2011-04-04 19:39:54 +05:30
|
|
|
|
! Copyright 2011 Max-Planck-Institut f<>r Eisenforschung GmbH
|
|
|
|
|
!
|
|
|
|
|
! This file is part of DAMASK,
|
|
|
|
|
! the D<>sseldorf Advanced MAterial Simulation Kit.
|
|
|
|
|
!
|
|
|
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
|
|
|
! it under the terms of the GNU General Public License as published by
|
|
|
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
|
|
|
! (at your option) any later version.
|
|
|
|
|
!
|
|
|
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
|
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
|
! GNU General Public License for more details.
|
|
|
|
|
!
|
|
|
|
|
! You should have received a copy of the GNU General Public License
|
|
|
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
|
!
|
|
|
|
|
!##############################################################
|
2009-08-31 20:39:15 +05:30
|
|
|
|
!* $Id$
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!##############################################################
|
|
|
|
|
MODULE math
|
|
|
|
|
!##############################################################
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
use prec, only: pReal,pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
|
|
|
|
|
2007-03-26 18:20:04 +05:30
|
|
|
|
real(pReal), parameter :: pi = 3.14159265358979323846264338327950288419716939937510_pReal
|
2007-03-21 15:50:25 +05:30
|
|
|
|
real(pReal), parameter :: inDeg = 180.0_pReal/pi
|
|
|
|
|
real(pReal), parameter :: inRad = pi/180.0_pReal
|
2010-04-19 19:10:22 +05:30
|
|
|
|
real(pReal), parameter :: NaN = 0.0_pReal/0.0_pReal ! Not a number
|
2007-03-28 13:50:50 +05:30
|
|
|
|
! *** 3x3 Identity ***
|
2007-03-22 20:18:16 +05:30
|
|
|
|
real(pReal), dimension(3,3), parameter :: math_I3 = &
|
|
|
|
|
reshape( (/ &
|
|
|
|
|
1.0_pReal,0.0_pReal,0.0_pReal, &
|
|
|
|
|
0.0_pReal,1.0_pReal,0.0_pReal, &
|
|
|
|
|
0.0_pReal,0.0_pReal,1.0_pReal /),(/3,3/))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
! *** Mandel notation ***
|
|
|
|
|
integer(pInt), dimension (2,6), parameter :: mapMandel = &
|
|
|
|
|
reshape((/&
|
|
|
|
|
1,1, &
|
|
|
|
|
2,2, &
|
|
|
|
|
3,3, &
|
|
|
|
|
1,2, &
|
|
|
|
|
2,3, &
|
|
|
|
|
1,3 &
|
|
|
|
|
/),(/2,6/))
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(6), parameter :: nrmMandel = &
|
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal/)
|
|
|
|
|
real(pReal), dimension(6), parameter :: invnrmMandel = &
|
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal,0.7071067811865476_pReal/)
|
|
|
|
|
|
|
|
|
|
! *** Voigt notation ***
|
|
|
|
|
integer(pInt), dimension (2,6), parameter :: mapVoigt = &
|
|
|
|
|
reshape((/&
|
|
|
|
|
1,1, &
|
|
|
|
|
2,2, &
|
|
|
|
|
3,3, &
|
|
|
|
|
2,3, &
|
|
|
|
|
1,3, &
|
|
|
|
|
1,2 &
|
|
|
|
|
/),(/2,6/))
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(6), parameter :: nrmVoigt = &
|
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal/)
|
|
|
|
|
real(pReal), dimension(6), parameter :: invnrmVoigt = &
|
|
|
|
|
(/1.0_pReal,1.0_pReal,1.0_pReal, 1.0_pReal, 1.0_pReal, 1.0_pReal/)
|
|
|
|
|
|
|
|
|
|
! *** Plain notation ***
|
|
|
|
|
integer(pInt), dimension (2,9), parameter :: mapPlain = &
|
|
|
|
|
reshape((/&
|
|
|
|
|
1,1, &
|
|
|
|
|
1,2, &
|
|
|
|
|
1,3, &
|
|
|
|
|
2,1, &
|
|
|
|
|
2,2, &
|
|
|
|
|
2,3, &
|
|
|
|
|
3,1, &
|
|
|
|
|
3,2, &
|
|
|
|
|
3,3 &
|
|
|
|
|
/),(/2,9/))
|
|
|
|
|
|
2007-03-28 13:50:50 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
|
! Symmetry operations as quaternions
|
|
|
|
|
! 24 for cubic, 12 for hexagonal = 36
|
2010-04-28 22:49:58 +05:30
|
|
|
|
integer(pInt), dimension(2), parameter :: math_NsymOperations = (/24,12/)
|
|
|
|
|
real(pReal), dimension(4,36), parameter :: math_symOperations = &
|
2009-12-14 16:32:10 +05:30
|
|
|
|
reshape((/&
|
2010-03-18 17:53:17 +05:30
|
|
|
|
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! cubic symmetry operations
|
|
|
|
|
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, & ! 2-fold symmetry
|
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
|
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, &
|
|
|
|
|
0.0_pReal, -0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
|
0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
|
0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, & ! 3-fold symmetry
|
|
|
|
|
-0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
|
0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
|
-0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
|
|
|
|
|
0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
|
|
|
|
-0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
|
|
|
|
|
0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
|
|
|
|
-0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
|
|
|
|
|
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, & ! 4-fold symmetry
|
|
|
|
|
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, &
|
|
|
|
|
-0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, &
|
|
|
|
|
0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
|
|
|
|
-0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
|
|
|
|
|
0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
|
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal, &
|
|
|
|
|
-0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
|
|
|
|
|
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! hexagonal symmetry operations
|
|
|
|
|
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, & ! 2-fold symmetry
|
|
|
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
|
2010-04-12 13:34:26 +05:30
|
|
|
|
0.0_pReal, 0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
|
|
|
|
|
0.0_pReal, -0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
|
|
|
|
|
0.0_pReal, 0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
|
|
|
|
|
0.0_pReal, -0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
|
2010-03-18 17:53:17 +05:30
|
|
|
|
0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, & ! 6-fold symmetry
|
|
|
|
|
-0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, &
|
|
|
|
|
0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
|
|
|
|
|
-0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
|
|
|
|
|
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal &
|
|
|
|
|
/),(/4,36/))
|
2009-01-26 18:28:58 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
CONTAINS
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! initialization of module
|
|
|
|
|
!**************************************************************************
|
2007-03-28 12:51:47 +05:30
|
|
|
|
SUBROUTINE math_init ()
|
|
|
|
|
|
2011-02-25 18:11:46 +05:30
|
|
|
|
use prec, only: pReal,pInt,tol_math_check
|
2009-08-27 21:00:40 +05:30
|
|
|
|
use numerics, only: fixedSeed
|
2010-05-06 19:37:21 +05:30
|
|
|
|
use IO, only: IO_error
|
2011-03-21 16:01:17 +05:30
|
|
|
|
use debug, only: debug_verbosity
|
2007-03-28 12:51:47 +05:30
|
|
|
|
implicit none
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
real(pReal), dimension(3,3) :: R,R2
|
2010-05-04 18:33:35 +05:30
|
|
|
|
real(pReal), dimension(3) :: Eulers
|
2010-05-06 19:37:21 +05:30
|
|
|
|
real(pReal), dimension(4) :: q,q2,axisangle
|
2011-01-21 00:55:45 +05:30
|
|
|
|
real(pReal), dimension(2) :: rnd
|
|
|
|
|
integer(pInt), dimension(1) :: randInit
|
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
|
!$OMP CRITICAL (write2out)
|
2009-08-31 20:39:15 +05:30
|
|
|
|
write(6,*)
|
|
|
|
|
write(6,*) '<<<+- math init -+>>>'
|
|
|
|
|
write(6,*) '$Id$'
|
|
|
|
|
write(6,*)
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
|
!$OMP END CRITICAL (write2out)
|
2009-08-31 20:39:15 +05:30
|
|
|
|
|
2009-08-27 21:00:40 +05:30
|
|
|
|
if (fixedSeed > 0_pInt) then
|
|
|
|
|
randInit = fixedSeed
|
|
|
|
|
call random_seed(put=randInit)
|
|
|
|
|
else
|
|
|
|
|
call random_seed()
|
|
|
|
|
endif
|
|
|
|
|
|
2011-01-21 00:55:45 +05:30
|
|
|
|
call random_seed(get=randInit)
|
2011-03-21 16:01:17 +05:30
|
|
|
|
if (debug_verbosity > 0) then
|
|
|
|
|
!$OMP CRITICAL (write2out)
|
|
|
|
|
write(6,*) 'random seed: ',randInit(1)
|
|
|
|
|
write(6,*)
|
|
|
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
|
endif
|
|
|
|
|
|
2011-01-21 00:55:45 +05:30
|
|
|
|
call halton_seed_set(randInit(1))
|
2007-03-28 12:51:47 +05:30
|
|
|
|
call halton_ndim_set(3)
|
2010-05-04 18:33:35 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! --- check rotation dictionary ---
|
|
|
|
|
|
|
|
|
|
! +++ q -> a -> q +++
|
|
|
|
|
q = math_qRnd();
|
|
|
|
|
axisangle = math_QuaternionToAxisAngle(q);
|
|
|
|
|
q2 = math_AxisAngleToQuaternion(axisangle(1:3),axisangle(4))
|
2011-02-25 18:11:46 +05:30
|
|
|
|
if ( any(abs( q-q2) > tol_math_check ) .and. &
|
|
|
|
|
any(abs(-q-q2) > tol_math_check ) ) &
|
2010-05-06 19:37:21 +05:30
|
|
|
|
call IO_error(670)
|
|
|
|
|
|
|
|
|
|
! +++ q -> R -> q +++
|
|
|
|
|
R = math_QuaternionToR(q);
|
|
|
|
|
q2 = math_RToQuaternion(R)
|
2011-02-25 18:11:46 +05:30
|
|
|
|
if ( any(abs( q-q2) > tol_math_check ) .and. &
|
|
|
|
|
any(abs(-q-q2) > tol_math_check ) ) &
|
2010-05-06 19:37:21 +05:30
|
|
|
|
call IO_error(671)
|
|
|
|
|
|
|
|
|
|
! +++ q -> euler -> q +++
|
|
|
|
|
Eulers = math_QuaternionToEuler(q);
|
|
|
|
|
q2 = math_EulerToQuaternion(Eulers)
|
2011-02-25 18:11:46 +05:30
|
|
|
|
if ( any(abs( q-q2) > tol_math_check ) .and. &
|
|
|
|
|
any(abs(-q-q2) > tol_math_check ) ) &
|
2010-05-06 19:37:21 +05:30
|
|
|
|
call IO_error(672)
|
|
|
|
|
|
|
|
|
|
! +++ R -> euler -> R +++
|
|
|
|
|
Eulers = math_RToEuler(R);
|
|
|
|
|
R2 = math_EulerToR(Eulers)
|
2011-02-25 18:11:46 +05:30
|
|
|
|
if ( any(abs( R-R2) > tol_math_check ) ) &
|
2010-05-06 19:37:21 +05:30
|
|
|
|
call IO_error(673)
|
|
|
|
|
|
2010-05-04 18:24:13 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
2009-01-26 18:28:58 +05:30
|
|
|
|
|
|
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! Quicksort algorithm for two-dimensional integer arrays
|
|
|
|
|
!
|
|
|
|
|
! Sorting is done with respect to array(1,:)
|
|
|
|
|
! and keeps array(2:N,:) linked to it.
