variables / microstructure
!*** local variables
integer(pInt) matID, & !< current instance of this plasticity
neighbor_matID, & !< instance of my neighbor's plasticity
structID, & !< current lattice structure
2013-01-22 16:36:39 +05:30
ns, & !< short notation for the total number of active slip systems
c, & !< character of dislocation
n, & !< index of my current neighbor
neighbor_el, & !< element number of my neighbor
neighbor_ip, & !< integration point of my neighbor
neighbor_n, & !< neighbor index pointing to me when looking from my neighbor
2013-01-22 16:36:39 +05:30
opposite_neighbor, & !< index of my opposite neighbor
opposite_ip, & !< ip of my opposite neighbor
opposite_el, & !< element index of my opposite neighbor
opposite_n, & !< neighbor index pointing to me when looking from my opposite neighbor
t, & !< type of dislocation
topp, & !< type of dislocation with opposite sign to t
s, & !< index of my current slip system
sLattice, & !< index of my current slip system according to lattice order
deads
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),10) :: &
2013-01-22 16:36:39 +05:30
rhoDot, & !< density evolution
rhoDotMultiplication, & !< density evolution by multiplication
rhoDotFlux, & !< density evolution by flux
rhoDotSingle2DipoleGlide, & !< density evolution by dipole formation (by glide)
rhoDotAthermalAnnihilation, & !< density evolution by athermal annihilation
rhoDotThermalAnnihilation !< density evolution by thermal annihilation
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),8) :: &
2013-01-22 16:36:39 +05:30
rhoSgl, & !< current single dislocation densities (positive/negative screw and edge without dipoles)
rhoSglOriginal, &
neighbor_rhoSgl, & !< current single dislocation densities of neighboring ip (positive/negative screw and edge without dipoles)
2013-01-22 16:36:39 +05:30
rhoSgl0, & !< single dislocation densities at start of cryst inc (positive/negative screw and edge without dipoles)
my_rhoSgl !< single dislocation densities of central ip (positive/negative screw and edge without dipoles)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),4) :: &
2013-01-22 16:36:39 +05:30
v, & !< current dislocation glide velocity
v0, & !< dislocation glide velocity at start of cryst inc
my_v, & !< dislocation glide velocity of central ip
neighbor_v, & !< dislocation glide velocity of enighboring ip
2013-01-22 16:36:39 +05:30
gdot !< shear rates
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
2013-01-22 16:36:39 +05:30
rhoForest, & !< forest dislocation density
tauThreshold, & !< threshold shear stress
tau, & !< current resolved shear stress
tauBack, & !< current back stress from pileups on same slip system
vClimb, & !< climb velocity of edge dipoles
nSources
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),2) :: &
2013-01-22 16:36:39 +05:30
rhoDip, & !< current dipole dislocation densities (screw and edge dipoles)
rhoDipOriginal, &
2013-01-22 16:36:39 +05:30
dLower, & !< minimum stable dipole distance for edges and screws
dUpper !< current maximum stable dipole distance for edges and screws
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),4) :: &
2013-01-22 16:36:39 +05:30
m !< direction of dislocation motion
real(pReal), dimension(3,3) :: my_F, & !< my total deformation gradient
neighbor_F, & !< total deformation gradient of my neighbor
2013-01-22 16:36:39 +05:30
my_Fe, & !< my elastic deformation gradient
neighbor_Fe, & !< elastic deformation gradient of my neighbor
2013-01-22 16:36:39 +05:30
Favg !< average total deformation gradient of me and my neighbor
real(pReal), dimension(3) :: normal_neighbor2me, & !< interface normal pointing from my neighbor to me in neighbor's lattice configuration
normal_neighbor2me_defConf, & !< interface normal pointing from my neighbor to me in shared deformed configuration
normal_me2neighbor, & !< interface normal pointing from me to my neighbor in my lattice configuration
normal_me2neighbor_defConf !< interface normal pointing from me to my neighbor in shared deformed configuration
real(pReal) area, & !< area of the current interface
transmissivity, & !< overall transmissivity of dislocation flux to neighboring material point
lineLength, & !< dislocation line length leaving the current interface
selfDiffusion, & !< self diffusion
rnd, &
meshlength
logical considerEnteringFlux, &
considerLeavingFlux
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == ipc)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,i8,1x,i2,1x,i1)') '<< CONST >> nonlocal_dotState at el ip ipc ',el,ip,ipc
write(6,*)
endif
#endif
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
structID = constitutive_nonlocal_structure(matID)
ns = totalNslip(matID)
tau = 0.0_pReal
gdot = 0.0_pReal
!*** shortcut to state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(state(ipc,ip,el)%p(iRhoU(s,t,matID)), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = state(ipc,ip,el)%p(iRhoB(s,t,matID))
v(s,t) = state(ipc,ip,el)%p(iV(s,t,matID))
endforall
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
rhoDip(s,c) = max(state(ipc,ip,el)%p(iRhoD(s,c,matID)), 0.0_pReal) ! ensure positive dipole densities
endforall
rhoForest = state(ipc,ip,el)%p(iRhoF(1:ns,matID))
tauThreshold = state(ipc,ip,el)%p(iTauF(1:ns,matID))
tauBack = state(ipc,ip,el)%p(iTauB(1:ns,matID))
rhoSglOriginal = rhoSgl
rhoDipOriginal = rhoDip
where (abs(rhoSgl) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(matID) &
.or. abs(rhoSgl) < significantRho(matID)) &
rhoSgl = 0.0_pReal
where (abs(rhoDip) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(matID) &
.or. abs(rhoDip) < significantRho(matID)) &
rhoDip = 0.0_pReal
if (numerics_timeSyncing) then
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl0(s,t) = max(state0(ipc,ip,el)%p(iRhoU(s,t,matID)), 0.0_pReal)
rhoSgl0(s,t+4_pInt) = state0(ipc,ip,el)%p(iRhoB(s,t,matID))
v0(s,t) = state0(ipc,ip,el)%p(iV(s,t,matID))
endforall
where (abs(rhoSgl0) * mesh_ipVolume(ip,el) ** 0.667_pReal < significantN(matID) &
.or. abs(rhoSgl0) < significantRho(matID)) &
rhoSgl0 = 0.0_pReal
endif
!*** sanity check for timestep
if (timestep <= 0.0_pReal) then ! if illegal timestep...
constitutive_nonlocal_dotState = 0.0_pReal ! ...return without doing anything (-> zero dotState)
return
endif
!****************************************************************************
!*** Calculate shear rate
forall (t = 1_pInt:4_pInt) &
gdot(1_pInt:ns,t) = rhoSgl(1_pInt:ns,t) * burgers(1:ns,matID) * v(1:ns,t)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == ipc)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> rho / 1/m^2', rhoSgl, rhoDip
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> gdot / 1/s',gdot
endif
#endif
!****************************************************************************
!*** calculate limits for stable dipole height
do s = 1_pInt,ns ! loop over slip systems
sLattice = slipSystemLattice(s,matID)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,structID)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = minDipoleHeight(1:ns,1:2,matID)
dUpper(1:ns,1) = mu(matID) * burgers(1:ns,matID) &
/ (8.0_pReal * pi * (1.0_pReal - nu(matID)) * abs(tau))
dUpper(1:ns,2) = mu(matID) * burgers(1:ns,matID) &
/ (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
dUpper = max(dUpper,dLower)
!****************************************************************************
!*** calculate dislocation multiplication
rhoDotMultiplication = 0.0_pReal
if (structID == 2_pInt) then ! BCC
forall (s = 1:ns, sum(abs(v(s,1:4))) > 0.0_pReal)
rhoDotMultiplication(s,1:2) = sum(abs(gdot(s,3:4))) / burgers(s,matID) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(rhoForest(s)) / lambda0(s,matID) ! & ! mean free path
! * 2.0_pReal * sum(abs(v(s,3:4))) / sum(abs(v(s,1:4))) ! ratio of screw to overall velocity determines edge generation
rhoDotMultiplication(s,3:4) = sum(abs(gdot(s,3:4))) / burgers(s,matID) & ! assuming double-cross-slip of screws to be decisive for multiplication
* sqrt(rhoForest(s)) / lambda0(s,matID) ! & ! mean free path
! * 2.0_pReal * sum(abs(v(s,1:2))) / sum(abs(v(s,1:4))) ! ratio of edge to overall velocity determines screw generation
endforall
else ! ALL OTHER STRUCTURES
if (probabilisticMultiplication(matID)) then
meshlength = mesh_ipVolume(ip,el)**0.333_pReal
where(sum(rhoSgl(1:ns,1:4),2) > 0.0_pReal)
nSources = (sum(rhoSgl(1:ns,1:2),2) * fEdgeMultiplication(matID) + sum(rhoSgl(1:ns,3:4),2)) &
/ sum(rhoSgl(1:ns,1:4),2) * meshlength / lambda0(1:ns,matID) * sqrt(rhoForest(1:ns))
elsewhere
nSources = meshlength / lambda0(1:ns,matID) * sqrt(rhoForest(1:ns))
endwhere
do s = 1_pInt,ns
if (nSources(s) < 1.0_pReal) then
if (sourceProbability(s,ipc,ip,el) > 1.0_pReal) then
call random_number(rnd)
sourceProbability(s,ipc,ip,el) = rnd
!$OMP FLUSH(sourceProbability)
endif
if (sourceProbability(s,ipc,ip,el) > 1.0_pReal - nSources(s)) then
rhoDotMultiplication(s,1:4) = sum(rhoSglOriginal(s,1:4) * abs(v(s,1:4))) / meshlength
endif
else
sourceProbability(s,ipc,ip,el) = 2.0_pReal
rhoDotMultiplication(s,1:4) = &
(sum(abs(gdot(s,1:2))) * fEdgeMultiplication(matID) + sum(abs(gdot(s,3:4)))) &
/ burgers(s,matID) * sqrt(rhoForest(s)) / lambda0(s,matID)
endif
enddo
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == ipc)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,4(12x,12(f12.5,1x),/))') '<< CONST >> sources', nSources
write(6,*)
endif
#endif
else
rhoDotMultiplication(1:ns,1:4) = spread( &
(sum(abs(gdot(1:ns,1:2)),2) * fEdgeMultiplication(matID) + sum(abs(gdot(1:ns,3:4)),2)) &
* sqrt(rhoForest(1:ns)) / lambda0(1:ns,matID) / burgers(1:ns,matID), 2, 4)
endif
endif
!****************************************************************************
!*** calculate dislocation fluxes (only for nonlocal plasticity)
rhoDotFlux = 0.0_pReal
if (.not. phase_localPlasticity(material_phase(ipc,ip,el))) then ! only for nonlocal plasticity
!*** check CFL (Courant-Friedrichs-Lewy) condition for flux
if (any( abs(gdot) > 0.0_pReal & ! any active slip system ...
.and. CFLfactor(matID) * abs(v) * timestep &
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el)))) then ! ...with velocity above critical value (we use the reference volume and area for simplicity here)
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt) then
write(6,'(a,i5,a,i2)') '<< CONST >> CFL condition not fullfilled at el ',el,' ip ',ip
2012-09-05 16:49:46 +05:30
write(6,'(a,e10.3,a,e10.3)') '<< CONST >> velocity is at ', &
maxval(abs(v), abs(gdot) > 0.0_pReal &
.and. CFLfactor(matID) * abs(v) * timestep &
> mesh_ipVolume(ip,el) / maxval(mesh_ipArea(:,ip,el))), &
' at a timestep of ',timestep
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
endif
#endif
constitutive_nonlocal_dotState = DAMASK_NaN ! -> return NaN and, hence, enforce cutback
return
endif
!*** be aware of the definition of lattice_st = lattice_sd x lattice_sn !!!
!*** opposite sign to our p vector in the (s,p,n) triplet !!!
m(1:3,1:ns,1) = lattice_sd(1:3, slipSystemLattice(1:ns,matID), structID)
m(1:3,1:ns,2) = -lattice_sd(1:3, slipSystemLattice(1:ns,matID), structID)
m(1:3,1:ns,3) = -lattice_st(1:3, slipSystemLattice(1:ns,matID), structID)
m(1:3,1:ns,4) = lattice_st(1:3, slipSystemLattice(1:ns,matID), structID)
my_Fe = Fe(1:3,1:3,ipc,ip,el)
my_F = math_mul33x33(my_Fe, Fp(1:3,1:3,ipc,ip,el))
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el)))) ! loop through my neighbors
neighbor_el = mesh_ipNeighborhood(1,n,ip,el)
neighbor_ip = mesh_ipNeighborhood(2,n,ip,el)
neighbor_n = mesh_ipNeighborhood(3,n,ip,el)
opposite_neighbor = n + mod(n,2_pInt) - mod(n+1_pInt,2_pInt)
opposite_el = mesh_ipNeighborhood(1,opposite_neighbor,ip,el)
opposite_ip = mesh_ipNeighborhood(2,opposite_neighbor,ip,el)
opposite_n = mesh_ipNeighborhood(3,opposite_neighbor,ip,el)
if (neighbor_n > 0_pInt) then ! if neighbor exists, average deformation gradient
neighbor_matID = phase_plasticityInstance(material_phase(ipc,neighbor_ip,neighbor_el))
neighbor_Fe = Fe(1:3,1:3,ipc,neighbor_ip,neighbor_el)
neighbor_F = math_mul33x33(neighbor_Fe, Fp(1:3,1:3,ipc,neighbor_ip,neighbor_el))
Favg = 0.5_pReal * (my_F + neighbor_F)
else ! if no neighbor, take my value as average
Favg = my_F
endif
!* FLUX FROM MY NEIGHBOR TO ME
!* This is only considered, if I have a neighbor of nonlocal plasticity (also nonlocal constitutive law with local properties) that is at least a little bit compatible.
!* If it's not at all compatible, no flux is arriving, because everything is dammed in front of my neighbor's interface.
!* The entering flux from my neighbor will be distributed on my slip systems according to the compatibility
considerEnteringFlux = .false.
neighbor_v = 0.0_pReal ! needed for check of sign change in flux density below
neighbor_rhoSgl = 0.0_pReal
if (neighbor_n > 0_pInt) then
if (phase_plasticity(material_phase(1,neighbor_ip,neighbor_el)) == CONSTITUTIVE_NONLOCAL_LABEL &
.and. any(compatibility(:,:,:,n,ip,el) > 0.0_pReal)) &
considerEnteringFlux = .true.
endif
if (considerEnteringFlux) then
if(numerics_timeSyncing .and. (subfrac(ipc,neighbor_ip,neighbor_el) /= subfrac(ipc,ip,el))) then ! for timesyncing: in case of a timestep at the interface we have to use "state0" to make sure that fluxes n both sides are equal
forall (s = 1:ns, t = 1_pInt:4_pInt)
neighbor_v(s,t) = state0(ipc,neighbor_ip,neighbor_el)%p(iV(s,t,neighbor_matID))
neighbor_rhoSgl(s,t) = max(state0(ipc,neighbor_ip,neighbor_el)%p(iRhoU(s,t,neighbor_matID)), 0.0_pReal)
neighbor_rhoSgl(s,t+4_pInt) = state0(ipc,neighbor_ip,neighbor_el)%p(iRhoB(s,t,neighbor_matID))
endforall
else
forall (s = 1:ns, t = 1_pInt:4_pInt)
neighbor_v(s,t) = state(ipc,neighbor_ip,neighbor_el)%p(iV(s,t,neighbor_matID))
neighbor_rhoSgl(s,t) = max(state(ipc,neighbor_ip,neighbor_el)%p(iRhoU(s,t,neighbor_matID)), 0.0_pReal)
neighbor_rhoSgl(s,t+4_pInt) = state(ipc,neighbor_ip,neighbor_el)%p(iRhoB(s,t,neighbor_matID))
endforall
endif
where (abs(neighbor_rhoSgl) * mesh_ipVolume(neighbor_ip,neighbor_el) ** 0.667_pReal &
< significantN(matID) &
.or. abs(neighbor_rhoSgl) < significantRho(matID)) &
neighbor_rhoSgl = 0.0_pReal
normal_neighbor2me_defConf = math_det33(Favg) * math_mul33x3(math_inv33(transpose(Favg)), &
mesh_ipAreaNormal(1:3,neighbor_n,neighbor_ip,neighbor_el)) ! calculate the normal of the interface in (average) deformed configuration (now pointing from my neighbor to me!!!)
normal_neighbor2me = math_mul33x3(transpose(neighbor_Fe), normal_neighbor2me_defConf) &
/ math_det33(neighbor_Fe) ! interface normal in the lattice configuration of my neighbor
area = mesh_ipArea(neighbor_n,neighbor_ip,neighbor_el) * math_norm3(normal_neighbor2me)
normal_neighbor2me = normal_neighbor2me / math_norm3(normal_neighbor2me) ! normalize the surface normal to unit length
do s = 1_pInt,ns
do t = 1_pInt,4_pInt
c = (t + 1_pInt) / 2
topp = t + mod(t,2_pInt) - mod(t+1_pInt,2_pInt)
if (neighbor_v(s,t) * math_mul3x3(m(1:3,s,t), normal_neighbor2me) > 0.0_pReal & ! flux from my neighbor to me == entering flux for me
.and. v(s,t) * neighbor_v(s,t) > 0.0_pReal ) then ! ... only if no sign change in flux density
2013-05-17 18:24:47 +05:30
do deads = 0_pInt,4_pInt,4_pInt
lineLength = abs(neighbor_rhoSgl(s,t+deads)) * neighbor_v(s,t) &
* math_mul3x3(m(1:3,s,t), normal_neighbor2me) * area ! positive line length that wants to enter through this interface
where (compatibility(c,1_pInt:ns,s,n,ip,el) > 0.0_pReal) & ! positive compatibility...