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
RECURSIVE SUBROUTINE qsort(a, istart, iend)
|
|
|
|
|
|
|
|
|
|
implicit none
|
2007-04-04 14:19:48 +05:30
|
|
|
|
integer(pInt), dimension(:,:) :: a
|
2007-04-03 13:47:58 +05:30
|
|
|
|
integer(pInt) :: istart,iend,ipivot
|
|
|
|
|
|
|
|
|
|
if (istart < iend) then
|
|
|
|
|
ipivot = math_partition(a,istart, iend)
|
2007-04-04 14:19:48 +05:30
|
|
|
|
call qsort(a, istart, ipivot-1)
|
2007-04-03 13:47:58 +05:30
|
|
|
|
call qsort(a, ipivot+1, iend)
|
|
|
|
|
endif
|
|
|
|
|
return
|
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-04-03 13:47:58 +05:30
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! Partitioning required for quicksort
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
integer(pInt) function math_partition(a, istart, iend)
|
2007-04-03 13:47:58 +05:30
|
|
|
|
|
|
|
|
|
implicit none
|
2007-04-04 14:19:48 +05:30
|
|
|
|
integer(pInt), dimension(:,:) :: a
|
2007-04-03 13:47:58 +05:30
|
|
|
|
integer(pInt) :: istart,iend,d,i,j,k,x,tmp
|
|
|
|
|
|
|
|
|
|
d = size(a,1) ! number of linked data
|
2008-02-15 18:12:27 +05:30
|
|
|
|
! set the starting and ending points, and the pivot point
|
|
|
|
|
|
|
|
|
|
i = istart
|
|
|
|
|
|
2007-04-04 14:19:48 +05:30
|
|
|
|
j = iend
|
2007-04-03 13:47:58 +05:30
|
|
|
|
x = a(1,istart)
|
|
|
|
|
do
|
|
|
|
|
! find the first element on the right side less than or equal to the pivot point
|
|
|
|
|
do j = j, istart, -1
|
|
|
|
|
if (a(1,j) <= x) exit
|
|
|
|
|
enddo
|
|
|
|
|
! find the first element on the left side greater than the pivot point
|
|
|
|
|
do i = i, iend
|
|
|
|
|
if (a(1,i) > x) exit
|
|
|
|
|
enddo
|
|
|
|
|
if (i < j ) then ! if the indexes do not cross, exchange values
|
|
|
|
|
do k = 1,d
|
|
|
|
|
tmp = a(k,i)
|
|
|
|
|
a(k,i) = a(k,j)
|
|
|
|
|
a(k,j) = tmp
|
|
|
|
|
enddo
|
2007-12-14 19:06:04 +05:30
|
|
|
|
else ! if they do cross, exchange left value with pivot and return with the partition index
|
2007-04-03 13:47:58 +05:30
|
|
|
|
do k = 1,d
|
|
|
|
|
tmp = a(k,istart)
|
|
|
|
|
a(k,istart) = a(k,j)
|
|
|
|
|
a(k,j) = tmp
|
|
|
|
|
enddo
|
2007-04-04 14:19:48 +05:30
|
|
|
|
math_partition = j
|
2007-04-03 13:47:58 +05:30
|
|
|
|
return
|
|
|
|
|
endif
|
|
|
|
|
enddo
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
|
|
2009-03-04 17:18:54 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! range of integers starting at one
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_range(N)
|
2009-03-04 17:18:54 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: N
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
integer(pInt), dimension(N) :: math_range
|
|
|
|
|
|
|
|
|
|
forall (i=1:N) math_range(i) = i
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2009-03-04 17:18:54 +05:30
|
|
|
|
|
2007-04-03 13:47:58 +05:30
|
|
|
|
!**************************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
|
! second rank identity tensor of specified dimension
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_identity2nd(dimen)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
|
integer(pInt), intent(in) :: dimen
|
|
|
|
|
integer(pInt) i
|
2007-04-11 15:34:22 +05:30
|
|
|
|
real(pReal), dimension(dimen,dimen) :: math_identity2nd
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
math_identity2nd = 0.0_pReal
|
|
|
|
|
forall (i=1:dimen) math_identity2nd(i,i) = 1.0_pReal
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
2008-03-26 19:05:01 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! permutation tensor e_ijk used for computing cross product of two tensors
|
|
|
|
|
! e_ijk = 1 if even permutation of ijk
|
|
|
|
|
! e_ijk = -1 if odd permutation of ijk
|
|
|
|
|
! e_ijk = 0 otherwise
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_civita(i,j,k) ! change its name from math_permut
|
2009-07-31 17:32:20 +05:30
|
|
|
|
! to math_civita <<<updated 31.07.2009>>>
|
2008-03-26 19:05:01 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
|
integer(pInt), intent(in) :: i,j,k
|
2009-07-31 17:32:20 +05:30
|
|
|
|
real(pReal) math_civita
|
2008-03-26 19:05:01 +05:30
|
|
|
|
|
2009-07-31 17:32:20 +05:30
|
|
|
|
math_civita = 0.0_pReal
|
2008-03-26 19:05:01 +05:30
|
|
|
|
if (((i == 1).and.(j == 2).and.(k == 3)) .or. &
|
|
|
|
|
((i == 2).and.(j == 3).and.(k == 1)) .or. &
|
2009-07-31 17:32:20 +05:30
|
|
|
|
((i == 3).and.(j == 1).and.(k == 2))) math_civita = 1.0_pReal
|
2008-03-26 19:05:01 +05:30
|
|
|
|
if (((i == 1).and.(j == 3).and.(k == 2)) .or. &
|
|
|
|
|
((i == 2).and.(j == 1).and.(k == 3)) .or. &
|
2009-07-31 17:32:20 +05:30
|
|
|
|
((i == 3).and.(j == 2).and.(k == 1))) math_civita = -1.0_pReal
|
2008-03-27 17:24:34 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-03-27 17:24:34 +05:30
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! kronecker delta function d_ij
|
|
|
|
|
! d_ij = 1 if i = j
|
|
|
|
|
! d_ij = 0 otherwise
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_delta(i,j)
|
2008-03-27 17:24:34 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
|
integer(pInt), intent (in) :: i,j
|
2008-03-27 17:24:34 +05:30
|
|
|
|
real(pReal) math_delta
|
|
|
|
|
|
|
|
|
|
math_delta = 0.0_pReal
|
|
|
|
|
if (i == j) math_delta = 1.0_pReal
|
|
|
|
|
|
2008-03-26 19:05:01 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! fourth rank identity tensor of specified dimension
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_identity4th(dimen)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
|
integer(pInt), intent(in) :: dimen
|
|
|
|
|
integer(pInt) i,j,k,l
|
2007-04-11 15:34:22 +05:30
|
|
|
|
real(pReal), dimension(dimen,dimen,dimen,dimen) :: math_identity4th
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
forall (i=1:dimen,j=1:dimen,k=1:dimen,l=1:dimen) math_identity4th(i,j,k,l) = &
|
2010-09-22 17:34:43 +05:30
|
|
|
|
0.5_pReal*(math_I3(i,k)*math_I3(j,k)+math_I3(i,l)*math_I3(j,k))
|
2007-03-29 21:02:52 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! vector product a x b
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_vectorproduct(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
|
|
|
real(pReal), dimension(3) :: math_vectorproduct
|
|
|
|
|
|
|
|
|
|
math_vectorproduct(1) = A(2)*B(3)-A(3)*B(2)
|
|
|
|
|
math_vectorproduct(2) = A(3)*B(1)-A(1)*B(3)
|
|
|
|
|
math_vectorproduct(3) = A(1)*B(2)-A(2)*B(1)
|
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
2009-03-17 20:43:17 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! tensor product a \otimes b
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_tensorproduct(A,B)
|
2009-03-17 20:43:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
|
|
|
|
real(pReal), dimension(3,3) :: math_tensorproduct
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
|
|
|
|
|
forall (i=1:3,j=1:3) math_tensorproduct(i,j) = A(i)*B(j)
|
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2009-03-17 20:43:17 +05:30
|
|
|
|
|
|
|
|
|
|
2009-03-05 20:07:59 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! matrix multiplication 3x3 = 1
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_mul3x3(A,B)
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: A,B
|
2010-09-30 15:02:49 +05:30
|
|
|
|
real(pReal), dimension(3) :: C
|
2009-03-05 20:07:59 +05:30
|
|
|
|
real(pReal) math_mul3x3
|
|
|
|
|
|
|
|
|
|
forall (i=1:3) C(i) = A(i)*B(i)
|
|
|
|
|
math_mul3x3 = sum(C)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
2009-03-05 20:07:59 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! matrix multiplication 6x6 = 1
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_mul6x6(A,B)
|
2009-03-05 20:07:59 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
real(pReal), dimension(6), intent(in) :: A,B
|
2010-09-30 15:02:49 +05:30
|
|
|
|
real(pReal), dimension(6) :: C
|
2009-03-05 20:07:59 +05:30
|
|
|
|
real(pReal) math_mul6x6
|
|
|
|
|
|
|
|
|
|
forall (i=1:6) C(i) = A(i)*B(i)
|
|
|
|
|
math_mul6x6 = sum(C)
|
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
2010-09-30 15:02:49 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! matrix multiplication 33x33 = 1 (double contraction --> ij * ij)
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
pure function math_mul33xx33(A,B)
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
|
|
|
|
real(pReal), dimension(3,3) :: C
|
|
|
|
|
real(pReal) math_mul33xx33
|
|
|
|
|
|
|
|
|
|
forall (i=1:3,j=1:3) C(i,j) = A(i,j) * B(i,j)
|
|
|
|
|
math_mul33xx33 = sum(C)
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
2010-10-13 21:34:44 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! matrix multiplication 3333x33 = 33 (double contraction --> ijkl *kl = ij)
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
pure function math_mul3333xx33(A,B)
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: A
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: B
|
|
|
|
|
real(pReal), dimension(3,3) :: C,math_mul3333xx33
|
|
|
|
|
|
|
|
|
|
do i = 1,3
|
|
|
|
|
do j = 1,3
|
|
|
|
|
math_mul3333xx33(i,j) = sum(A(i,j,:,:)*B(:,:))
|
|
|
|
|
enddo; enddo
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
2010-09-30 15:02:49 +05:30
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
|
!**************************************************************************
|
2009-03-05 20:07:59 +05:30
|
|
|
|
! matrix multiplication 33x33 = 3x3
|
2010-09-30 14:16:58 +05:30
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_mul33x33(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: A,B
|
|
|
|
|
real(pReal), dimension(3,3) :: math_mul33x33
|
|
|
|
|
|
|
|
|
|
forall (i=1:3,j=1:3) math_mul33x33(i,j) = &
|
|
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
|
!**************************************************************************
|
2009-03-05 20:07:59 +05:30
|
|
|
|
! matrix multiplication 66x66 = 6x6
|
2008-07-09 01:08:22 +05:30
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_mul66x66(A,B)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i,j
|
2009-01-20 00:40:58 +05:30
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: A,B
|
|
|
|
|
real(pReal), dimension(6,6) :: math_mul66x66
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
|
|
|
|
forall (i=1:6,j=1:6) math_mul66x66(i,j) = &
|
|
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
|
|
|
|
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! matrix multiplication 99x99 = 9x9
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_mul99x99(A,B)
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
real(pReal), dimension(9,9), intent(in) :: A,B
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(9,9) :: math_mul99x99
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
forall (i=1:9,j=1:9) math_mul99x99(i,j) = &
|
|
|
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
|
|
|
|
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) + &
|
|
|
|
|
A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! matrix multiplication 33x3 = 3
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_mul33x3(A,B)
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: A
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: B
|
|
|
|
|
real(pReal), dimension(3) :: math_mul33x3
|
|
|
|
|
|
|
|
|
|
forall (i=1:3) math_mul33x3(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3)
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-09-22 17:34:43 +05:30
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! matrix multiplication complex(33) x real(3) = complex(3)
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
pure function math_mul33x3_complex(A,B)
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
complex(pReal), dimension(3,3), intent(in) :: A
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: B
|
|
|
|
|
complex(pReal), dimension(3) :: math_mul33x3_complex
|
|
|
|
|
|
|
|
|
|
forall (i=1:3) math_mul33x3_complex(i) = A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3)
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
endfunction
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
|
!**************************************************************************
|
2009-03-05 20:07:59 +05:30
|
|
|
|
! matrix multiplication 66x6 = 6
|
2009-01-20 00:40:58 +05:30
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_mul66x6(A,B)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: A
|
|
|
|
|
real(pReal), dimension(6), intent(in) :: B
|
|
|
|
|
real(pReal), dimension(6) :: math_mul66x6
|
|
|
|
|
|
|
|
|
|
forall (i=1:6) math_mul66x6(i) = &
|
|
|
|
|
A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) + &
|
|
|
|
|
A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! random quaternion
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
function math_qRnd()
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4) :: math_qRnd
|
|
|
|
|
real(pReal), dimension(3) :: rnd
|
|
|
|
|
|
|
|
|
|
call halton(3,rnd)
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_qRnd(1) = cos(2.0_pReal*pi*rnd(1))*sqrt(rnd(3))
|
|
|
|
|
math_qRnd(2) = sin(2.0_pReal*pi*rnd(2))*sqrt(1.0_pReal-rnd(3))
|
|
|
|
|
math_qRnd(3) = cos(2.0_pReal*pi*rnd(2))*sqrt(1.0_pReal-rnd(3))
|
|
|
|
|
math_qRnd(4) = sin(2.0_pReal*pi*rnd(1))*sqrt(rnd(3))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
endfunction
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! quaternion multiplication q1xq2 = q12
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_qMul(A,B)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: A, B
|
|
|
|
|
real(pReal), dimension(4) :: math_qMul
|
|
|
|
|
|
|
|
|
|
math_qMul(1) = A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4)
|
|
|
|
|
math_qMul(2) = A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3)
|
|
|
|
|
math_qMul(3) = A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2)
|
|
|
|
|
math_qMul(4) = A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1)
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! quaternion dotproduct
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_qDot(A,B)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: A, B
|
|
|
|
|
real(pReal) math_qDot
|
|
|
|
|
|
|
|
|
|
math_qDot = A(1)*B(1) + A(2)*B(2) + A(3)*B(3) + A(4)*B(4)
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! quaternion conjugation
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_qConj(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
|
real(pReal), dimension(4) :: math_qConj
|
|
|
|
|
|
|
|
|
|
math_qConj(1) = Q(1)
|
|
|
|
|
math_qConj(2:4) = -Q(2:4)
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! quaternion norm
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_qNorm(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
|
real(pReal) math_qNorm
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_qNorm = sqrt(max(0.0_pReal, Q(1)*Q(1) + Q(2)*Q(2) + Q(3)*Q(3) + Q(4)*Q(4)))
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! quaternion inversion
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_qInv(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
|
real(pReal), dimension(4) :: math_qInv
|
|
|
|
|
real(pReal) squareNorm
|
|
|
|
|
|
|
|
|
|
math_qInv = 0.0_pReal
|
|
|
|
|
|
|
|
|
|
squareNorm = math_qDot(Q,Q)
|
|
|
|
|
if (squareNorm > tiny(squareNorm)) &
|
|
|
|
|
math_qInv = math_qConj(Q) / squareNorm
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
2010-09-30 14:16:58 +05:30
|
|
|
|
! action of a quaternion on a vector (rotate vector v with Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_qRot(Q,v)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: v
|
|
|
|
|
real(pReal), dimension(3) :: math_qRot
|
|
|
|
|
real(pReal), dimension(4,4) :: T
|
|
|
|
|
integer(pInt) i, j
|
|
|
|
|
|
|
|
|
|
do i = 1,4
|
|
|
|
|
do j = 1,i
|
|
|
|
|
T(i,j) = Q(i) * Q(j)
|
|
|
|
|
enddo
|
|
|
|
|
enddo
|
|
|
|
|
|
|
|
|
|
math_qRot(1) = -v(1)*(T(3,3)+T(4,4)) + v(2)*(T(3,2)-T(4,1)) + v(3)*(T(4,2)+T(3,1))
|
|
|
|
|
math_qRot(2) = v(1)*(T(3,2)+T(4,1)) - v(2)*(T(2,2)+T(4,4)) + v(3)*(T(4,3)-T(2,1))
|
|
|
|
|
math_qRot(3) = v(1)*(T(4,2)-T(3,1)) + v(2)*(T(4,3)+T(2,1)) - v(3)*(T(2,2)+T(3,3))
|
|
|
|
|
|
|
|
|
|
math_qRot = 2.0_pReal * math_qRot + v
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
2008-07-09 01:08:22 +05:30
|
|
|
|
!**************************************************************************
|
2009-08-11 22:01:57 +05:30
|
|
|
|
! transposition of a 3x3 matrix
|
2008-07-09 01:08:22 +05:30
|
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
|
pure function math_transpose3x3(A)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
use prec, only: pReal,pInt
|
2008-07-09 01:08:22 +05:30
|
|
|
|
implicit none
|
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
|
|
|
real(pReal),dimension(3,3) :: math_transpose3x3
|
2009-08-12 16:52:02 +05:30
|
|
|
|
integer(pInt) i,j
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
2009-08-12 16:52:02 +05:30
|
|
|
|
forall(i=1:3, j=1:3) math_transpose3x3(i,j) = A(j,i)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
return
|
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
endfunction
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
2009-03-31 13:01:38 +05:30
|
|
|
|
! Cramer inversion of 3x3 matrix (function)
|
|
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
|
pure function math_inv3x3(A)
|
2009-03-31 13:01:38 +05:30
|
|
|
|
|
|
|
|
|
! direct Cramer inversion of matrix A.