rhoDotFlux(1_pInt:ns,t) = rhoDotFlux(1_pInt:ns,t) &
+ lineLength / mesh_ipVolume(ip,el) & ! ... transferring to equally signed mobile dislocation type
* compatibility(c,1_pInt:ns,s,n,ip,el) ** 2.0_pReal
where (compatibility(c,1_pInt:ns,s,n,ip,el) < 0.0_pReal) & ! ..negative compatibility...
rhoDotFlux(1_pInt:ns,topp) = rhoDotFlux(1_pInt:ns,topp) &
+ lineLength / mesh_ipVolume(ip,el) & ! ... transferring to opposite signed mobile dislocation type
* compatibility(c,1_pInt:ns,s,n,ip,el) ** 2.0_pReal
2013-05-17 18:24:47 +05:30
enddo
endif
enddo
enddo
endif
!* FLUX FROM ME TO MY NEIGHBOR
!* This is not considered, if my opposite neighbor has a different constitutive law than nonlocal (still considered for nonlocal law with lcal properties).
!* Then, we assume, that the opposite(!) neighbor sends an equal amount of dislocations to me.
!* So the net flux in the direction of my neighbor is equal to zero:
!* leaving flux to neighbor == entering flux from opposite neighbor
!* In case of reduced transmissivity, part of the leaving flux is stored as dead dislocation density.
!* That means for an interface of zero transmissivity the leaving flux is fully converted to dead dislocations.
considerLeavingFlux = .true.
if (opposite_n > 0_pInt) then
if (phase_plasticity(material_phase(1,opposite_ip,opposite_el)) /= CONSTITUTIVE_NONLOCAL_LABEL) &
considerLeavingFlux = .false.
endif
if (considerLeavingFlux) then
!* timeSyncing mode: If the central ip has zero subfraction, always use "state0". This is needed in case of
!* a synchronization step for the central ip, because then "state" contains the values at the end of the
!* previously converged full time step. Also, if either me or my neighbor has zero subfraction, we have to
!* use "state0" to make sure that fluxes on both sides of the (potential) timestep are equal.
my_rhoSgl = rhoSgl
my_v = v
if(numerics_timeSyncing) then
if (subfrac(ipc,ip,el) == 0.0_pReal) then
my_rhoSgl = rhoSgl0
my_v = v0
elseif (neighbor_n > 0_pInt) then
if (subfrac(ipc,neighbor_ip,neighbor_el) == 0.0_pReal) then
my_rhoSgl = rhoSgl0
my_v = v0
endif
endif
endif
normal_me2neighbor_defConf = math_det33(Favg) &
* math_mul33x3(math_inv33(math_transpose33(Favg)), &
mesh_ipAreaNormal(1:3,n,ip,el)) ! calculate the normal of the interface in (average) deformed configuration (pointing from me to my neighbor!!!)
normal_me2neighbor = math_mul33x3(math_transpose33(my_Fe), normal_me2neighbor_defConf) &
/ math_det33(my_Fe) ! interface normal in my lattice configuration
area = mesh_ipArea(n,ip,el) * math_norm3(normal_me2neighbor)
normal_me2neighbor = normal_me2neighbor / math_norm3(normal_me2neighbor) ! normalize the surface normal to unit length
do s = 1_pInt,ns
do t = 1_pInt,4_pInt
c = (t + 1_pInt) / 2_pInt
if (my_v(s,t) * math_mul3x3(m(1:3,s,t), normal_me2neighbor) > 0.0_pReal ) then ! flux from me to my neighbor == leaving flux for me (might also be a pure flux from my mobile density to dead density if interface not at all transmissive)
if (my_v(s,t) * neighbor_v(s,t) > 0.0_pReal) then ! no sign change in flux density
transmissivity = sum(compatibility(c,1_pInt:ns,s,n,ip,el)**2.0_pReal) ! overall transmissivity from this slip system to my neighbor
else ! sign change in flux density means sign change in stress which does not allow for dislocations to arive at the neighbor
transmissivity = 0.0_pReal
endif
lineLength = my_rhoSgl(s,t) * my_v(s,t) &
* math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of mobiles that wants to leave through this interface
rhoDotFlux(s,t) = rhoDotFlux(s,t) - lineLength / mesh_ipVolume(ip,el) ! subtract dislocation flux from current type
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) &
+ lineLength / mesh_ipVolume(ip,el) * (1.0_pReal - transmissivity) &
* sign(1.0_pReal, my_v(s,t)) ! dislocation flux that is not able to leave through interface (because of low transmissivity) will remain as immobile single density at the material point
lineLength = my_rhoSgl(s,t+4_pInt) * my_v(s,t) &
* math_mul3x3(m(1:3,s,t), normal_me2neighbor) * area ! positive line length of deads that wants to leave through this interface
rhoDotFlux(s,t+4_pInt) = rhoDotFlux(s,t+4_pInt) &
- lineLength / mesh_ipVolume(ip,el) * transmissivity ! dead dislocations leaving through this interface
endif
enddo
enddo
endif
enddo ! neighbor loop
endif
!****************************************************************************
!*** calculate dipole formation and annihilation
!*** formation by glide
do c = 1_pInt,2_pInt
rhoDotSingle2DipoleGlide(1:ns,2*c-1) = -2.0_pReal * dUpper(1:ns,c) / burgers(1:ns,matID) &
* (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(1:ns,2*c) = -2.0_pReal * dUpper(1:ns,c) / burgers(1:ns,matID) &
* (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) & ! negative mobile --> positive mobile
+ rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1)) & ! positive mobile --> negative mobile
+ abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c))) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(1:ns,2*c+3) = -2.0_pReal * dUpper(1:ns,c) / burgers(1:ns,matID) &
* rhoSgl(1:ns,2*c+3) * abs(gdot(1:ns,2*c)) ! negative mobile --> positive immobile
rhoDotSingle2DipoleGlide(1:ns,2*c+4) = -2.0_pReal * dUpper(1:ns,c) / burgers(1:ns,matID) &
* rhoSgl(1:ns,2*c+4) * abs(gdot(1:ns,2*c-1)) ! positive mobile --> negative immobile
rhoDotSingle2DipoleGlide(1:ns,c+8) = - rhoDotSingle2DipoleGlide(1:ns,2*c-1) - rhoDotSingle2DipoleGlide(1:ns,2*c) &
+ abs(rhoDotSingle2DipoleGlide(1:ns,2*c+3)) + abs(rhoDotSingle2DipoleGlide(1:ns,2*c+4))
enddo
!*** athermal annihilation
rhoDotAthermalAnnihilation = 0.0_pReal
forall (c=1_pInt:2_pInt) &
rhoDotAthermalAnnihilation(1:ns,c+8_pInt) = -2.0_pReal * dLower(1:ns,c) / burgers(1:ns,matID) &
* ( 2.0_pReal * (rhoSgl(1:ns,2*c-1) * abs(gdot(1:ns,2*c)) + rhoSgl(1:ns,2*c) * abs(gdot(1:ns,2*c-1))) & ! was single hitting single
+ 2.0_pReal * (abs(rhoSgl(1:ns,2*c+3)) * abs(gdot(1:ns,2*c)) + abs(rhoSgl(1:ns,2*c+4)) * abs(gdot(1:ns,2*c-1))) & ! was single hitting immobile single or was immobile single hit by single
+ rhoDip(1:ns,c) * (abs(gdot(1:ns,2*c-1)) + abs(gdot(1:ns,2*c)))) ! single knocks dipole constituent
! annihilated screw dipoles leave edge jogs behind on the colinear system
if (structID == 1_pInt) then ! only fcc
forall (s = 1:ns, colinearSystem(s,matID) > 0_pInt) &
rhoDotAthermalAnnihilation(colinearSystem(s,matID),1:2) = - rhoDotAthermalAnnihilation(s,10) &
* 0.25_pReal * sqrt(rhoForest(s)) * (dUpper(s,2) + dLower(s,2)) * edgeJogFactor(matID)
endif
2012-11-17 19:20:20 +05:30
!*** thermally activated annihilation of edge dipoles by climb
rhoDotThermalAnnihilation = 0.0_pReal
selfDiffusion = Dsd0(matID) * exp(-selfDiffusionEnergy(matID) / (KB * Temperature))
vClimb = atomicVolume(matID) * selfDiffusion / ( KB * Temperature ) &
* mu(matID) / ( 2.0_pReal * PI * (1.0_pReal-nu(matID)) ) &
* 2.0_pReal / ( dUpper(1:ns,1) + dLower(1:ns,1) )
forall (s = 1_pInt:ns, dUpper(s,1) > dLower(s,1)) &
rhoDotThermalAnnihilation(s,9) = max(- 4.0_pReal * rhoDip(s,1) * vClimb(s) / (dUpper(s,1) - dLower(s,1)), &
- rhoDip(s,1) / timestep - rhoDotAthermalAnnihilation(s,9) - rhoDotSingle2DipoleGlide(s,9)) ! make sure that we do not annihilate more dipoles than we have