|
|
|
|
|
! returns all zeroes if not possible, i.e. if det close to zero
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
|
|
|
real(pReal) DetA
|
|
|
|
|
|
2009-03-31 14:21:14 +05:30
|
|
|
|
real(pReal),dimension(3,3) :: math_inv3x3
|
|
|
|
|
|
|
|
|
|
math_inv3x3 = 0.0_pReal
|
2009-03-31 13:01:38 +05:30
|
|
|
|
|
|
|
|
|
DetA = A(1,1) * ( A(2,2) * A(3,3) - A(2,3) * A(3,2) )&
|
|
|
|
|
- A(1,2) * ( A(2,1) * A(3,3) - A(2,3) * A(3,1) )&
|
|
|
|
|
+ A(1,3) * ( A(2,1) * A(3,2) - A(2,2) * A(3,1) )
|
|
|
|
|
|
|
|
|
|
if (DetA > tiny(DetA)) then
|
|
|
|
|
math_inv3x3(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2) ) / DetA
|
|
|
|
|
math_inv3x3(2,1) = ( -A(2,1) * A(3,3) + A(2,3) * A(3,1) ) / DetA
|
|
|
|
|
math_inv3x3(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1) ) / DetA
|
|
|
|
|
|
|
|
|
|
math_inv3x3(1,2) = ( -A(1,2) * A(3,3) + A(1,3) * A(3,2) ) / DetA
|
|
|
|
|
math_inv3x3(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1) ) / DetA
|
|
|
|
|
math_inv3x3(3,2) = ( -A(1,1) * A(3,2) + A(1,2) * A(3,1) ) / DetA
|
|
|
|
|
|
|
|
|
|
math_inv3x3(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2) ) / DetA
|
|
|
|
|
math_inv3x3(2,3) = ( -A(1,1) * A(2,3) + A(1,3) * A(2,1) ) / DetA
|
|
|
|
|
math_inv3x3(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1) ) / DetA
|
|
|
|
|
endif
|
|
|
|
|
return
|
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
endfunction
|
2009-03-31 13:01:38 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! Cramer inversion of 3x3 matrix (subroutine)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
|
PURE SUBROUTINE math_invert3x3(A, InvA, DetA, error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
! Bestimmung der Determinanten und Inversen einer 3x3-Matrix
|
|
|
|
|
! A = Matrix A
|
|
|
|
|
! InvA = Inverse of A
|
|
|
|
|
! DetA = Determinant of A
|
2007-04-11 15:34:22 +05:30
|
|
|
|
! error = logical
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
logical, intent(out) :: error
|
|
|
|
|
|
2007-04-11 15:34:22 +05:30
|
|
|
|
real(pReal),dimension(3,3),intent(in) :: A
|
|
|
|
|
real(pReal),dimension(3,3),intent(out) :: InvA
|
|
|
|
|
real(pReal), intent(out) :: DetA
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
DetA = A(1,1) * ( A(2,2) * A(3,3) - A(2,3) * A(3,2) )&
|
|
|
|
|
- A(1,2) * ( A(2,1) * A(3,3) - A(2,3) * A(3,1) )&
|
|
|
|
|
+ A(1,3) * ( A(2,1) * A(3,2) - A(2,2) * A(3,1) )
|
|
|
|
|
|
|
|
|
|
if (DetA <= tiny(DetA)) then
|
|
|
|
|
error = .true.
|
2007-04-11 15:34:22 +05:30
|
|
|
|
else
|
2008-02-15 18:12:27 +05:30
|
|
|
|
InvA(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2) ) / DetA
|
|
|
|
|
InvA(2,1) = ( -A(2,1) * A(3,3) + A(2,3) * A(3,1) ) / DetA
|
|
|
|
|
InvA(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1) ) / DetA
|
|
|
|
|
|
|
|
|
|
InvA(1,2) = ( -A(1,2) * A(3,3) + A(1,3) * A(3,2) ) / DetA
|
|
|
|
|
InvA(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1) ) / DetA
|
|
|
|
|
InvA(3,2) = ( -A(1,1) * A(3,2) + A(1,2) * A(3,1) ) / DetA
|
|
|
|
|
|
|
|
|
|
InvA(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2) ) / DetA
|
|
|
|
|
InvA(2,3) = ( -A(1,1) * A(2,3) + A(1,3) * A(2,1) ) / DetA
|
2007-04-11 15:34:22 +05:30
|
|
|
|
InvA(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1) ) / DetA
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
|
error = .false.
|
2007-04-11 15:34:22 +05:30
|
|
|
|
endif
|
|
|
|
|
return
|
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
|
|
|
|
! Gauss elimination to invert 6x6 matrix
|
|
|
|
|
!**************************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
|
PURE SUBROUTINE math_invert(dimen,A, InvA, AnzNegEW, error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
! Invertieren einer dimen x dimen - Matrix
|
|
|
|
|
! A = Matrix A
|
|
|
|
|
! InvA = Inverse von A
|
|
|
|
|
! AnzNegEW = Anzahl der negativen Eigenwerte von A
|
|
|
|
|
! error = logical
|
|
|
|
|
! = false: Inversion wurde durchgefuehrt.
|
|
|
|
|
! = true: Die Inversion in SymGauss wurde wegen eines verschwindenen
|
|
|
|
|
! Pivotelement abgebrochen.
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
integer(pInt), intent(in) :: dimen
|
|
|
|
|
real(pReal),dimension(dimen,dimen), intent(in) :: A
|
|
|
|
|
real(pReal),dimension(dimen,dimen), intent(out) :: InvA
|
2007-04-11 15:34:22 +05:30
|
|
|
|
integer(pInt), intent(out) :: AnzNegEW
|
2008-02-15 18:12:27 +05:30
|
|
|
|
logical, intent(out) :: error
|
|
|
|
|
real(pReal) LogAbsDetA
|
|
|
|
|
real(pReal),dimension(dimen,dimen) :: B
|
|
|
|
|
|
|
|
|
|
InvA = math_identity2nd(dimen)
|
|
|
|
|
B = A
|
|
|
|
|
CALL Gauss(dimen,B,InvA,LogAbsDetA,AnzNegEW,error)
|
|
|
|
|
RETURN
|
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE math_invert
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
|
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
2009-12-14 16:32:10 +05:30
|
|
|
|
PURE SUBROUTINE Gauss (dimen,A,B,LogAbsDetA,NegHDK,error)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
! Loesung eines linearen Gleichungsssystem A * X = B mit Hilfe des
|
|
|
|
|
! GAUSS-Algorithmus
|
|
|
|
|
! Zur numerischen Stabilisierung wird eine Zeilen- und Spaltenpivotsuche
|
|
|
|
|
! durchgefuehrt.
|
|
|
|
|
|
|
|
|
|
! Eingabeparameter:
|
|
|
|
|
!
|
|
|
|
|
! A(dimen,dimen) = Koeffizientenmatrix A
|
|
|
|
|
! B(dimen,dimen) = rechte Seiten B
|
|
|
|
|
!
|
|
|
|
|
! Ausgabeparameter:
|
|
|
|
|
!
|
|
|
|
|
! B(dimen,dimen) = Matrix der Unbekanntenvektoren X
|
|
|
|
|
! LogAbsDetA = 10-Logarithmus des Betrages der Determinanten von A
|
|
|
|
|
! NegHDK = Anzahl der negativen Hauptdiagonalkoeffizienten nach der
|
|
|
|
|
! Vorwaertszerlegung
|
|
|
|
|
! error = logical
|
|
|
|
|
! = false: Das Gleichungssystem wurde geloest.
|
|
|
|
|
! = true : Matrix A ist singulaer.
|
|
|
|
|
|
|
|
|
|
! A und B werden veraendert!
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
logical error
|
|
|
|
|
integer (pInt) dimen,NegHDK
|
|
|
|
|
real(pReal) LogAbsDetA
|
|
|
|
|
real(pReal) A(dimen,dimen), B(dimen,dimen)
|
|
|
|
|
|
|
|
|
|
INTENT (IN) dimen
|
|
|
|
|
INTENT (OUT) LogAbsDetA, NegHDK, error
|
|
|
|
|
INTENT (INOUT) A, B
|
|
|
|
|
|
|
|
|
|
LOGICAL SortX
|
|
|
|
|
integer (pInt) PivotZeile, PivotSpalte, StoreI, I, IP1, J, K, L
|
|
|
|
|
integer (pInt) XNr(dimen)
|
|
|
|
|
real(pReal) AbsA, PivotWert, EpsAbs, Quote
|
|
|
|
|
real(pReal) StoreA(dimen), StoreB(dimen)
|
|
|
|
|
|
|
|
|
|
error = .true.
|
|
|
|
|
NegHDK = 1
|
|
|
|
|
SortX = .FALSE.
|
|
|
|
|
|
|
|
|
|
! Unbekanntennumerierung
|
|
|
|
|
|
|
|
|
|
DO I = 1, dimen
|
|
|
|
|
XNr(I) = I
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
! Genauigkeitsschranke und Bestimmung des groessten Pivotelementes
|
|
|
|
|
|
|
|
|
|
PivotWert = ABS(A(1,1))
|
|
|
|
|
PivotZeile = 1
|
|
|
|
|
PivotSpalte = 1
|
|
|
|
|
|
|
|
|
|
DO I = 1, dimen
|
|
|
|
|
DO J = 1, dimen
|
|
|
|
|
AbsA = ABS(A(I,J))
|
|
|
|
|
IF (AbsA .GT. PivotWert) THEN
|
|
|
|
|
PivotWert = AbsA
|
|
|
|
|
PivotZeile = I
|
|
|
|
|
PivotSpalte = J
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDIF
|
|
|
|
|
ENDDO
|
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
IF (PivotWert .LT. 0.0000001) RETURN ! Pivotelement = 0?
|
|
|
|
|
|
|
|
|
|
EpsAbs = PivotWert * 0.1_pReal ** PRECISION(1.0_pReal)
|
|
|
|
|
|
|
|
|
|
! V O R W A E R T S T R I A N G U L A T I O N
|
|
|
|
|
|
|
|
|
|
DO I = 1, dimen - 1
|
|
|
|
|
! Zeilentausch?
|
|
|
|
|
IF (PivotZeile .NE. I) THEN
|
|
|
|
|
StoreA(I:dimen) = A(I,I:dimen)
|
|
|
|
|
A(I,I:dimen) = A(PivotZeile,I:dimen)
|
|
|
|
|
A(PivotZeile,I:dimen) = StoreA(I:dimen)
|
|
|
|
|
StoreB(1:dimen) = B(I,1:dimen)
|
|
|
|
|
B(I,1:dimen) = B(PivotZeile,1:dimen)
|
|
|
|
|
B(PivotZeile,1:dimen) = StoreB(1:dimen)
|
|
|
|
|
SortX = .TRUE.
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
|
! Spaltentausch?
|
|
|
|
|
IF (PivotSpalte .NE. I) THEN
|
|
|
|
|
StoreA(1:dimen) = A(1:dimen,I)
|
|
|
|
|
A(1:dimen,I) = A(1:dimen,PivotSpalte)
|
|
|
|
|
A(1:dimen,PivotSpalte) = StoreA(1:dimen)
|
|
|
|
|
StoreI = XNr(I)
|
|
|
|
|
XNr(I) = XNr(PivotSpalte)
|
|
|
|
|
XNr(PivotSpalte) = StoreI
|
|
|
|
|
SortX = .TRUE.