!****************************************************************************
!*** assign the rates of dislocation densities to my dotState
!*** if evolution rates lead to negative densities, a cutback is enforced
rhoDot = 0.0_pReal
rhoDot = rhoDotFlux &
+ rhoDotMultiplication &
+ rhoDotSingle2DipoleGlide &
+ rhoDotAthermalAnnihilation &
+ rhoDotThermalAnnihilation
if (numerics_integrationMode == 1_pInt) then ! save rates for output if in central integration mode
rhoDotFluxOutput(1:ns,1:8,ipc,ip,el) = rhoDotFlux(1:ns,1:8)
rhoDotMultiplicationOutput(1:ns,1:2,ipc,ip,el) = rhoDotMultiplication(1:ns,[1,3])
rhoDotSingle2DipoleGlideOutput(1:ns,1:2,ipc,ip,el) = rhoDotSingle2DipoleGlide(1:ns,9:10)
rhoDotAthermalAnnihilationOutput(1:ns,1:2,ipc,ip,el) = rhoDotAthermalAnnihilation(1:ns,9:10)
rhoDotThermalAnnihilationOutput(1:ns,1:2,ipc,ip,el) = rhoDotThermalAnnihilation(1:ns,9:10)
rhoDotEdgeJogsOutput(1:ns,ipc,ip,el) = 2.0_pReal * rhoDotThermalAnnihilation(1:ns,1)
endif
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt &
.and. ((debug_e == el .and. debug_i == ip .and. debug_g == ipc)&
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt )) then
write(6,'(a,/,4(12x,12(e12.5,1x),/))') '<< CONST >> dislocation multiplication', rhoDotMultiplication(1:ns,1:4) * timestep
write(6,'(a,/,8(12x,12(e12.5,1x),/))') '<< CONST >> dislocation flux', rhoDotFlux(1:ns,1:8) * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> dipole formation by glide', rhoDotSingle2DipoleGlide * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> athermal dipole annihilation', &
rhoDotAthermalAnnihilation * timestep
2012-11-17 19:20:20 +05:30
write(6,'(a,/,2(12x,12(e12.5,1x),/))') '<< CONST >> thermally activated dipole annihilation', &
rhoDotThermalAnnihilation(1:ns,9:10) * timestep
write(6,'(a,/,10(12x,12(e12.5,1x),/))') '<< CONST >> total density change', rhoDot * timestep
write(6,'(a,/,10(12x,12(f12.5,1x),/))') '<< CONST >> relative density change', &
rhoDot(1:ns,1:8) * timestep / (abs(rhoSglOriginal)+1.0e-10), &
rhoDot(1:ns,9:10) * timestep / (rhoDipOriginal+1.0e-10)
write(6,*)
endif
#endif
if ( any(rhoSglOriginal(1:ns,1:4) + rhoDot(1:ns,1:4) * timestep < -aTolRho(matID)) &
.or. any(rhoDipOriginal(1:ns,1:2) + rhoDot(1:ns,9:10) * timestep < -aTolRho(matID))) then
#ifndef _OPENMP
if (iand(debug_level(debug_constitutive),debug_levelExtensive) /= 0_pInt) then
write(6,'(a,i5,a,i2)') '<< CONST >> evolution rate leads to negative density at el ',el,' ip ',ip
write(6,'(a)') '<< CONST >> enforcing cutback !!!'
endif
#endif
constitutive_nonlocal_dotState = DAMASK_NaN
return
else
forall (s = 1:ns, t = 1_pInt:4_pInt)
constitutive_nonlocal_dotState(iRhoU(s,t,matID)) = rhoDot(s,t)
constitutive_nonlocal_dotState(iRhoB(s,t,matID)) = rhoDot(s,t+4_pInt)
endforall
forall (s = 1:ns, c = 1_pInt:2_pInt) &
constitutive_nonlocal_dotState(iRhoD(s,c,matID)) = rhoDot(s,c+8_pInt)
forall (s = 1:ns) &
constitutive_nonlocal_dotState(iGamma(s,matID)) = sum(gdot(s,1:4))
endif
end function constitutive_nonlocal_dotState
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!*********************************************************************
!* COMPATIBILITY UPDATE *
!* Compatibility is defined as normalized product of signed cosine *
!* of the angle between the slip plane normals and signed cosine of *
!* the angle between the slip directions. Only the largest values *
!* that sum up to a total of 1 are considered, all others are set to *
!* zero. *
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!*********************************************************************
subroutine constitutive_nonlocal_updateCompatibility(orientation,i,e)
use math, only: math_qDisorientation, &
math_mul3x3, &
math_qRot
use material, only: material_phase, &
material_texture, &
phase_localPlasticity, &
phase_plasticityInstance, &
homogenization_maxNgrains
use mesh, only: mesh_element, &
mesh_ipNeighborhood, &
mesh_maxNips, &
mesh_NcpElems, &
FE_NipNeighbors, &
FE_geomtype, &
FE_celltype
use lattice, only: lattice_sn, &
lattice_sd
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
implicit none
!* input variables
integer(pInt), intent(in) :: i, & ! ip index
e ! element index
real(pReal), dimension(4,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
orientation ! crystal orientation in quaternions
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!* output variables
!* local variables
integer(pInt) Nneighbors, & ! number of neighbors
n, & ! neighbor index
neighbor_e, & ! element index of my neighbor
neighbor_i, & ! integration point index of my neighbor
phaseID, &
neighbor_phaseID, &
textureID, &
neighbor_textureID, &
structID, & ! lattice structure
matID, & ! instance of plasticity
ns, & ! number of active slip systems
s1, & ! slip system index (me)
s2 ! slip system index (my neighbor)
real(pReal), dimension(4) :: absoluteMisorientation ! absolute misorientation (without symmetry) between me and my neighbor
real(pReal), dimension(2,totalNslip(phase_plasticityInstance(material_phase(1,i,e))),&
totalNslip(phase_plasticityInstance(material_phase(1,i,e))),&
FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))) :: &
my_compatibility ! my_compatibility for current element and ip
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(1,i,e)))) :: &
slipNormal, &
slipDirection
real(pReal) my_compatibilitySum, &
thresholdValue, &
nThresholdValues
logical, dimension(totalNslip(phase_plasticityInstance(material_phase(1,i,e)))) :: &
belowThreshold
Nneighbors = FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))
phaseID = material_phase(1,i,e)
textureID = material_texture(1,i,e)
matID = phase_plasticityInstance(phaseID)
structID = constitutive_nonlocal_structure(matID)
ns = totalNslip(matID)
slipNormal(1:3,1:ns) = lattice_sn(1:3, slipSystemLattice(1:ns,matID), structID)
slipDirection(1:3,1:ns) = lattice_sd(1:3, slipSystemLattice(1:ns,matID), structID)
!*** start out fully compatible
my_compatibility = 0.0_pReal
forall(s1 = 1_pInt:ns) &
my_compatibility(1:2,s1,s1,1:Nneighbors) = 1.0_pReal
!*** Loop thrugh neighbors and check whether there is any my_compatibility.
do n = 1_pInt,Nneighbors
neighbor_e = mesh_ipNeighborhood(1,n,i,e)
neighbor_i = mesh_ipNeighborhood(2,n,i,e)
!* FREE SURFACE
!* Set surface transmissivity to the value specified in the material.config
if (neighbor_e <= 0_pInt .or. neighbor_i <= 0_pInt) then
forall(s1 = 1_pInt:ns) &
my_compatibility(1:2,s1,s1,n) = sqrt(surfaceTransmissivity(matID))
cycle
endif
!* PHASE BOUNDARY
!* If we encounter a different nonlocal "cpfem" phase at the neighbor,
!* we consider this to be a real "physical" phase boundary, so completely incompatible.
!* If one of the two "CPFEM" phases has a local plasticity law,
!* we do not consider this to be a phase boundary, so completely compatible.
neighbor_phaseID = material_phase(1,neighbor_i,neighbor_e)
if (neighbor_phaseID /= phaseID) then
if (.not. phase_localPlasticity(neighbor_phaseID) .and. .not. phase_localPlasticity(phaseID)) then
forall(s1 = 1_pInt:ns) &
my_compatibility(1:2,s1,s1,n) = 0.0_pReal ! = sqrt(0.0)
endif
cycle
endif
!* GRAIN BOUNDARY !
!* fixed transmissivity for adjacent ips with different texture (only if explicitly given in material.config)
if (grainboundaryTransmissivity(matID) >= 0.0_pReal) then
neighbor_textureID = material_texture(1,neighbor_i,neighbor_e)
if (neighbor_textureID /= textureID) then
if (.not. phase_localPlasticity(neighbor_phaseID)) then
forall(s1 = 1_pInt:ns) &
my_compatibility(1:2,s1,s1,n) = sqrt(grainboundaryTransmissivity(matID))
endif
cycle
endif
!* GRAIN BOUNDARY ?
!* Compatibility defined by relative orientation of slip systems:
!* The my_compatibility value is defined as the product of the slip normal projection and the slip direction projection.
!* Its sign is always positive for screws, for edges it has the same sign as the slip normal projection.
!* Since the sum for each slip system can easily exceed one (which would result in a transmissivity larger than one),
!* only values above or equal to a certain threshold value are considered. This threshold value is chosen, such that
!* the number of compatible slip systems is minimized with the sum of the original my_compatibility values exceeding one.
!* Finally the smallest my_compatibility value is decreased until the sum is exactly equal to one.
!* All values below the threshold are set to zero.
else
absoluteMisorientation = math_qDisorientation(orientation(1:4,1,i,e), &
orientation(1:4,1,neighbor_i,neighbor_e), &
0_pInt) ! no symmetry
do s1 = 1_pInt,ns ! my slip systems
do s2 = 1_pInt,ns ! my neighbor's slip systems
my_compatibility(1,s2,s1,n) = math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2))) &
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
my_compatibility(2,s2,s1,n) = abs(math_mul3x3(slipNormal(1:3,s1), math_qRot(absoluteMisorientation, slipNormal(1:3,s2)))) &
* abs(math_mul3x3(slipDirection(1:3,s1), math_qRot(absoluteMisorientation, slipDirection(1:3,s2))))
enddo
my_compatibilitySum = 0.0_pReal
belowThreshold = .true.
do while (my_compatibilitySum < 1.0_pReal .and. any(belowThreshold(1:ns)))
thresholdValue = maxval(my_compatibility(2,1:ns,s1,n), belowThreshold(1:ns)) ! screws always positive
nThresholdValues = real(count(my_compatibility(2,1:ns,s1,n) == thresholdValue),pReal)
where (my_compatibility(2,1:ns,s1,n) >= thresholdValue) &
belowThreshold(1:ns) = .false.
if (my_compatibilitySum + thresholdValue * nThresholdValues > 1.0_pReal) &
where (abs(my_compatibility(1:2,1:ns,s1,n)) == thresholdValue) &
my_compatibility(1:2,1:ns,s1,n) = sign((1.0_pReal - my_compatibilitySum) &
/ nThresholdValues, my_compatibility(1:2,1:ns,s1,n))
my_compatibilitySum = my_compatibilitySum + nThresholdValues * thresholdValue
enddo
where (belowThreshold(1:ns)) my_compatibility(1,1:ns,s1,n) = 0.0_pReal
where (belowThreshold(1:ns)) my_compatibility(2,1:ns,s1,n) = 0.0_pReal
enddo ! my slip systems cycle
endif
enddo ! neighbor cycle
compatibility(1:2,1:ns,1:ns,1:Nneighbors,i,e) = my_compatibility
end subroutine constitutive_nonlocal_updateCompatibility
!*********************************************************************
!* calculates quantities characterizing the microstructure *
!*********************************************************************
pure function constitutive_nonlocal_dislocationstress(state, Fe, ipc, ip, el)
use math, only: math_mul33x33, &
math_mul33x3, &
math_invert33, &
math_transpose33, &
pi
use mesh, only: mesh_NcpElems, &
mesh_maxNips, &
mesh_element, &
mesh_node0, &
mesh_cellCenterCoordinates, &
mesh_ipVolume, &
mesh_periodicSurface, &
FE_Nips, &
FE_geomtype
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_localPlasticity, &
phase_plasticityInstance
implicit none
!*** input variables
integer(pInt), intent(in) :: ipc, & ! current grain ID
ip, & ! current integration point
el ! current element
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe ! elastic deformation gradient
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state ! microstructural state
!*** input/output variables
!*** output variables
real(pReal), dimension(3,3) :: constitutive_nonlocal_dislocationstress
!*** local variables
integer(pInt) neighbor_el, & ! element number of neighbor material point
neighbor_ip, & ! integration point of neighbor material point
matID, & ! my instance of this plasticity
neighbor_matID, & ! instance of this plasticity of neighbor material point
structID, & ! my lattice structure
neighbor_structID, & ! lattice structure of neighbor material point
phase, &
neighbor_phaseID, &
ns, & ! total number of active slip systems at my material point
neighbor_ns, & ! total number of active slip systems at neighbor material point
c, & ! index of dilsocation character (edge, screw)
s, & ! slip system index
t, & ! index of dilsocation type (e+, e-, s+, s-, used e+, used e-, used s+, used s-)
dir, &
deltaX, deltaY, deltaZ, &
side, &
j
integer(pInt), dimension(2,3) :: periodicImages
real(pReal) x, y, z, & ! coordinates of connection vector in neighbor lattice frame
xsquare, ysquare, zsquare, & ! squares of respective coordinates
distance, & ! length of connection vector
segmentLength, & ! segment length of dislocations
lambda, &
R, Rsquare, Rcube, &
denominator, &
flipSign, &
neighbor_ipVolumeSideLength, &
detFe
real(pReal), dimension(3) :: connection, & ! connection vector between me and my neighbor in the deformed configuration
connection_neighborLattice, & ! connection vector between me and my neighbor in the lattice configuration of my neighbor
connection_neighborSlip, & ! connection vector between me and my neighbor in the slip system frame of my neighbor
maxCoord, minCoord, &
meshSize, &
coords, & ! x,y,z coordinates of cell center of ip volume
neighbor_coords ! x,y,z coordinates of cell center of neighbor ip volume
real(pReal), dimension(3,3) :: sigma, & ! dislocation stress for one slip system in neighbor material point's slip system frame
Tdislo_neighborLattice, & ! dislocation stress as 2nd Piola-Kirchhoff stress at neighbor material point
invFe, & ! inverse of my elastic deformation gradient
neighbor_invFe, &
neighborLattice2myLattice ! mapping from neighbor MPs lattice configuration to my lattice configuration
real(pReal), dimension(2,2,maxval(totalNslip)) :: &
neighbor_rhoExcess ! excess density at neighbor material point (edge/screw,mobile/dead,slipsystem)
real(pReal), dimension(2,maxval(totalNslip)) :: &
rhoExcessDead
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),8) :: &
rhoSgl ! single dislocation density (edge+, edge-, screw+, screw-, used edge+, used edge-, used screw+, used screw-)
logical inversionError
phase = material_phase(ipc,ip,el)
matID = phase_plasticityInstance(phase)
structID = constitutive_nonlocal_structure(matID)
ns = totalNslip(matID)
!*** get basic states
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = max(state(ipc,ip,el)%p(iRhoU(s,t,matID)), 0.0_pReal) ! ensure positive single mobile densities
rhoSgl(s,t+4_pInt) = state(ipc,ip,el)%p(iRhoB(s,t,matID))
endforall
!*** calculate the dislocation stress of the neighboring excess dislocation densities
!*** zero for material points of local plasticity
constitutive_nonlocal_dislocationstress = 0.0_pReal
if (.not. phase_localPlasticity(phase)) then
call math_invert33(Fe(1:3,1:3,ipc,ip,el), invFe, detFe, inversionError)
!* in case of periodic surfaces we have to find out how many periodic images in each direction we need
do dir = 1_pInt,3_pInt
maxCoord(dir) = maxval(mesh_node0(dir,:))
minCoord(dir) = minval(mesh_node0(dir,:))
enddo
meshSize = maxCoord - minCoord
coords = mesh_cellCenterCoordinates(ip,el)
periodicImages = 0_pInt
do dir = 1_pInt,3_pInt
if (mesh_periodicSurface(dir)) then
periodicImages(1,dir) = floor((coords(dir) - cutoffRadius(matID) - minCoord(dir)) / meshSize(dir), pInt)
periodicImages(2,dir) = ceiling((coords(dir) + cutoffRadius(matID) - maxCoord(dir)) / meshSize(dir), pInt)
endif
enddo
!* loop through all material points (also through their periodic images if present),
!* but only consider nonlocal neighbors within a certain cutoff radius R
do neighbor_el = 1_pInt,mesh_NcpElems
ipLoop: do neighbor_ip = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,neighbor_el)))
neighbor_phaseID = material_phase(ipc,neighbor_ip,neighbor_el)
if (phase_localPlasticity(neighbor_phaseID)) then
cycle
endif
neighbor_matID = phase_plasticityInstance(neighbor_phaseID)
neighbor_structID = constitutive_nonlocal_structure(neighbor_matID)