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
|
! Triangulation
|
|
|
|
|
DO J = I + 1, dimen
|
|
|
|
|
Quote = A(J,I) / A(I,I)
|
|
|
|
|
DO K = I + 1, dimen
|
|
|
|
|
A(J,K) = A(J,K) - Quote * A(I,K)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
DO K = 1, dimen
|
|
|
|
|
B(J,K) = B(J,K) - Quote * B(I,K)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDDO
|
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
! Bestimmung des groessten Pivotelementes
|
|
|
|
|
IP1 = I + 1
|
|
|
|
|
PivotWert = ABS(A(IP1,IP1))
|
|
|
|
|
PivotZeile = IP1
|
|
|
|
|
PivotSpalte = IP1
|
|
|
|
|
DO J = IP1, dimen
|
|
|
|
|
DO K = IP1, dimen
|
|
|
|
|
AbsA = ABS(A(J,K))
|
|
|
|
|
IF (AbsA .GT. PivotWert) THEN
|
|
|
|
|
PivotWert = AbsA
|
|
|
|
|
PivotZeile = J
|
|
|
|
|
PivotSpalte = K
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDIF
|
|
|
|
|
ENDDO
|
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
IF (PivotWert .LT. EpsAbs) RETURN ! Pivotelement = 0?
|
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
! R U E C K W A E R T S A U F L O E S U N G
|
|
|
|
|
|
|
|
|
|
DO I = dimen, 1, -1
|
|
|
|
|
DO L = 1, dimen
|
|
|
|
|
DO J = I + 1, dimen
|
|
|
|
|
B(I,L) = B(I,L) - A(I,J) * B(J,L)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
B(I,L) = B(I,L) / A(I,I)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDDO
|
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
! Sortieren der Unbekanntenvektoren?
|
|
|
|
|
|
|
|
|
|
IF (SortX) THEN
|
|
|
|
|
DO L = 1, dimen
|
|
|
|
|
StoreA(1:dimen) = B(1:dimen,L)
|
|
|
|
|
DO I = 1, dimen
|
|
|
|
|
J = XNr(I)
|
|
|
|
|
B(J,L) = StoreA(I)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDDO
|
|
|
|
|
ENDDO
|
|
|
|
|
ENDIF
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
! Determinante
|
|
|
|
|
|
|
|
|
|
LogAbsDetA = 0.0_pReal
|
|
|
|
|
NegHDK = 0
|
|
|
|
|
|
|
|
|
|
DO I = 1, dimen
|
|
|
|
|
IF (A(I,I) .LT. 0.0_pReal) NegHDK = NegHDK + 1
|
|
|
|
|
AbsA = ABS(A(I,I))
|
|
|
|
|
LogAbsDetA = LogAbsDetA + LOG10(AbsA)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDDO
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
error = .false.
|
|
|
|
|
|
|
|
|
|
RETURN
|
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE Gauss
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! symmetrize a 3x3 matrix
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
function math_symmetric3x3(m)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3) :: math_symmetric3x3,m
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
|
2009-03-17 20:43:17 +05:30
|
|
|
|
forall (i=1:3,j=1:3) math_symmetric3x3(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! symmetrize a 6x6 matrix
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_symmetric6x6(m)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m
|
|
|
|
|
real(pReal), dimension(6,6) :: math_symmetric6x6
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
2009-03-17 20:43:17 +05:30
|
|
|
|
forall (i=1:6,j=1:6) math_symmetric6x6(i,j) = 0.5_pReal * (m(i,j) + m(j,i))
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
2010-03-24 18:50:12 +05:30
|
|
|
|
!********************************************************************
|
|
|
|
|
! equivalent scalar quantity of a full strain tensor
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_equivStrain33(m)
|
2010-03-24 18:50:12 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
|
|
|
|
real(pReal) math_equivStrain33,e11,e22,e33,s12,s23,s31
|
|
|
|
|
|
|
|
|
|
e11 = (2.0_pReal*m(1,1)-m(2,2)-m(3,3))/3.0_pReal
|
|
|
|
|
e22 = (2.0_pReal*m(2,2)-m(3,3)-m(1,1))/3.0_pReal
|
|
|
|
|
e33 = (2.0_pReal*m(3,3)-m(1,1)-m(2,2))/3.0_pReal
|
|
|
|
|
s12 = 2.0_pReal*m(1,2)
|
|
|
|
|
s23 = 2.0_pReal*m(2,3)
|
|
|
|
|
s31 = 2.0_pReal*m(3,1)
|
|
|
|
|
|
|
|
|
|
math_equivStrain33 = 2.0_pReal*(1.50_pReal*(e11**2.0_pReal+e22**2.0_pReal+e33**2.0_pReal) + &
|
|
|
|
|
0.75_pReal*(s12**2.0_pReal+s23**2.0_pReal+s31**2.0_pReal))**(0.5_pReal)/3.0_pReal
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-24 18:50:12 +05:30
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!********************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
|
! determinant of a 3x3 matrix
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_det3x3(m)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m
|
2009-01-20 00:40:58 +05:30
|
|
|
|
real(pReal) math_det3x3
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
math_det3x3 = m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
|
|
|
|
-m(1,2)*(m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
|
|
|
|
+m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
2007-03-20 19:25:22 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! euclidic norm of a 3x1 vector
|
|
|
|
|
!********************************************************************
|
2010-03-18 17:53:17 +05:30
|
|
|
|
pure function math_norm3(v)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-08-11 22:01:57 +05:30
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
|
real(pReal), dimension(3), intent(in) :: v
|
2009-08-11 22:01:57 +05:30
|
|
|
|
real(pReal) math_norm3
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_norm3 = sqrt(v(1)*v(1) + v(2)*v(2) + v(3)*v(3))
|
2009-08-11 22:01:57 +05:30
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
|
!********************************************************************
|
|
|
|
|
! convert 3x3 matrix into vector 9x1
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_Plain33to9(m33)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m33
|
2008-02-15 18:12:27 +05:30
|
|
|
|
real(pReal), dimension(9) :: math_Plain33to9
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
|
|
|
|
|
forall (i=1:9) math_Plain33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! convert Plain 9x1 back to 3x3 matrix
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_Plain9to33(v9)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(9), intent(in) :: v9
|
2008-02-15 18:12:27 +05:30
|
|
|
|
real(pReal), dimension(3,3) :: math_Plain9to33
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
|
|
|
|
|
forall (i=1:9) math_Plain9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
|
!********************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
|
! convert symmetric 3x3 matrix into Mandel vector 6x1
|
2007-03-28 12:51:47 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_Mandel33to6(m33)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: m33
|
2007-03-28 12:51:47 +05:30
|
|
|
|
real(pReal), dimension(6) :: math_Mandel33to6
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
|
2007-03-28 13:50:50 +05:30
|
|
|
|
forall (i=1:6) math_Mandel33to6(i) = nrmMandel(i)*m33(mapMandel(1,i),mapMandel(2,i))
|
2007-03-28 12:51:47 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! convert Mandel 6x1 back to symmetric 3x3 matrix
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_Mandel6to33(v6)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(6), intent(in) :: v6
|
2007-03-28 12:51:47 +05:30
|
|
|
|
real(pReal), dimension(3,3) :: math_Mandel6to33
|
2007-04-24 12:19:13 +05:30
|
|
|
|
integer(pInt) i
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
forall (i=1:6)
|
2007-03-28 13:50:50 +05:30
|
|
|
|
math_Mandel6to33(mapMandel(1,i),mapMandel(2,i)) = invnrmMandel(i)*v6(i)
|
|
|
|
|
math_Mandel6to33(mapMandel(2,i),mapMandel(1,i)) = invnrmMandel(i)*v6(i)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
end forall
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
|
!********************************************************************
|
|
|
|
|
! convert 3x3x3x3 tensor into plain matrix 9x9
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_Plain3333to99(m3333)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
2008-02-15 18:12:27 +05:30
|
|
|
|
real(pReal), dimension(9,9) :: math_Plain3333to99
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
|
|
|
|
|
forall (i=1:9,j=1:9) math_Plain3333to99(i,j) = &
|
|
|
|
|
m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-09-22 17:34:43 +05:30
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! plain matrix 9x9 into 3x3x3x3 tensor
|
|
|
|
|
!********************************************************************
|
|
|
|
|
pure function math_Plain99to3333(m99)
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
2010-09-22 17:34:43 +05:30
|
|
|
|
real(pReal), dimension(9,9), intent(in) :: m99
|
|
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Plain99to3333
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
|
|
|
|
|
forall (i=1:9,j=1:9) math_Plain99to3333(mapPlain(1,i),mapPlain(2,i),&
|
|
|
|
|
mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
|
|
|
|
|
return
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
2010-09-22 17:34:43 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
|
!********************************************************************
|
|
|
|
|
! convert symmetric 3x3x3x3 tensor into Mandel matrix 6x6
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_Mandel3333to66(m3333)
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
2007-03-28 12:51:47 +05:30
|
|
|
|
real(pReal), dimension(6,6) :: math_Mandel3333to66
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
|
|
|
|
|
forall (i=1:6,j=1:6) math_Mandel3333to66(i,j) = &
|
2007-03-28 13:50:50 +05:30
|
|
|
|
nrmMandel(i)*nrmMandel(j)*m3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j))
|
2007-03-28 12:51:47 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
|
|
|
|
|
2008-02-15 18:12:27 +05:30
|
|
|
|
!********************************************************************
|
|
|
|
|
! convert Mandel matrix 6x6 back to symmetric 3x3x3x3 tensor
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_Mandel66to3333(m66)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
2008-02-15 18:12:27 +05:30
|
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Mandel66to3333
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
|
|
|
|
|
forall (i=1:6,j=1:6)
|
|
|
|
|
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
|
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(1,j),mapMandel(2,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
|
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
|
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(2,j),mapMandel(1,j)) = invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
|
|
|
|
end forall
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! convert Voigt matrix 6x6 back to symmetric 3x3x3x3 tensor
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_Voigt66to3333(m66)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal,pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(6,6), intent(in) :: m66
|
2008-02-15 18:12:27 +05:30
|
|
|
|
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
|
|
|
|
|
forall (i=1:6,j=1:6)
|
|
|
|
|
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
|
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(1,j),mapVoigt(2,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
|
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
|
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(2,j),mapVoigt(1,j)) = invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
|
|
|
|
end forall
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-28 12:51:47 +05:30
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! Euler angles (in radians) from rotation matrix
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_RtoEuler(R)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension (3,3), intent(in) :: R
|
2007-03-29 21:02:52 +05:30
|
|
|
|
real(pReal), dimension(3) :: math_RtoEuler
|
2009-01-20 00:40:58 +05:30
|
|
|
|
real(pReal) sqhkl, squvw, sqhk, val
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3))
|
|
|
|
|
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
|
|
|
|
|
sqhk=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
|
|
|
|
! calculate PHI
|
|
|
|
|
val=R(3,3)/sqhkl
|
|
|
|
|
|
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_RtoEuler(2) = acos(val)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
|
if(math_RtoEuler(2) < 1.0e-8_pReal) then
|
2007-03-29 21:02:52 +05:30
|
|
|
|
! calculate phi2
|
|
|
|
|
math_RtoEuler(3) = 0.0_pReal
|
|
|
|
|
! calculate phi1
|
|
|
|
|
val=R(1,1)/squvw
|
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_RtoEuler(1) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
|
|
|
|
else
|
|
|
|
|
! calculate phi2
|
|
|
|
|
val=R(2,3)/sqhk
|
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_RtoEuler(3) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
|
|
|
|
! calculate phi1
|
|
|
|
|
val=-R(3,2)/sin(math_RtoEuler(2))
|
|
|
|
|
if(val > 1.0_pReal) val = 1.0_pReal
|
|
|
|
|
if(val < -1.0_pReal) val = -1.0_pReal
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_RtoEuler(1) = acos(val)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
|
|
|
|
end if
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! quaternion (w+ix+jy+kz) from orientation matrix
|
|
|
|
|
!********************************************************************
|
|
|
|
|
pure function math_RtoQuaternion(R)
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension (3,3), intent(in) :: R
|
2010-05-26 21:22:54 +05:30
|
|
|
|
real(pReal), dimension(4) :: absQ,math_RtoQuaternion
|
2011-03-03 16:17:07 +05:30
|
|
|
|
real(pReal) max_absQ
|
2010-05-26 21:22:54 +05:30
|
|
|
|
integer(pInt), dimension(1) :: largest