neighbor_ns = totalNslip(neighbor_matID)
call math_invert33(Fe(1:3,1:3,1,neighbor_ip,neighbor_el), neighbor_invFe, detFe, inversionError)
neighbor_ipVolumeSideLength = mesh_ipVolume(neighbor_ip,neighbor_el) ** (1.0_pReal/3.0_pReal) ! reference volume used here
forall (s = 1_pInt:neighbor_ns, c = 1_pInt:2_pInt)
neighbor_rhoExcess(c,1,s) = state(ipc,neighbor_ip,neighbor_el)%p(iRhoU(s,2*c-1,neighbor_matID)) & ! positive mobiles
- state(ipc,neighbor_ip,neighbor_el)%p(iRhoU(s,2*c,neighbor_matID)) ! negative mobiles
neighbor_rhoExcess(c,2,s) = abs(state(ipc,neighbor_ip,neighbor_el)%p(iRhoB(s,2*c-1,neighbor_matID))) & ! positive deads
- abs(state(ipc,neighbor_ip,neighbor_el)%p(iRhoB(s,2*c,neighbor_matID))) ! negative deads
endforall
Tdislo_neighborLattice = 0.0_pReal
do deltaX = periodicImages(1,1),periodicImages(2,1)
do deltaY = periodicImages(1,2),periodicImages(2,2)
do deltaZ = periodicImages(1,3),periodicImages(2,3)
!* regular case
if (neighbor_el /= el .or. neighbor_ip /= ip &
.or. deltaX /= 0_pInt .or. deltaY /= 0_pInt .or. deltaZ /= 0_pInt) then
neighbor_coords = mesh_cellCenterCoordinates(neighbor_ip,neighbor_el) &
+ (/real(deltaX,pReal), real(deltaY,pReal), real(deltaZ,pReal)/) * meshSize
connection = neighbor_coords - coords
distance = sqrt(sum(connection * connection))
if (distance > cutoffRadius(matID)) then
cycle
endif
!* the segment length is the minimum of the third root of the control volume and the ip distance
!* this ensures, that the central MP never sits on a neighbor dislocation segment
connection_neighborLattice = math_mul33x3(neighbor_invFe, connection)
segmentLength = min(neighbor_ipVolumeSideLength, distance)
!* loop through all slip systems of the neighbor material point
!* and add up the stress contributions from egde and screw excess on these slip systems (if significant)
do s = 1_pInt,neighbor_ns
if (all(abs(neighbor_rhoExcess(:,:,s)) < significantRho(matID))) then
cycle ! not significant
endif
!* map the connection vector from the lattice into the slip system frame
connection_neighborSlip = math_mul33x3(lattice2slip(1:3,1:3,s,neighbor_matID), &
connection_neighborLattice)
!* edge contribution to stress
sigma = 0.0_pReal
x = connection_neighborSlip(1)
y = connection_neighborSlip(2)
z = connection_neighborSlip(3)
xsquare = x * x
ysquare = y * y
zsquare = z * z
do j = 1_pInt,2_pInt
if (abs(neighbor_rhoExcess(1,j,s)) < significantRho(matID)) then
cycle
elseif (j > 1_pInt) then
x = connection_neighborSlip(1) + sign(0.5_pReal * segmentLength, &
state(ipc,neighbor_ip,neighbor_el)%p(iRhoB(s,1,neighbor_matID)) &
- state(ipc,neighbor_ip,neighbor_el)%p(iRhoB(s,2,neighbor_matID)))
xsquare = x * x
endif
flipSign = sign(1.0_pReal, -y)
do side = 1_pInt,-1_pInt,-2_pInt
lambda = real(side,pReal) * 0.5_pReal * segmentLength - y
R = sqrt(xsquare + zsquare + lambda * lambda)
Rsquare = R * R
Rcube = Rsquare * R
denominator = R * (R + flipSign * lambda)
if (denominator == 0.0_pReal) then
exit ipLoop
endif
sigma(1,1) = sigma(1,1) - real(side,pReal) &
* flipSign * z / denominator &
* (1.0_pReal + xsquare / Rsquare + xsquare / denominator) &
* neighbor_rhoExcess(1,j,s)
sigma(2,2) = sigma(2,2) - real(side,pReal) &
* (flipSign * 2.0_pReal * nu(matID) * z / denominator + z * lambda / Rcube) &
* neighbor_rhoExcess(1,j,s)
sigma(3,3) = sigma(3,3) + real(side,pReal) &
* flipSign * z / denominator &
* (1.0_pReal - zsquare / Rsquare - zsquare / denominator) &
* neighbor_rhoExcess(1,j,s)
sigma(1,2) = sigma(1,2) + real(side,pReal) &
* x * z / Rcube * neighbor_rhoExcess(1,j,s)
sigma(1,3) = sigma(1,3) + real(side,pReal) &
* flipSign * x / denominator &
* (1.0_pReal - zsquare / Rsquare - zsquare / denominator) &
* neighbor_rhoExcess(1,j,s)
sigma(2,3) = sigma(2,3) - real(side,pReal) &
* (nu(matID) / R - zsquare / Rcube) * neighbor_rhoExcess(1,j,s)
enddo
enddo
!* screw contribution to stress
x = connection_neighborSlip(1) ! have to restore this value, because position might have been adapted for edge deads before
do j = 1_pInt,2_pInt
if (abs(neighbor_rhoExcess(2,j,s)) < significantRho(matID)) then
cycle
elseif (j > 1_pInt) then
y = connection_neighborSlip(2) + sign(0.5_pReal * segmentLength, &
state(ipc,neighbor_ip,neighbor_el)%p(iRhoB(s,3,neighbor_matID)) &
- state(ipc,neighbor_ip,neighbor_el)%p(iRhoB(s,4,neighbor_matID)))
ysquare = y * y
endif
flipSign = sign(1.0_pReal, x)
do side = 1_pInt,-1_pInt,-2_pInt
lambda = x + real(side,pReal) * 0.5_pReal * segmentLength
R = sqrt(ysquare + zsquare + lambda * lambda)
Rsquare = R * R
Rcube = Rsquare * R
denominator = R * (R + flipSign * lambda)
if (denominator == 0.0_pReal) then
exit ipLoop
endif
sigma(1,2) = sigma(1,2) - real(side,pReal) * flipSign * z * (1.0_pReal - nu(matID)) / denominator &
* neighbor_rhoExcess(2,j,s)
sigma(1,3) = sigma(1,3) + real(side,pReal) * flipSign * y * (1.0_pReal - nu(matID)) / denominator &
* neighbor_rhoExcess(2,j,s)
enddo
enddo
if (all(abs(sigma) < 1.0e-10_pReal)) then ! SIGMA IS NOT A REAL STRESS, THATS WHY WE NEED A REALLY SMALL VALUE HERE
cycle
endif
!* copy symmetric parts
sigma(2,1) = sigma(1,2)
sigma(3,1) = sigma(1,3)
sigma(3,2) = sigma(2,3)
!* scale stresses and map them into the neighbor material point's lattice configuration
sigma = sigma * mu(neighbor_matID) * burgers(s,neighbor_matID) &
/ (4.0_pReal * pi * (1.0_pReal - nu(neighbor_matID))) &
* mesh_ipVolume(neighbor_ip,neighbor_el) / segmentLength ! reference volume is used here (according to the segment length calculation)
Tdislo_neighborLattice = Tdislo_neighborLattice &
+ math_mul33x33(math_transpose33(lattice2slip(1:3,1:3,s,neighbor_matID)), &
math_mul33x33(sigma, lattice2slip(1:3,1:3,s,neighbor_matID)))
enddo ! slip system loop
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!* special case of central ip volume
!* only consider dead dislocations
!* we assume that they all sit at a distance equal to half the third root of V
!* in direction of the according slip direction
else
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt) &
rhoExcessDead(c,s) = state(ipc,ip,el)%p(iRhoB(s,2*c-1,matID)) & ! positive deads (here we use symmetry: if this has negative sign it is treated as negative density at positive position instead of positive density at negative position)
+ state(ipc,ip,el)%p(iRhoB(s,2*c,matID)) ! negative deads (here we use symmetry: if this has negative sign it is treated as positive density at positive position instead of negative density at negative position)
do s = 1_pInt,ns
if (all(abs(rhoExcessDead(:,s)) < significantRho(matID))) then
cycle ! not significant
endif
sigma = 0.0_pReal ! all components except for sigma13 are zero
sigma(1,3) = - (rhoExcessDead(1,s) + rhoExcessDead(2,s) * (1.0_pReal - nu(matID))) &
* neighbor_ipVolumeSideLength * mu(matID) * burgers(s,matID) &
/ (sqrt(2.0_pReal) * pi * (1.0_pReal - nu(matID)))
sigma(3,1) = sigma(1,3)
Tdislo_neighborLattice = Tdislo_neighborLattice &
+ math_mul33x33(math_transpose33(lattice2slip(1:3,1:3,s,matID)), &
math_mul33x33(sigma, lattice2slip(1:3,1:3,s,matID)))
enddo ! slip system loop
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
endif
enddo ! deltaZ loop
enddo ! deltaY loop
enddo ! deltaX loop
!* map the stress from the neighbor MP's lattice configuration into the deformed configuration
!* and back into my lattice configuration
neighborLattice2myLattice = math_mul33x33(invFe, Fe(1:3,1:3,1,neighbor_ip,neighbor_el))
constitutive_nonlocal_dislocationstress = constitutive_nonlocal_dislocationstress &
+ math_mul33x33(neighborLattice2myLattice, &
math_mul33x33(Tdislo_neighborLattice, &
math_transpose33(neighborLattice2myLattice)))
enddo ipLoop
enddo ! element loop
endif
end function constitutive_nonlocal_dislocationstress
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
pure function constitutive_nonlocal_postResults(Tstar_v,Fe,state,dotState,ipc,ip,el)
use math, only: &
math_mul6x6, &
math_mul33x3, &
math_mul33x33, &
pi
use mesh, only: &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance, &
phase_Noutput
use lattice, only: &
lattice_Sslip_v, &
lattice_sd, &
lattice_st, &
lattice_sn
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
Fe !< elastic deformation gradient
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state !< microstructure state
type(p_vec), intent(in) :: dotState ! evolution rate of microstructural state
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(constitutive_nonlocal_sizePostResults(&
phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
constitutive_nonlocal_postResults
integer(pInt) :: &
matID, & !< current instance of this plasticity
structID, & !< current lattice structure
ns, & !< short notation for the total number of active slip systems
c, & !< character of dislocation
cs, & !< constitutive result index
o, & !< index of current output
t, & !< type of dislocation
s, & !< index of my current slip system
sLattice !< index of my current slip system according to lattice order
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),8) :: &
rhoSgl, & !< current single dislocation densities (positive/negative screw and edge without dipoles)
rhoDotSgl !< evolution rate of single dislocation densities (positive/negative screw and edge without dipoles)
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),4) :: &
gdot, & !< shear rates
v !< velocities
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
rhoForest, & !< forest dislocation density
tauThreshold, & !< threshold shear stress
tau, & !< current resolved shear stress
tauBack !< back stress from pileups on same slip system
real(pReal), dimension(totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),2) :: &
rhoDip, & !< current dipole dislocation densities (screw and edge dipoles)
rhoDotDip, & !< evolution rate of dipole dislocation densities (screw and edge dipoles)
dLower, & !< minimum stable dipole distance for edges and screws
dUpper !< current maximum stable dipole distance for edges and screws
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el))),2) :: &
m, & !< direction of dislocation motion for edge and screw (unit vector)
m_currentconf !< direction of dislocation motion for edge and screw (unit vector) in current configuration
real(pReal), dimension(3,totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
n_currentconf !< slip system normal (unit vector) in current configuration
real(pReal), dimension(3,3) :: &
sigma
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
structID = constitutive_nonlocal_structure(matID)
ns = totalNslip(matID)
cs = 0_pInt
constitutive_nonlocal_postResults = 0.0_pReal
!* short hand notations for state variables
forall (s = 1_pInt:ns, t = 1_pInt:4_pInt)
rhoSgl(s,t) = state(ipc,ip,el)%p(iRhoU(s,t,matID))
rhoSgl(s,t+4_pInt) = state(ipc,ip,el)%p(iRhoB(s,t,matID))
v(s,t) = state(ipc,ip,el)%p(iV(s,t,matID))
rhoDotSgl(s,t) = dotState%p(iRhoU(s,t,matID))
rhoDotSgl(s,t+4_pInt) = dotState%p(iRhoB(s,t,matID))
endforall
forall (s = 1_pInt:ns, c = 1_pInt:2_pInt)
rhoDip(s,c) = state(ipc,ip,el)%p(iRhoD(s,c,matID))
rhoDotDip(s,c) = dotState%p(iRhoD(s,c,matID))
endforall
rhoForest = state(ipc,ip,el)%p(iRhoF(1:ns,matID))
tauThreshold = state(ipc,ip,el)%p(iTauF(1:ns,matID))
tauBack = state(ipc,ip,el)%p(iTauB(1:ns,matID))
!* Calculate shear rate
forall (t = 1_pInt:4_pInt) &
gdot(1:ns,t) = rhoSgl(1:ns,t) * burgers(1:ns,matID) * v(1:ns,t)
!* calculate limits for stable dipole height
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,matID)
tau(s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,structID)) + tauBack(s)
if (abs(tau(s)) < 1.0e-15_pReal) tau(s) = 1.0e-15_pReal
enddo
dLower = minDipoleHeight(1:ns,1:2,matID)
dUpper(1:ns,1) = mu(matID) * burgers(1:ns,matID) &
/ (8.0_pReal * pi * (1.0_pReal - nu(matID)) * abs(tau))
dUpper(1:ns,2) = mu(matID) * burgers(1:ns,matID) &
/ (4.0_pReal * pi * abs(tau))
forall (c = 1_pInt:2_pInt) &
dUpper(1:ns,c) = min(1.0_pReal / sqrt(rhoSgl(1:ns,2*c-1) + rhoSgl(1:ns,2*c) &
+ abs(rhoSgl(1:ns,2*c+3)) + abs(rhoSgl(1:ns,2*c+4)) + rhoDip(1:ns,c)), &
dUpper(1:ns,c))
dUpper = max(dUpper,dLower)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
!*** dislocation motion
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
m(1:3,1:ns,1) = lattice_sd(1:3,slipSystemLattice(1:ns,matID),structID)
m(1:3,1:ns,2) = -lattice_st(1:3,slipSystemLattice(1:ns,matID),structID)
forall (c = 1_pInt:2_pInt, s = 1_pInt:ns) &
m_currentconf(1:3,s,c) = math_mul33x3(Fe(1:3,1:3,ipc,ip,el), m(1:3,s,c))
forall (s = 1_pInt:ns) &
n_currentconf(1:3,s) = math_mul33x3(Fe(1:3,1:3,ipc,ip,el), &
lattice_sn(1:3,slipSystemLattice(s,matID),structID))
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el))
select case(constitutive_nonlocal_output(o,matID))
case ('rho')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl),2) + sum(rhoDip,2)
cs = cs + ns
case ('rho_sgl')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl),2)
cs = cs + ns
case ('rho_sgl_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,1:4)),2)
cs = cs + ns
case ('rho_sgl_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,5:8),2)
cs = cs + ns
case ('rho_dip')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDip,2)
cs = cs + ns
case ('rho_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,(/1,2,5,6/))),2) + rhoDip(1:ns,1)
cs = cs + ns
case ('rho_sgl_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,(/1,2,5,6/))),2)
cs = cs + ns
case ('rho_sgl_edge_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,1:2),2)
cs = cs + ns
case ('rho_sgl_edge_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,5:6),2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('rho_sgl_edge_pos')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))
cs = cs + ns
case ('rho_sgl_edge_pos_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1)
cs = cs + ns
case ('rho_sgl_edge_pos_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,5)
cs = cs + ns
case ('rho_sgl_edge_neg')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6))
cs = cs + ns
case ('rho_sgl_edge_neg_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,2)
cs = cs + ns
case ('rho_sgl_edge_neg_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,6)
cs = cs + ns
case ('rho_dip_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDip(1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('rho_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,(/3,4,7,8/))),2) + rhoDip(1:ns,2)
cs = cs + ns
case ('rho_sgl_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(abs(rhoSgl(1:ns,(/3,4,7,8/))),2)
cs = cs + ns
case ('rho_sgl_screw_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,3:4),2)
cs = cs + ns
case ('rho_sgl_screw_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoSgl(1:ns,7:8),2)
cs = cs + ns
case ('rho_sgl_screw_pos')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))
cs = cs + ns
case ('rho_sgl_screw_pos_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('rho_sgl_screw_pos_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,7)
cs = cs + ns
case ('rho_sgl_screw_neg')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8))
cs = cs + ns
case ('rho_sgl_screw_neg_mobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,4)
cs = cs + ns
case ('rho_sgl_screw_neg_immobile')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,8)
cs = cs + ns
case ('rho_dip_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDip(1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('excess_rho')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))) &
- (rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6))) &
+ (rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))) &
- (rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8)))
cs = cs + ns
case ('excess_rho_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,1) + abs(rhoSgl(1:ns,5))) &
- (rhoSgl(1:ns,2) + abs(rhoSgl(1:ns,6)))
cs = cs + ns
case ('excess_rho_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = (rhoSgl(1:ns,3) + abs(rhoSgl(1:ns,7))) &
- (rhoSgl(1:ns,4) + abs(rhoSgl(1:ns,8)))
cs = cs + ns
case ('rho_forest')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoForest
cs = cs + ns
case ('delta')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(abs(rhoSgl),2) + sum(rhoDip,2))
cs = cs + ns
case ('delta_sgl')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(abs(rhoSgl),2))
cs = cs + ns
case ('delta_dip')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = 1.0_pReal / sqrt(sum(rhoDip,2))
cs = cs + ns
case ('shearrate')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(gdot,2)
cs = cs + ns
case ('resolvedstress')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = tau
cs = cs + ns
case ('resolvedstress_back')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = tauBack
cs = cs + ns
case ('resolvedstress_external')