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
|
! math adopted from http://code.google.com/p/mtex/source/browse/trunk/geometry/geometry_tools/mat2quat.m
|
|
|
|
|
|
|
|
|
|
math_RtoQuaternion = 0.0_pReal
|
|
|
|
|
|
2011-03-03 16:17:07 +05:30
|
|
|
|
absQ(1) = 1.0_pReal+R(1,1)+R(2,2)+R(3,3)
|
|
|
|
|
absQ(2) = 1.0_pReal+R(1,1)-R(2,2)-R(3,3)
|
|
|
|
|
absQ(3) = 1.0_pReal-R(1,1)+R(2,2)-R(3,3)
|
|
|
|
|
absQ(4) = 1.0_pReal-R(1,1)-R(2,2)+R(3,3)
|
|
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
|
largest = maxloc(absQ)
|
2011-03-03 16:17:07 +05:30
|
|
|
|
|
|
|
|
|
max_absQ=0.5_pReal * sqrt(absQ(largest(1)))
|
|
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
|
select case(largest(1))
|
|
|
|
|
case (1)
|
|
|
|
|
|
|
|
|
|
math_RtoQuaternion(2) = R(2,3)-R(3,2)
|
|
|
|
|
math_RtoQuaternion(3) = R(3,1)-R(1,3)
|
|
|
|
|
math_RtoQuaternion(4) = R(1,2)-R(2,1)
|
|
|
|
|
|
|
|
|
|
case (2)
|
|
|
|
|
math_RtoQuaternion(1) = R(2,3)-R(3,2)
|
|
|
|
|
|
|
|
|
|
math_RtoQuaternion(3) = R(1,2)+R(2,1)
|
|
|
|
|
math_RtoQuaternion(4) = R(3,1)+R(1,3)
|
|
|
|
|
|
|
|
|
|
case (3)
|
|
|
|
|
math_RtoQuaternion(1) = R(3,1)-R(1,3)
|
|
|
|
|
math_RtoQuaternion(2) = R(1,2)+R(2,1)
|
|
|
|
|
|
|
|
|
|
math_RtoQuaternion(4) = R(2,3)+R(3,2)
|
|
|
|
|
|
|
|
|
|
case (4)
|
|
|
|
|
math_RtoQuaternion (1) = R(1,2)-R(2,1)
|
|
|
|
|
math_RtoQuaternion (2) = R(3,1)+R(1,3)
|
|
|
|
|
math_RtoQuaternion (3) = R(3,2)+R(2,3)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
2010-05-26 21:22:54 +05:30
|
|
|
|
end select
|
|
|
|
|
|
2011-03-03 16:17:07 +05:30
|
|
|
|
math_RtoQuaternion = math_RtoQuaternion*0.25_pReal/max_absQ
|
|
|
|
|
math_RtoQuaternion(largest(1)) = max_absQ
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
endfunction
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
2010-03-18 17:53:17 +05:30
|
|
|
|
!****************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! rotation matrix from Euler angles (in radians)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
!****************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_EulerToR (Euler)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: Euler
|
|
|
|
|
real(pReal), dimension(3,3) :: math_EulerToR
|
|
|
|
|
real(pReal) c1, c, c2, s1, s, s2
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
C1 = cos(Euler(1))
|
|
|
|
|
C = cos(Euler(2))
|
|
|
|
|
C2 = cos(Euler(3))
|
|
|
|
|
S1 = sin(Euler(1))
|
|
|
|
|
S = sin(Euler(2))
|
|
|
|
|
S2 = sin(Euler(3))
|
2010-03-18 17:53:17 +05:30
|
|
|
|
math_EulerToR(1,1)=C1*C2-S1*S2*C
|
|
|
|
|
math_EulerToR(1,2)=S1*C2+C1*S2*C
|
|
|
|
|
math_EulerToR(1,3)=S2*S
|
|
|
|
|
math_EulerToR(2,1)=-C1*S2-S1*C2*C
|
|
|
|
|
math_EulerToR(2,2)=-S1*S2+C1*C2*C
|
|
|
|
|
math_EulerToR(2,3)=C2*S
|
|
|
|
|
math_EulerToR(3,1)=S1*S
|
|
|
|
|
math_EulerToR(3,2)=-C1*S
|
|
|
|
|
math_EulerToR(3,3)=C
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! quaternion (w+ix+jy+kz) from 3-1-3 Euler angles (in radians)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_EulerToQuaternion(eulerangles)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
real(pReal), dimension(3), intent(in) :: eulerangles
|
|
|
|
|
real(pReal), dimension(4) :: math_EulerToQuaternion
|
|
|
|
|
real(pReal), dimension(3) :: halfangles
|
|
|
|
|
real(pReal) c, s
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
halfangles = 0.5_pReal * eulerangles
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
c = cos(halfangles(2))
|
|
|
|
|
s = sin(halfangles(2))
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_EulerToQuaternion(1) = cos(halfangles(1)+halfangles(3)) * c
|
|
|
|
|
math_EulerToQuaternion(2) = cos(halfangles(1)-halfangles(3)) * s
|
|
|
|
|
math_EulerToQuaternion(3) = sin(halfangles(1)-halfangles(3)) * s
|
|
|
|
|
math_EulerToQuaternion(4) = sin(halfangles(1)+halfangles(3)) * c
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
!****************************************************************
|
|
|
|
|
! rotation matrix from axis and angle (in radians)
|
|
|
|
|
!****************************************************************
|
|
|
|
|
pure function math_AxisAngleToR(axis,omega)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
real(pReal), dimension(3), intent(in) :: axis
|
|
|
|
|
real(pReal), intent(in) :: omega
|
|
|
|
|
real(pReal), dimension(3) :: axisNrm
|
|
|
|
|
real(pReal), dimension(3,3) :: math_AxisAngleToR
|
|
|
|
|
real(pReal) norm,s,c,c1
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
norm = sqrt(math_mul3x3(axis,axis))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
|
|
|
|
forall (i=1:3) axisNrm(i) = axis(i)/norm ! normalize axis to be sure
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
s = sin(omega)
|
|
|
|
|
c = cos(omega)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
c1 = 1.0_pReal - c
|
|
|
|
|
|
|
|
|
|
! formula for active rotation taken from http://mathworld.wolfram.com/RodriguesRotationFormula.html
|
|
|
|
|
! below is transposed form to get passive rotation
|
|
|
|
|
|
|
|
|
|
math_AxisAngleToR(1,1) = c + c1*axisNrm(1)**2
|
|
|
|
|
math_AxisAngleToR(2,1) = -s*axisNrm(3) + c1*axisNrm(1)*axisNrm(2)
|
|
|
|
|
math_AxisAngleToR(3,1) = s*axisNrm(2) + c1*axisNrm(1)*axisNrm(3)
|
|
|
|
|
|
|
|
|
|
math_AxisAngleToR(1,2) = s*axisNrm(3) + c1*axisNrm(2)*axisNrm(1)
|
|
|
|
|
math_AxisAngleToR(2,2) = c + c1*axisNrm(2)**2
|
|
|
|
|
math_AxisAngleToR(3,2) = -s*axisNrm(1) + c1*axisNrm(2)*axisNrm(3)
|
|
|
|
|
|
|
|
|
|
math_AxisAngleToR(1,3) = -s*axisNrm(2) + c1*axisNrm(3)*axisNrm(1)
|
|
|
|
|
math_AxisAngleToR(2,3) = s*axisNrm(1) + c1*axisNrm(3)*axisNrm(2)
|
|
|
|
|
math_AxisAngleToR(3,3) = c + c1*axisNrm(3)**2
|
|
|
|
|
else
|
|
|
|
|
math_AxisAngleToR = math_I3
|
|
|
|
|
endif
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!****************************************************************
|
|
|
|
|
! quaternion (w+ix+jy+kz) from axis and angle (in radians)
|
|
|
|
|
!****************************************************************
|
|
|
|
|
pure function math_AxisAngleToQuaternion(axis,omega)
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(3), intent(in) :: axis
|
|
|
|
|
real(pReal), intent(in) :: omega
|
|
|
|
|
real(pReal), dimension(3) :: axisNrm
|
|
|
|
|
real(pReal), dimension(4) :: math_AxisAngleToQuaternion
|
|
|
|
|
real(pReal) s,c,norm
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
norm = sqrt(math_mul3x3(axis,axis))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
if (norm > 1.0e-8_pReal) then ! non-zero rotation
|
|
|
|
|
forall (i=1:3) axisNrm(i) = axis(i)/norm ! normalize axis to be sure
|
|
|
|
|
! formula taken from http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
2011-02-25 14:55:53 +05:30
|
|
|
|
s = sin(omega/2.0_pReal)
|
|
|
|
|
c = cos(omega/2.0_pReal)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
math_AxisAngleToQuaternion(1) = c
|
|
|
|
|
math_AxisAngleToQuaternion(2:4) = s * axisNrm(1:3)
|
|
|
|
|
else
|
|
|
|
|
math_AxisAngleToQuaternion = (/1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal/) ! no rotation
|
|
|
|
|
endif
|
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! orientation matrix from quaternion (w+ix+jy+kz)
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_QuaternionToR(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
|
real(pReal), dimension(3,3) :: math_QuaternionToR, T,S
|
|
|
|
|
real(pReal) w2
|
|
|
|
|
integer(pInt) i, j
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
forall (i = 1:3, j = 1:3) &
|
|
|
|
|
T(i,j) = Q(i+1) * Q(j+1)
|
|
|
|
|
S = reshape( (/0.0_pReal, Q(4), -Q(3), &
|
|
|
|
|
-Q(4),0.0_pReal, +Q(2), &
|
|
|
|
|
Q(3), -Q(2),0.0_pReal/),(/3,3/)) ! notation is transposed!
|
|
|
|
|
|
|
|
|
|
math_QuaternionToR = (2.0_pReal * Q(1)*Q(1) - 1.0_pReal) * math_I3 + &
|
|
|
|
|
2.0_pReal * T - &
|
|
|
|
|
2.0_pReal * Q(1) * S
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
return
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_QuaternionToEuler(Q)
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
|
real(pReal), dimension(3) :: math_QuaternionToEuler
|
2011-03-04 20:27:22 +05:30
|
|
|
|
real(pReal) acos_arg
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_QuaternionToEuler(2) = acos(1.0_pReal-2.0_pReal*(Q(2)*Q(2)+Q(3)*Q(3)))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
if (abs(math_QuaternionToEuler(2)) < 1.0e-3_pReal) then
|
2011-03-03 19:53:39 +05:30
|
|
|
|
acos_arg=Q(1)
|
|
|
|
|
if(acos_arg > 1.0_pReal)acos_arg = 1.0_pReal
|
|
|
|
|
if(acos_arg < -1.0_pReal)acos_arg = -1.0_pReal
|
|
|
|
|
math_QuaternionToEuler(1) = 2.0_pReal*acos(acos_arg)
|
2010-05-26 21:22:54 +05:30
|
|
|
|
math_QuaternionToEuler(3) = 0.0_pReal
|
|
|
|
|
else
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_QuaternionToEuler(1) = atan2(Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)-Q(3)*Q(4))
|
2010-05-26 21:22:54 +05:30
|
|
|
|
if (math_QuaternionToEuler(1) < 0.0_pReal) &
|
|
|
|
|
math_QuaternionToEuler(1) = math_QuaternionToEuler(1) + 2.0_pReal * pi
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_QuaternionToEuler(3) = atan2(-Q(1)*Q(3)+Q(2)*Q(4), Q(1)*Q(2)+Q(3)*Q(4))
|
2010-05-26 21:22:54 +05:30
|
|
|
|
if (math_QuaternionToEuler(3) < 0.0_pReal) &
|
|
|
|
|
math_QuaternionToEuler(3) = math_QuaternionToEuler(3) + 2.0_pReal * pi
|
|
|
|
|
endif
|
2010-03-19 21:41:53 +05:30
|
|
|
|
|
|
|
|
|
if (math_QuaternionToEuler(2) < 0.0_pReal) &
|
|
|
|
|
math_QuaternionToEuler(2) = math_QuaternionToEuler(2) + pi
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
return
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2010-03-18 17:53:17 +05:30
|
|
|
|
|
|
|
|
|
|
2010-04-12 16:37:25 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
2010-04-12 16:37:25 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_QuaternionToAxisAngle(Q)
|
2010-04-12 16:37:25 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
|
real(pReal) halfAngle, sinHalfAngle
|
|
|
|
|
real(pReal), dimension(4) :: math_QuaternionToAxisAngle
|
|
|
|
|
|
2011-02-25 14:55:53 +05:30
|
|
|
|
halfAngle = acos(max(-1.0_pReal, min(1.0_pReal, Q(1)))) ! limit to [-1,1] --> 0 to 180 deg
|
|
|
|
|
sinHalfAngle = sin(halfAngle)
|
2010-04-29 15:31:09 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
if (sinHalfAngle <= 1.0e-4_pReal) then ! very small rotation angle?
|
2010-04-29 15:31:09 +05:30
|
|
|
|
math_QuaternionToAxisAngle = 0.0_pReal
|
|
|
|
|
else
|
|
|
|
|
math_QuaternionToAxisAngle(1:3) = Q(2:4)/sinHalfAngle
|
2010-05-06 19:37:21 +05:30
|
|
|
|
math_QuaternionToAxisAngle(4) = halfAngle*2.0_pReal
|
2010-04-29 15:31:09 +05:30
|
|
|
|
endif
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
2010-04-12 16:37:25 +05:30
|
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
2010-04-28 22:49:58 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_QuaternionToRodrig(Q)
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q
|
|
|
|
|
real(pReal), dimension(3) :: math_QuaternionToRodrig
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
if (Q(1) /= 0.0_pReal) then ! unless rotation by 180 deg
|
2010-04-28 22:49:58 +05:30
|
|
|
|
math_QuaternionToRodrig = Q(2:4)/Q(1)
|
|
|
|
|
else
|
2010-05-06 19:37:21 +05:30
|
|
|
|
math_QuaternionToRodrig = NaN ! Rodrig is unbound for 180 deg...
|
2010-04-28 22:49:58 +05:30
|
|
|
|
endif
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! misorientation angle between two sets of Euler angles
|
2007-03-29 21:02:52 +05:30
|
|
|
|
!**************************************************************************
|
2010-04-28 22:49:58 +05:30
|
|
|
|
pure function math_EulerMisorientation(EulerA,EulerB)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
|
|
|
|
|
2009-01-16 20:57:13 +05:30
|
|
|
|
real(pReal), dimension(3), intent(in) :: EulerA,EulerB
|
2007-03-29 21:02:52 +05:30
|
|
|
|
real(pReal), dimension(3,3) :: r
|
2010-04-28 22:49:58 +05:30
|
|
|
|
real(pReal) math_EulerMisorientation, tr
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
2008-07-23 18:19:40 +05:30
|
|
|
|
r = math_mul33x33(math_EulerToR(EulerB),transpose(math_EulerToR(EulerA)))
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
tr = (r(1,1)+r(2,2)+r(3,3)-1.0_pReal)*0.4999999_pReal
|
2010-04-28 22:49:58 +05:30
|
|
|
|
math_EulerMisorientation = abs(0.5_pReal*pi-asin(tr))
|
2007-03-20 19:25:22 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! figures whether unit quat falls into stereographic standard triangle
|
2010-04-28 22:49:58 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
pure function math_QuaternionInSST(Q, symmetryType)
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q ! orientation
|
|
|
|
|
integer(pInt), intent(in) :: symmetryType ! Type of crystal symmetry; 1:cubic, 2:hexagonal
|
|
|
|
|
|
|
|
|
|
!*** output variables
|
|
|
|
|
logical math_QuaternionInSST
|
|
|
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
|
real(pReal), dimension(3) :: Rodrig ! Rodrigues vector of Q
|
|
|
|
|
|
|
|
|
|
Rodrig = math_QuaternionToRodrig(Q)
|
|
|
|
|
select case (symmetryType)
|
|
|
|
|
case (1)
|
|
|
|
|
math_QuaternionInSST = Rodrig(1) > Rodrig(2) .and. &
|
|
|
|
|
Rodrig(2) > Rodrig(3) .and. &
|
|
|
|
|
Rodrig(3) > 0.0_pReal
|
|
|
|
|
case (2)
|
2011-02-25 14:55:53 +05:30
|
|
|
|
math_QuaternionInSST = Rodrig(1) > sqrt(3.0_pReal)*Rodrig(2) .and. &
|
2010-04-28 22:49:58 +05:30
|
|
|
|
Rodrig(2) > 0.0_pReal .and. &
|
|
|
|
|
Rodrig(3) > 0.0_pReal
|
|
|
|
|
case default
|
|
|
|
|
math_QuaternionInSST = .true.