do s = 1_pInt,ns
sLattice = slipSystemLattice(s,matID)
constitutive_nonlocal_postResults(cs+s) = math_mul6x6(Tstar_v, lattice_Sslip_v(1:6,1,sLattice,structID))
enddo
cs = cs + ns
case ('resistance')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = tauThreshold
cs = cs + ns
case ('rho_dot')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotSgl,2) + sum(rhoDotDip,2)
cs = cs + ns
case ('rho_dot_sgl')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotSgl,2)
cs = cs + ns
case ('rho_dot_dip')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotDip,2)
cs = cs + ns
case ('rho_dot_gen')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotMultiplicationOutput(1:ns,1,ipc,ip,el) &
+ rhoDotMultiplicationOutput(1:ns,2,ipc,ip,el)
cs = cs + ns
case ('rho_dot_gen_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotMultiplicationOutput(1:ns,1,ipc,ip,el)
cs = cs + ns
case ('rho_dot_gen_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotMultiplicationOutput(1:ns,2,ipc,ip,el)
cs = cs + ns
case ('rho_dot_sgl2dip')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotSingle2DipoleGlideOutput(1:ns,1,ipc,ip,el) &
+ rhoDotSingle2DipoleGlideOutput(1:ns,2,ipc,ip,el)
cs = cs + ns
case ('rho_dot_sgl2dip_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotSingle2DipoleGlideOutput(1:ns,1,ipc,ip,el)
cs = cs + ns
case ('rho_dot_sgl2dip_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotSingle2DipoleGlideOutput(1:ns,2,ipc,ip,el)
cs = cs + ns
case ('rho_dot_ann_ath')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotAthermalAnnihilationOutput(1:ns,1,ipc,ip,el) &
+ rhoDotAthermalAnnihilationOutput(1:ns,2,ipc,ip,el)
cs = cs + ns
case ('rho_dot_ann_the')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotThermalAnnihilationOutput(1:ns,1,ipc,ip,el) &
+ rhoDotThermalAnnihilationOutput(1:ns,2,ipc,ip,el)
cs = cs + ns
case ('rho_dot_ann_the_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotThermalAnnihilationOutput(1:ns,1,ipc,ip,el)
cs = cs + ns
case ('rho_dot_ann_the_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotThermalAnnihilationOutput(1:ns,2,ipc,ip,el)
cs = cs + ns
case ('rho_dot_edgejogs')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoDotEdgeJogsOutput(1:ns,ipc,ip,el)
cs = cs + ns
case ('rho_dot_flux')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotFluxOutput(1:ns,1:4,ipc,ip,el),2) &
+ sum(abs(rhoDotFluxOutput(1:ns,5:8,ipc,ip,el)),2)
cs = cs + ns
case ('rho_dot_flux_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotFluxOutput(1:ns,1:2,ipc,ip,el),2) &
+ sum(abs(rhoDotFluxOutput(1:ns,5:6,ipc,ip,el)),2)
cs = cs + ns
case ('rho_dot_flux_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = sum(rhoDotFluxOutput(1:ns,3:4,ipc,ip,el),2) &
+ sum(abs(rhoDotFluxOutput(1:ns,7:8,ipc,ip,el)),2)
cs = cs + ns
case ('velocity_edge_pos')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,1)
2010-02-23 22:53:07 +05:30
cs = cs + ns
case ('velocity_edge_neg')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,2)
cs = cs + ns
case ('velocity_screw_pos')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,3)
cs = cs + ns
case ('velocity_screw_neg')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = v(1:ns,4)
cs = cs + ns
case ('slipdirection.x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = m_currentconf(1,1:ns,1)
cs = cs + ns
case ('slipdirection.y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = m_currentconf(2,1:ns,1)
cs = cs + ns
case ('slipdirection.z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = m_currentconf(3,1:ns,1)
cs = cs + ns
case ('slipnormal.x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = n_currentconf(1,1:ns)
cs = cs + ns
case ('slipnormal.y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = n_currentconf(2,1:ns)
cs = cs + ns
case ('slipnormal.z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = n_currentconf(3,1:ns)
cs = cs + ns
case ('fluxdensity_edge_pos.x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(1,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_pos.y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(2,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_pos.z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,1) * v(1:ns,1) * m_currentconf(3,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_neg.x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(1,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_neg.y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(2,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_edge_neg.z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,2) * v(1:ns,2) * m_currentconf(3,1:ns,1)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_pos.x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(1,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_pos.y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(2,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_pos.z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = rhoSgl(1:ns,3) * v(1:ns,3) * m_currentconf(3,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_neg.x')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(1,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_neg.y')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(2,1:ns,2)
constitutive_nonlocal: - corrected flux term - multiplication is now aware of dislocation type - corrected change rate for "dipole size" dupper - corrected term for dipole dissociation by stress change - added transmissivity term in fluxes which accounts for misorientation between two neighboring grains (yet hardcoded transmissivity according to misorientation angle) - added more output variables constitutive: - 2 additional variables "previousDotState" and "previousDotState2", which are used to store the previous and second previous dotState (used in crystallite for acceleration/stabilization of state integration) - timer for dotState now measures the time for calls to constitutive_ collectState (used to reside in crystallite_updateState, which is not critical in terms of calculation time anymore) crystallite: - convergence check for nonlocal elments is now done at end of crystallite loop, not at the beginning; we simple set all elements to not converged if there is at least one nonlocal element that did not converge - need call to microstructure before first call to collect dotState for dependent states - stiffness calculation (jacobian): if there are nonlocal elements, we also have to consider changes in our neighborhood's states; so for every perturbed component in a single ip, we have to loop over all elements; since this is extremely time-consuming, we just perturb one component per cycle, starting with the one that changes the most during regular time step. - updateState gets a damping prefactor for our dotState that helps to improve convergence; prefactor is calculated according to change of dotState IO: - additional warning message for unknown crystal symmetry
2009-12-15 13:50:31 +05:30
cs = cs + ns
case ('fluxdensity_screw_neg.z')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = - rhoSgl(1:ns,4) * v(1:ns,4) * m_currentconf(3,1:ns,2)
cs = cs + ns
case ('maximumdipoleheight_edge')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = dUpper(1:ns,1)
cs = cs + ns
case ('maximumdipoleheight_screw')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = dUpper(1:ns,2)
cs = cs + ns
case('dislocationstress')
sigma = constitutive_nonlocal_dislocationstress(state, Fe, ipc, ip, el)
constitutive_nonlocal_postResults(cs+1_pInt) = sigma(1,1)
constitutive_nonlocal_postResults(cs+2_pInt) = sigma(2,2)
constitutive_nonlocal_postResults(cs+3_pInt) = sigma(3,3)
constitutive_nonlocal_postResults(cs+4_pInt) = sigma(1,2)
constitutive_nonlocal_postResults(cs+5_pInt) = sigma(2,3)
constitutive_nonlocal_postResults(cs+6_pInt) = sigma(3,1)
cs = cs + 6_pInt
case('accumulatedshear')
constitutive_nonlocal_postResults(cs+1_pInt:cs+ns) = state(ipc,ip,el)%p(iGamma(1:ns,matID))
cs = cs + ns
case('boundarylayer')
do s = 1_pInt,ns
if (sum(abs(rhoSgl(s,1:8))) > 0.0_pReal) then
constitutive_nonlocal_postResults(cs+s) = maxval(abs(rhoSgl(s,5:8))/(rhoSgl(s,1:4)+abs(rhoSgl(s,5:8))))
else
constitutive_nonlocal_postResults(cs+s) = 0.0_pReal
endif
enddo
cs = cs + ns
end select
enddo
end function constitutive_nonlocal_postResults
end module constitutive_nonlocal