|
|
|
|
|
end select
|
|
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
2010-05-04 18:24:13 +05:30
|
|
|
|
|
2010-04-28 22:49:58 +05:30
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! calculates the disorientation for 2 unit quaternions
|
2010-04-28 22:49:58 +05:30
|
|
|
|
!**************************************************************************
|
2010-05-04 21:32:05 +05:30
|
|
|
|
function math_QuaternionDisorientation(Q1, Q2, symmetryType)
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
2010-05-04 21:32:05 +05:30
|
|
|
|
use IO, only: IO_error
|
2010-04-28 22:49:58 +05:30
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
|
real(pReal), dimension(4), intent(in) :: Q1, & ! 1st orientation
|
|
|
|
|
Q2 ! 2nd orientation
|
|
|
|
|
integer(pInt), intent(in) :: symmetryType ! Type of crystal symmetry; 1:cubic, 2:hexagonal
|
|
|
|
|
|
|
|
|
|
!*** output variables
|
|
|
|
|
real(pReal), dimension(4) :: math_QuaternionDisorientation ! disorientation
|
|
|
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
|
real(pReal), dimension(4) :: dQ,dQsymA,mis
|
|
|
|
|
integer(pInt) i,j,k,s
|
|
|
|
|
|
|
|
|
|
dQ = math_qMul(math_qConj(Q1),Q2)
|
|
|
|
|
math_QuaternionDisorientation = dQ
|
|
|
|
|
|
2010-05-04 18:24:13 +05:30
|
|
|
|
select case (symmetryType)
|
|
|
|
|
case (0)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
if (math_QuaternionDisorientation(1) < 0.0_pReal) &
|
|
|
|
|
math_QuaternionDisorientation = -math_QuaternionDisorientation ! keep omega within 0 to 180 deg
|
2010-05-04 18:24:13 +05:30
|
|
|
|
|
|
|
|
|
case (1,2)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
s = sum(math_NsymOperations(1:symmetryType-1))
|
|
|
|
|
do i = 1,2
|
|
|
|
|
dQ = math_qConj(dQ) ! switch order of "from -- to"
|
|
|
|
|
do j = 1,math_NsymOperations(symmetryType) ! run through first crystal's symmetries
|
|
|
|
|
dQsymA = math_qMul(math_symOperations(:,s+j),dQ) ! apply sym
|
|
|
|
|
do k = 1,math_NsymOperations(symmetryType) ! run through 2nd crystal's symmetries
|
|
|
|
|
mis = math_qMul(dQsymA,math_symOperations(:,s+k)) ! apply sym
|
|
|
|
|
if (mis(1) < 0.0_pReal) & ! want positive angle
|
|
|
|
|
mis = -mis
|
|
|
|
|
if (mis(1)-math_QuaternionDisorientation(1) > -1e-8_pReal .and. &
|
|
|
|
|
math_QuaternionInSST(mis,symmetryType)) &
|
|
|
|
|
math_QuaternionDisorientation = mis ! found better one
|
|
|
|
|
enddo; enddo; enddo
|
2010-05-04 18:24:13 +05:30
|
|
|
|
|
|
|
|
|
case default
|
2010-05-06 19:37:21 +05:30
|
|
|
|
call IO_error(550,symmetryType) ! complain about unknown symmetry
|
2010-05-04 18:24:13 +05:30
|
|
|
|
end select
|
2010-04-28 22:49:58 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!********************************************************************
|
2007-03-29 21:02:52 +05:30
|
|
|
|
! draw a random sample from Euler space
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
function math_sampleRandomOri()
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
call halton(3,rnd)
|
|
|
|
|
math_sampleRandomOri(1) = rnd(1)*2.0_pReal*pi
|
|
|
|
|
math_sampleRandomOri(2) = acos(2.0_pReal*rnd(2)-1.0_pReal)
|
|
|
|
|
math_sampleRandomOri(3) = rnd(3)*2.0_pReal*pi
|
2007-03-20 19:25:22 +05:30
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
!********************************************************************
|
|
|
|
|
! draw a random sample from Gauss component
|
|
|
|
|
! with noise (in radians) half-width
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
function math_sampleGaussOri(center,noise)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
real(pReal), dimension(3) :: math_sampleGaussOri, center, disturb
|
|
|
|
|
real(pReal), dimension(3), parameter :: origin = (/0.0_pReal,0.0_pReal,0.0_pReal/)
|
|
|
|
|
real(pReal), dimension(5) :: rnd
|
|
|
|
|
real(pReal) noise,scatter,cosScatter
|
|
|
|
|
integer(pInt) i
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
if (noise==0.0) then
|
|
|
|
|
math_sampleGaussOri = center
|
|
|
|
|
return
|
|
|
|
|
endif
|
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
! Helming uses different distribution with Bessel functions
|
|
|
|
|
! therefore the gauss scatter width has to be scaled differently
|
|
|
|
|
scatter = 0.95_pReal * noise
|
|
|
|
|
cosScatter = cos(scatter)
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
call halton(5,rnd)
|
|
|
|
|
forall (i=1:3) rnd(i) = 2.0_pReal*rnd(i)-1.0_pReal ! expand 1:3 to range [-1,+1]
|
|
|
|
|
disturb(1) = scatter * rnd(1) ! phi1
|
|
|
|
|
disturb(2) = sign(1.0_pReal,rnd(2))*acos(cosScatter+(1.0_pReal-cosScatter)*rnd(4)) ! Phi
|
|
|
|
|
disturb(3) = scatter * rnd(2) ! phi2
|
2010-04-28 22:49:58 +05:30
|
|
|
|
if (rnd(5) <= exp(-1.0_pReal*(math_EulerMisorientation(origin,disturb)/scatter)**2)) exit
|
2008-07-09 01:08:22 +05:30
|
|
|
|
enddo
|
|
|
|
|
|
2008-07-23 18:19:40 +05:30
|
|
|
|
math_sampleGaussOri = math_RtoEuler(math_mul33x33(math_EulerToR(disturb),math_EulerToR(center)))
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
!********************************************************************
|
|
|
|
|
! draw a random sample from Fiber component
|
|
|
|
|
! with noise (in radians)
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
function math_sampleFiberOri(alpha,beta,noise)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
real(pReal), dimension(3) :: math_sampleFiberOri, fiberInC,fiberInS,axis
|
|
|
|
|
real(pReal), dimension(2) :: alpha,beta, rnd
|
|
|
|
|
real(pReal), dimension(3,3) :: oRot,fRot,pRot
|
|
|
|
|
real(pReal) noise, scatter, cos2Scatter, angle
|
|
|
|
|
integer(pInt), dimension(2,3), parameter :: rotMap = reshape((/2,3, 3,1, 1,2/),(/2,3/))
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt) i
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-29 21:02:52 +05:30
|
|
|
|
! Helming uses different distribution with Bessel functions
|
|
|
|
|
! therefore the gauss scatter width has to be scaled differently
|
|
|
|
|
scatter = 0.95_pReal * noise
|
|
|
|
|
cos2Scatter = cos(2.0_pReal*scatter)
|
|
|
|
|
|
|
|
|
|
! fiber axis in crystal coordinate system
|
|
|
|
|
fiberInC(1)=sin(alpha(1))*cos(alpha(2))
|
|
|
|
|
fiberInC(2)=sin(alpha(1))*sin(alpha(2))
|
|
|
|
|
fiberInC(3)=cos(alpha(1))
|
|
|
|
|
! fiber axis in sample coordinate system
|
|
|
|
|
fiberInS(1)=sin(beta(1))*cos(beta(2))
|
|
|
|
|
fiberInS(2)=sin(beta(1))*sin(beta(2))
|
|
|
|
|
fiberInS(3)=cos(beta(1))
|
|
|
|
|
|
|
|
|
|
! ---# rotation matrix from sample to crystal system #---
|
2011-02-25 14:55:53 +05:30
|
|
|
|
angle = -acos(dot_product(fiberInC,fiberInS))
|
2007-03-29 21:02:52 +05:30
|
|
|
|
if(angle /= 0.0_pReal) then
|
|
|
|
|
! rotation axis between sample and crystal system (cross product)
|
|
|
|
|
forall(i=1:3) axis(i) = fiberInC(rotMap(1,i))*fiberInS(rotMap(2,i))-fiberInC(rotMap(2,i))*fiberInS(rotMap(1,i))
|
2010-05-06 19:37:21 +05:30
|
|
|
|
oRot = math_AxisAngleToR(math_vectorproduct(fiberInC,fiberInS),angle)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
else
|
|
|
|
|
oRot = math_I3
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
! ---# rotation matrix about fiber axis (random angle) #---
|
|
|
|
|
call halton(1,rnd)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
fRot = math_AxisAngleToR(fiberInS,rnd(1)*2.0_pReal*pi)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
! ---# rotation about random axis perpend to fiber #---
|
2010-05-06 19:37:21 +05:30
|
|
|
|
! random axis pependicular to fiber axis
|
2007-03-29 21:02:52 +05:30
|
|
|
|
call halton(2,axis)
|
|
|
|
|
if (fiberInS(3) /= 0.0_pReal) then
|
|
|
|
|
axis(3)=-(axis(1)*fiberInS(1)+axis(2)*fiberInS(2))/fiberInS(3)
|
|
|
|
|
else if(fiberInS(2) /= 0.0_pReal) then
|
|
|
|
|
axis(3)=axis(2)
|
|
|
|
|
axis(2)=-(axis(1)*fiberInS(1)+axis(3)*fiberInS(3))/fiberInS(2)
|
|
|
|
|
else if(fiberInS(1) /= 0.0_pReal) then
|
|
|
|
|
axis(3)=axis(1)
|
|
|
|
|
axis(1)=-(axis(2)*fiberInS(2)+axis(3)*fiberInS(3))/fiberInS(1)
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
! scattered rotation angle
|
|
|
|
|
do
|
|
|
|
|
call halton(2,rnd)
|
|
|
|
|
angle = acos(cos2Scatter+(1.0_pReal-cos2Scatter)*rnd(1))
|
|
|
|
|
if (rnd(2) <= exp(-1.0_pReal*(angle/scatter)**2)) exit
|
|
|
|
|
enddo
|
|
|
|
|
call halton(1,rnd)
|
|
|
|
|
if (rnd(1) <= 0.5) angle = -angle
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pRot = math_AxisAngleToR(axis,angle)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
|
|
|
|
|
! ---# apply the three rotations #---
|
2010-05-06 19:37:21 +05:30
|
|
|
|
math_sampleFiberOri = math_RtoEuler(math_mul33x33(pRot,math_mul33x33(fRot,oRot)))
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!********************************************************************
|
|
|
|
|
! symmetric Euler angles for given symmetry string
|
|
|
|
|
! 'triclinic' or '', 'monoclinic', 'orthotropic'
|
|
|
|
|
!********************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_symmetricEulers(sym,Euler)
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
2009-03-04 17:18:54 +05:30
|
|
|
|
integer(pInt), intent(in) :: sym
|
2008-02-15 18:12:27 +05:30
|
|
|
|
real(pReal), dimension(3), intent(in) :: Euler
|
|
|
|
|
real(pReal), dimension(3,3) :: math_symmetricEulers
|
|
|
|
|
integer(pInt) i,j
|
|
|
|
|
|
|
|
|
|
math_symmetricEulers(1,1) = pi+Euler(1)
|
|
|
|
|
math_symmetricEulers(2,1) = Euler(2)
|
|
|
|
|
math_symmetricEulers(3,1) = Euler(3)
|
|
|
|
|
|
|
|
|
|
math_symmetricEulers(1,2) = pi-Euler(1)
|
|
|
|
|
math_symmetricEulers(2,2) = pi-Euler(2)
|
|
|
|
|
math_symmetricEulers(3,2) = pi+Euler(3)
|
|
|
|
|
|
|
|
|
|
math_symmetricEulers(1,3) = 2.0_pReal*pi-Euler(1)
|
|
|
|
|
math_symmetricEulers(2,3) = pi-Euler(2)
|
|
|
|
|
math_symmetricEulers(3,3) = pi+Euler(3)
|
|
|
|
|
|
|
|
|
|
forall (i=1:3,j=1:3) math_symmetricEulers(j,i) = modulo(math_symmetricEulers(j,i),2.0_pReal*pi)
|
|
|
|
|
|
|
|
|
|
select case (sym)
|
2009-03-04 17:18:54 +05:30
|
|
|
|
case (4) ! all done
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
2009-03-04 17:18:54 +05:30
|
|
|
|
case (2) ! return only first
|
2008-02-15 18:12:27 +05:30
|
|
|
|
math_symmetricEulers(:,2:3) = 0.0_pReal
|
|
|
|
|
|
|
|
|
|
case default ! return blank
|
|
|
|
|
math_symmetricEulers = 0.0_pReal
|
|
|
|
|
end select
|
|
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2008-02-15 18:12:27 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2011-02-04 21:11:32 +05:30
|
|
|
|
!********************************************************************
|
|
|
|
|
! draw a random sample from Gauss variable
|
|
|
|
|
!********************************************************************
|
|
|
|
|
function math_sampleGaussVar(meanvalue, stddev, width)
|
|
|
|
|
|
|
|
|
|
use prec, only: pReal, pInt
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
!*** input variables
|
|
|
|
|
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
|
|
|
|
|
stddev ! standard deviation of gauss distribution
|
|
|
|
|
real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation
|
|
|
|
|
|
|
|
|
|
!*** output variables
|
|
|
|
|
real(pReal) math_sampleGaussVar
|
|
|
|
|
|
|
|
|
|
!*** local variables
|
|
|
|
|
real(pReal), dimension(2) :: rnd ! random numbers
|
|
|
|
|
real(pReal) scatter, & ! normalized scatter around meanvalue
|
|
|
|
|
myWidth
|
|
|
|
|
|
|
|
|
|
if (stddev == 0.0) then
|
|
|
|
|
math_sampleGaussVar = meanvalue
|
|
|
|
|
return
|
|
|
|
|
endif
|
|
|
|
|
|
|
|
|
|
if (present(width)) then
|
|
|
|
|
myWidth = width
|
|
|
|
|
else
|
|
|
|
|
myWidth = 3.0_pReal ! use +-3*sigma as default value for scatter
|
|
|
|
|
endif
|
|
|
|
|
|
|
|
|
|
do
|
|
|
|
|
call halton(2, rnd)
|
|
|
|
|
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
|
|
|
|
|
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) & ! test if scattered value is drawn
|
|
|
|
|
exit
|
|
|
|
|
enddo
|
|
|
|
|
|
|
|
|
|
math_sampleGaussVar = scatter * stddev
|
|
|
|
|
|
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!****************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
|
pure subroutine math_pDecomposition(FE,U,R,error)
|
2010-05-06 19:37:21 +05:30
|
|
|
|
!-----FE = R.U
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!****************************************************************
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
|
real(pReal), intent(in) :: FE(3,3)
|
|
|
|
|
real(pReal), intent(out) :: R(3,3), U(3,3)
|
|
|
|
|
logical, intent(out) :: error
|
|
|
|
|
real(pReal) CE(3,3),EW1,EW2,EW3,EB1(3,3),EB2(3,3),EB3(3,3),UI(3,3),det
|
2007-04-11 15:34:22 +05:30
|
|
|
|
|
|
|
|
|
error = .false.
|
2009-05-07 21:57:36 +05:30
|
|
|
|
ce = math_mul33x33(transpose(FE),FE)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
CALL math_spectral1(CE,EW1,EW2,EW3,EB1,EB2,EB3)
|
2011-02-25 14:55:53 +05:30
|
|
|
|
U=sqrt(EW1)*EB1+sqrt(EW2)*EB2+sqrt(EW3)*EB3
|
2007-04-11 15:34:22 +05:30
|
|
|
|
call math_invert3x3(U,UI,det,error)
|
2009-05-07 21:57:36 +05:30
|
|
|
|
if (.not. error) R = math_mul33x33(FE,UI)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!**********************************************************************
|
2009-12-14 16:32:10 +05:30
|
|
|
|
pure subroutine math_spectral1(M,EW1,EW2,EW3,EB1,EB2,EB3)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!**** EIGENWERTE UND EIGENWERTBASIS DER SYMMETRISCHEN 3X3 MATRIX M
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
|
real(pReal), intent(in) :: M(3,3)
|
|
|
|
|
real(pReal), intent(out) :: EB1(3,3),EB2(3,3),EB3(3,3),EW1,EW2,EW3
|
2007-03-21 15:50:25 +05:30
|
|
|
|
real(pReal) HI1M,HI2M,HI3M,TOL,R,S,T,P,Q,RHO,PHI,Y1,Y2,Y3,D1,D2,D3
|
2007-04-24 12:19:13 +05:30
|
|
|
|
real(pReal) C1,C2,C3,M1(3,3),M2(3,3),M3(3,3),arg
|
2007-03-20 19:25:22 +05:30
|
|
|
|
TOL=1.e-14_pReal
|
|
|
|
|
CALL math_hi(M,HI1M,HI2M,HI3M)
|
|
|
|
|
R=-HI1M
|
|
|
|
|
S= HI2M
|
|
|
|
|
T=-HI3M
|
|
|
|
|
P=S-R**2.0_pReal/3.0_pReal
|
|
|
|
|
Q=2.0_pReal/27.0_pReal*R**3.0_pReal-R*S/3.0_pReal+T
|
|
|
|
|
EB1=0.0_pReal
|
|
|
|
|
EB2=0.0_pReal
|
|
|
|
|
EB3=0.0_pReal
|
|
|
|
|
IF((ABS(P).LT.TOL).AND.(ABS(Q).LT.TOL))THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! DREI GLEICHE EIGENWERTE
|
2007-03-20 19:25:22 +05:30
|
|
|
|
EW1=HI1M/3.0_pReal
|
|
|
|
|
EW2=EW1
|
|
|
|
|
EW3=EW1
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! this is not really correct, but this way U is calculated
|
|
|
|
|
! correctly in PDECOMPOSITION (correct is EB?=I)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
EB1(1,1)=1.0_pReal
|
|
|
|
|
EB2(2,2)=1.0_pReal
|
|
|
|
|
EB3(3,3)=1.0_pReal
|
|
|
|
|
ELSE
|
2011-02-25 14:55:53 +05:30
|
|
|
|
RHO=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
2007-03-20 19:25:22 +05:30
|
|
|
|
arg=-Q/RHO/2.0_pReal
|
|
|
|
|
if(arg.GT.1) arg=1
|
|
|
|
|
if(arg.LT.-1) arg=-1
|
2011-02-25 14:55:53 +05:30
|
|
|
|
PHI=acos(arg)
|
|
|
|
|
Y1=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal)
|
|
|
|
|
Y2=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+2.0_pReal/3.0_pReal*PI)
|
|
|
|
|
Y3=2*RHO**(1.0_pReal/3.0_pReal)*cos(PHI/3.0_pReal+4.0_pReal/3.0_pReal*PI)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
EW1=Y1-R/3.0_pReal
|
|
|
|
|
EW2=Y2-R/3.0_pReal
|
|
|
|
|
EW3=Y3-R/3.0_pReal
|
|
|
|
|
C1=ABS(EW1-EW2)
|
|
|
|
|
C2=ABS(EW2-EW3)
|
|
|
|
|
C3=ABS(EW3-EW1)
|
|
|
|
|
|
|
|
|
|
IF(C1.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! EW1 is equal to EW2
|
2007-03-20 19:25:22 +05:30
|
|
|
|
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
2007-03-27 20:43:08 +05:30
|
|
|
|
M1=M-EW1*math_I3
|
|
|
|
|
M2=M-EW2*math_I3
|
2008-07-23 18:19:40 +05:30
|
|
|
|
EB3=math_mul33x33(M1,M2)*D3
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2007-03-27 20:43:08 +05:30
|
|
|
|
EB1=math_I3-EB3
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! both EB2 and EW2 are set to zero so that they do not
|
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
|
EW2=0.0_pReal
|
|
|
|
|
ELSE IF(C2.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! EW2 is equal to EW3
|
2007-03-20 19:25:22 +05:30
|
|
|
|
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
2007-03-27 20:43:08 +05:30
|
|
|
|
M2=M-math_I3*EW2
|
|
|
|
|
M3=M-math_I3*EW3
|
2008-07-23 18:19:40 +05:30
|
|
|
|
EB1=math_mul33x33(M2,M3)*D1
|
2007-03-27 20:43:08 +05:30
|
|
|
|
EB2=math_I3-EB1
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
|
EW3=0.0_pReal
|
|
|
|
|
ELSE IF(C3.LT.TOL) THEN
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! EW1 is equal to EW3
|
2007-03-20 19:25:22 +05:30
|
|
|
|
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
2007-03-27 20:43:08 +05:30
|
|
|
|
M1=M-math_I3*EW1
|
|
|
|
|
M3=M-math_I3*EW3
|
2008-07-23 18:19:40 +05:30
|
|
|
|
EB2=math_mul33x33(M1,M3)*D2
|
2007-03-27 20:43:08 +05:30
|
|
|
|
EB1=math_I3-EB2
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
|
|
|
! contribute to U in PDECOMPOSITION
|
2007-03-20 19:25:22 +05:30
|
|
|
|
EW3=0.0_pReal
|
|
|
|
|
ELSE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
! all three eigenvectors are different
|
2007-03-20 19:25:22 +05:30
|
|
|
|
D1=1.0_pReal/(EW1-EW2)/(EW1-EW3)
|
|
|
|
|
D2=1.0_pReal/(EW2-EW1)/(EW2-EW3)
|
|
|
|
|
D3=1.0_pReal/(EW3-EW1)/(EW3-EW2)
|
2007-03-27 20:43:08 +05:30
|
|
|
|
M1=M-EW1*math_I3
|
|
|
|
|
M2=M-EW2*math_I3
|
|
|
|
|
M3=M-EW3*math_I3
|
2008-07-23 18:19:40 +05:30
|
|
|
|
EB1=math_mul33x33(M2,M3)*D1
|
|
|
|
|
EB2=math_mul33x33(M1,M3)*D2
|
|
|
|
|
EB3=math_mul33x33(M1,M2)*D3
|
2008-07-09 01:08:22 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
END IF
|
|
|
|
|
END IF
|
|
|
|
|
RETURN
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!**********************************************************************
|
|
|
|
|
!**** HAUPTINVARIANTEN HI1M, HI2M, HI3M DER 3X3 MATRIX M
|
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
|
PURE SUBROUTINE math_hi(M,HI1M,HI2M,HI3M)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-12-14 16:32:10 +05:30
|
|
|
|
real(pReal), intent(in) :: M(3,3)
|
|
|
|
|
real(pReal), intent(out) :: HI1M, HI2M, HI3M
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
HI1M=M(1,1)+M(2,2)+M(3,3)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
HI2M=HI1M**2/2.0_pReal-(M(1,1)**2+M(2,2)**2+M(3,3)**2)/2.0_pReal-M(1,2)*M(2,1)-M(1,3)*M(3,1)-M(2,3)*M(3,2)
|
2007-03-22 20:18:16 +05:30
|
|
|
|
HI3M=math_det3x3(M)
|
|
|
|
|
! QUESTION: is 3rd equiv det(M) ?? if yes, use function math_det !agreed on YES
|
2007-03-20 19:25:22 +05:30
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SUBROUTINE get_seed(seed)
|
|
|
|
|
!
|
|
|
|
|
!*******************************************************************************
|
|
|
|
|
!
|
|
|
|
|
!! GET_SEED returns a seed for the random number generator.
|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
|
! Discussion:
|
|
|
|
|
!
|
|
|
|
|
! The seed depends on the current time, and ought to be (slightly)
|
|
|
|
|
! different every millisecond. Once the seed is obtained, a random
|
|
|
|
|
! number generator should be called a few times to further process
|
|
|
|
|
! the seed.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 27 June 2000
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! John Burkardt
|
|
|
|
|
!
|
|
|
|
|
! Parameters:
|
|
|
|
|
!
|
|
|
|
|
! Output, integer SEED, a pseudorandom seed value.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 29 April 2005
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! Franz Roters
|
|
|
|
|
!
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt) seed
|
|
|
|
|
real(pReal) temp
|
|
|
|
|
character ( len = 10 ) time
|
|
|
|
|
character ( len = 8 ) today
|
|
|
|
|
integer(pInt) values(8)
|
|
|
|
|
character ( len = 5 ) zone
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
call date_and_time ( today, time, zone, values )
|
|
|
|
|
|
|
|
|
|
temp = 0.0D+00
|
|
|
|
|
|
|
|
|
|
temp = temp + dble ( values(2) - 1 ) / 11.0D+00
|
|
|
|
|
temp = temp + dble ( values(3) - 1 ) / 30.0D+00
|
|
|
|
|
temp = temp + dble ( values(5) ) / 23.0D+00
|
|
|
|
|
temp = temp + dble ( values(6) ) / 59.0D+00
|
|
|
|
|
temp = temp + dble ( values(7) ) / 59.0D+00
|
|
|
|
|
temp = temp + dble ( values(8) ) / 999.0D+00
|
|
|
|
|
temp = temp / 6.0D+00
|
|
|
|
|
|
|
|
|
|
if ( temp <= 0.0D+00 ) then
|
|
|
|
|
temp = 1.0D+00 / 3.0D+00
|
|
|
|
|
else if ( 1.0D+00 <= temp ) then
|
|
|
|
|
temp = 2.0D+00 / 3.0D+00
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
seed = int ( dble ( huge ( 1 ) ) * temp , pInt)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
! Never use a seed of 0 or maximum integer.
|
|
|
|
|
!
|
2007-03-20 19:25:22 +05:30
|
|
|
|
if ( seed == 0 ) then
|
|
|
|
|
seed = 1
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
if ( seed == huge ( 1 ) ) then
|
|
|
|
|
seed = seed - 1
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
subroutine halton ( ndim, r )
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
!*******************************************************************************
|
|
|
|
|
!
|
|
|
|
|
!! HALTON computes the next element in the Halton sequence.
|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 09 March 2003
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! John Burkardt
|
|
|
|
|
!
|
|
|
|
|
! Parameters:
|
|
|
|
|
!
|
|
|
|
|
! Input, integer NDIM, the dimension of the element.
|
|
|
|
|
!
|
|
|
|
|
! Output, real R(NDIM), the next element of the current Halton
|
|
|
|
|
! sequence.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 29 April 2005
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! Franz Roters
|
|
|
|
|
!
|
2007-03-20 19:25:22 +05:30
|
|
|
|
use prec, ONLY: pReal, pInt
|
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt) ndim
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt) base(ndim)
|
|
|
|
|
real(pReal) r(ndim)
|
|
|
|
|
integer(pInt) seed
|
|
|
|
|
integer(pInt) value(1)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
call halton_memory ( 'GET', 'SEED', 1, value )
|
|
|
|
|
seed = value(1)
|
|
|
|
|
|
|
|
|
|
call halton_memory ( 'GET', 'BASE', ndim, base )
|
|
|
|
|
|
|
|
|
|
call i_to_halton ( seed, base, ndim, r )
|
|
|
|
|
|
|
|
|
|
value(1) = 1
|
|
|
|
|
call halton_memory ( 'INC', 'SEED', 1, value )
|
|
|
|
|
|
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
subroutine halton_memory ( action, name, ndim, value )
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
!*******************************************************************************
|
|
|
|
|
!
|
|
|
|
|
!! HALTON_MEMORY sets or returns quantities associated with the Halton sequence.
|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 09 March 2003
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! John Burkardt
|
|
|
|
|
!
|
|
|
|
|
! Parameters:
|
|
|
|
|
!
|
|
|
|
|
! Input, character ( len = * ) ACTION, the desired action.
|
|
|
|
|
! 'GET' means get the value of a particular quantity.
|
|
|
|
|
! 'SET' means set the value of a particular quantity.
|
|
|
|
|
! 'INC' means increment the value of a particular quantity.
|
|
|
|
|
! (Only the SEED can be incremented.)
|
|
|
|
|
!
|
|
|
|
|
! Input, character ( len = * ) NAME, the name of the quantity.
|
|
|
|
|
! 'BASE' means the Halton base or bases.
|
|
|
|
|
! 'NDIM' means the spatial dimension.
|
|
|
|
|
! 'SEED' means the current Halton seed.
|
|
|
|
|
!
|
|
|
|
|
! Input/output, integer NDIM, the dimension of the quantity.
|
|
|
|
|
! If ACTION is 'SET' and NAME is 'BASE', then NDIM is input, and
|
|
|
|
|
! is the number of entries in VALUE to be put into BASE.
|
|
|
|
|
!
|
|
|
|
|
! Input/output, integer VALUE(NDIM), contains a value.
|
|
|
|
|
! If ACTION is 'SET', then on input, VALUE contains values to be assigned
|
|
|
|
|
! to the internal variable.
|
|
|
|
|
! If ACTION is 'GET', then on output, VALUE contains the values of
|
|
|
|
|
! the specified internal variable.
|
|
|
|
|
! If ACTION is 'INC', then on input, VALUE contains the increment to
|
|
|
|
|
! be added to the specified internal variable.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 29 April 2005
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! Franz Roters
|
|
|
|
|
!
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
character ( len = * ) action
|
|
|
|
|
integer(pInt), allocatable, save :: base(:)
|
|
|
|
|
logical, save :: first_call = .true.
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
character ( len = * ) name
|
|
|
|
|
integer(pInt) ndim
|
|
|
|
|
integer(pInt), save :: ndim_save = 0
|
|
|
|
|
integer(pInt), save :: seed = 1
|
|
|
|
|
integer(pInt) value(*)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
if ( first_call ) then
|
|
|
|
|
ndim_save = 1
|
|
|
|
|
allocate ( base(ndim_save) )
|
|
|
|
|
base(1) = 2
|
|
|
|
|
first_call = .false.
|
|
|
|
|
end if
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
! Set
|
|
|
|
|
!
|
2007-03-20 19:25:22 +05:30
|
|
|
|
if ( action(1:1) == 'S' .or. action(1:1) == 's' ) then
|
|
|
|
|
|
|
|
|
|
if ( name(1:1) == 'B' .or. name(1:1) == 'b' ) then
|
|
|
|
|
|
|
|
|
|
if ( ndim_save /= ndim ) then
|
2010-05-06 19:37:21 +05:30
|
|
|
|
deallocate ( base )
|
|
|
|
|
ndim_save = ndim
|
|
|
|
|
allocate ( base(ndim_save) )
|
2007-03-20 19:25:22 +05:30
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
base(1:ndim) = value(1:ndim)
|
|
|
|
|
|
|
|
|
|
else if ( name(1:1) == 'N' .or. name(1:1) == 'n' ) then
|
|
|
|
|
|
|
|
|
|
if ( ndim_save /= value(1) ) then
|
2010-05-06 19:37:21 +05:30
|
|
|
|
deallocate ( base )
|
|
|
|
|
ndim_save = value(1)
|
|
|
|
|
allocate ( base(ndim_save) )
|
|
|
|
|
do i = 1, ndim_save
|
|
|
|
|
base(i) = prime ( i )
|
|
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
|
else
|
2010-05-06 19:37:21 +05:30
|
|
|
|
ndim_save = value(1)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
end if
|
|
|
|
|
else if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then
|
|
|
|
|
seed = value(1)
|
|
|
|
|
end if
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
! Get
|
|
|
|
|
!
|
2007-03-20 19:25:22 +05:30
|
|
|
|
else if ( action(1:1) == 'G' .or. action(1:1) == 'g' ) then
|
|
|
|
|
if ( name(1:1) == 'B' .or. name(1:1) == 'b' ) then
|
|
|
|
|
if ( ndim /= ndim_save ) then
|
|
|
|
|
deallocate ( base )
|
|
|
|
|
ndim_save = ndim
|
|
|
|
|
allocate ( base(ndim_save) )
|
|
|
|
|
do i = 1, ndim_save
|
|
|
|
|
base(i) = prime(i)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
|
end if
|
|
|
|
|
value(1:ndim_save) = base(1:ndim_save)
|
|
|
|
|
else if ( name(1:1) == 'N' .or. name(1:1) == 'n' ) then
|
|
|
|
|
value(1) = ndim_save
|
|
|
|
|
else if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then
|
|
|
|
|
value(1) = seed
|
|
|
|
|
end if
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
! Increment
|
|
|
|
|
!
|
2007-03-20 19:25:22 +05:30
|
|
|
|
else if ( action(1:1) == 'I' .or. action(1:1) == 'i' ) then
|
|
|
|
|
if ( name(1:1) == 'S' .or. name(1:1) == 's' ) then
|
|
|
|
|
seed = seed + value(1)
|
|
|
|
|
end if
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
subroutine halton_ndim_set ( ndim )
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
!*******************************************************************************
|
|
|
|
|
!
|
|
|
|
|
!! HALTON_NDIM_SET sets the dimension for a Halton sequence.
|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 26 February 2001
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! John Burkardt
|
|
|
|
|
!
|
|
|
|
|
! Parameters:
|
|
|
|
|
!
|
|
|
|
|
! Input, integer NDIM, the dimension of the Halton vectors.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 29 April 2005
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! Franz Roters
|
|
|
|
|
!
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt) ndim
|
|
|
|
|
integer(pInt) value(1)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
value(1) = ndim
|
|
|
|
|
call halton_memory ( 'SET', 'NDIM', 1, value )
|
|
|
|
|
|
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
subroutine halton_seed_set ( seed )
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
!*******************************************************************************
|
|
|
|
|
!
|
|
|
|
|
!! HALTON_SEED_SET sets the "seed" for the Halton sequence.
|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
|
! Discussion:
|
|
|
|
|
!
|
|
|
|
|
! Calling HALTON repeatedly returns the elements of the
|
|
|
|
|
! Halton sequence in order, starting with element number 1.
|
|
|
|
|
! An internal counter, called SEED, keeps track of the next element
|
|
|
|
|
! to return. Each time the routine is called, the SEED-th element
|
|
|
|
|
! is computed, and then SEED is incremented by 1.
|
|
|
|
|
!
|
|
|
|
|
! To restart the Halton sequence, it is only necessary to reset
|
|
|
|
|
! SEED to 1. It might also be desirable to reset SEED to some other value.
|
|
|
|
|
! This routine allows the user to specify any value of SEED.
|
|
|
|
|
!
|
|
|
|
|
! The default value of SEED is 1, which restarts the Halton sequence.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 26 February 2001
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! John Burkardt
|
|
|
|
|
!
|
|
|
|
|
! Parameters:
|
|
|
|
|
!
|
|
|
|
|
! Input, integer SEED, the seed for the Halton sequence.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 29 April 2005
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! Franz Roters
|
|
|
|
|
!
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt), parameter :: ndim = 1
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt) seed
|
|
|
|
|
integer(pInt) value(ndim)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
value(1) = seed
|
|
|
|
|
call halton_memory ( 'SET', 'SEED', ndim, value )
|
|
|
|
|
|
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
subroutine i_to_halton ( seed, base, ndim, r )
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
!*******************************************************************************
|
|
|
|
|
!
|
|
|
|
|
!! I_TO_HALTON computes an element of a Halton sequence.
|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
|
! Reference:
|
|
|
|
|
!
|
|
|
|
|
! J H Halton,
|
|
|
|
|
! On the efficiency of certain quasi-random sequences of points
|
|
|
|
|
! in evaluating multi-dimensional integrals,
|
|
|
|
|
! Numerische Mathematik,
|
|
|
|
|
! Volume 2, pages 84-90, 1960.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 26 February 2001
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! John Burkardt
|
|
|
|
|
!
|
|
|
|
|
! Parameters:
|
|
|
|
|
!
|
|
|
|
|
! Input, integer SEED, the index of the desired element.
|
|
|
|
|
! Only the absolute value of SEED is considered. SEED = 0 is allowed,
|
|
|
|
|
! and returns R = 0.
|
|
|
|
|
!
|
|
|
|
|
! Input, integer BASE(NDIM), the Halton bases, which should be
|
|
|
|
|
! distinct prime numbers. This routine only checks that each base
|
|
|
|
|
! is greater than 1.
|
|
|
|
|
!
|
|
|
|
|
! Input, integer NDIM, the dimension of the sequence.
|
|
|
|
|
!
|
|
|
|
|
! Output, real R(NDIM), the SEED-th element of the Halton sequence
|
|
|
|
|
! for the given bases.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 29 April 2005
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! Franz Roters
|
|
|
|
|
!
|
2007-03-20 19:25:22 +05:30
|
|
|
|
use prec, ONLY: pReal, pInt
|
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt) ndim
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt) base(ndim)
|
|
|
|
|
real(pReal) base_inv(ndim)
|
|
|
|
|
integer(pInt) digit(ndim)
|
|
|
|
|
integer(pInt) i
|
|
|
|
|
real(pReal) r(ndim)
|
|
|
|
|
integer(pInt) seed
|
|
|
|
|
integer(pInt) seed2(ndim)
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
seed2(1:ndim) = abs ( seed )
|
|
|
|
|
|
|
|
|
|
r(1:ndim) = 0.0_pReal
|
|
|
|
|
|
|
|
|
|
if ( any ( base(1:ndim) <= 1 ) ) then
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
|
!$OMP CRITICAL (write2out)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
write ( *, '(a)' ) ' '
|
|
|
|
|
write ( *, '(a)' ) 'I_TO_HALTON - Fatal error!'
|
|
|
|
|
write ( *, '(a)' ) ' An input base BASE is <= 1!'
|
|
|
|
|
do i = 1, ndim
|
|
|
|
|
write ( *, '(i6,i6)' ) i, base(i)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
|
call flush(6)
|
openmp parallelization working again (at least for j2 and nonlocal constitutive model).
In order to keep it like that, please follow these simple rules:
DON'T use implicit array subscripts:
example: real, dimension(3,3) :: A,B
A(:,2) = B(:,1) <--- DON'T USE
A(1:3,2) = B(1:3,1) <--- BETTER USE
In many cases the use of explicit array subscripts is inevitable for parallelization. Additionally, it is an easy means to prevent memory leaks.
Enclose all write statements with the following:
!$OMP CRITICAL (write2out)
<your write statement>
!$OMP END CRITICAL (write2out)
Whenever you change something in the code and are not sure if it affects parallelization and leads to nonconforming behavior, please ask me and/or Franz to check this.
2011-03-17 16:16:17 +05:30
|
|
|
|
!$OMP END CRITICAL (write2out)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
stop
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
base_inv(1:ndim) = 1.0_pReal / real ( base(1:ndim), pReal )
|
|
|
|
|
|
|
|
|
|
do while ( any ( seed2(1:ndim) /= 0 ) )
|
|
|
|
|
digit(1:ndim) = mod ( seed2(1:ndim), base(1:ndim) )
|
2007-03-21 15:50:25 +05:30
|
|
|
|
r(1:ndim) = r(1:ndim) + real ( digit(1:ndim), pReal ) * base_inv(1:ndim)
|
|
|
|
|
base_inv(1:ndim) = base_inv(1:ndim) / real ( base(1:ndim), pReal )
|
2007-03-20 19:25:22 +05:30
|
|
|
|
seed2(1:ndim) = seed2(1:ndim) / base(1:ndim)
|
2009-06-29 20:59:07 +05:30
|
|
|
|
enddo
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2009-06-29 20:59:07 +05:30
|
|
|
|
ENDSUBROUTINE
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
function prime ( n )
|
2007-03-21 15:50:25 +05:30
|
|
|
|
!
|
|
|
|
|
!*******************************************************************************
|
|
|
|
|
!
|
|
|
|
|
!! PRIME returns any of the first PRIME_MAX prime numbers.
|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
|
! Note:
|
|
|
|
|
!
|
|
|
|
|
! PRIME_MAX is 1500, and the largest prime stored is 12553.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 21 June 2002
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! John Burkardt
|
|
|
|
|
!
|
|
|
|
|
! Reference:
|
|
|
|
|
!
|
|
|
|
|
! Milton Abramowitz and Irene Stegun,
|
|
|
|
|
! Handbook of Mathematical Functions,
|
|
|
|
|
! US Department of Commerce, 1964, pages 870-873.
|
|
|
|
|
!
|
|
|
|
|
! Daniel Zwillinger,
|
|
|
|
|
! CRC Standard Mathematical Tables and Formulae,
|
|
|
|
|
! 30th Edition,
|
|
|
|
|
! CRC Press, 1996, pages 95-98.
|
|
|
|
|
!
|
|
|
|
|
! Parameters:
|
|
|
|
|
!
|
|
|
|
|
! Input, integer N, the index of the desired prime number.
|
|
|
|
|
! N = -1 returns PRIME_MAX, the index of the largest prime available.
|
|
|
|
|
! N = 0 is legal, returning PRIME = 1.
|
|
|
|
|
! It should generally be true that 0 <= N <= PRIME_MAX.
|
|
|
|
|
!
|
|
|
|
|
! Output, integer PRIME, the N-th prime. If N is out of range, PRIME
|
|
|
|
|
! is returned as 0.
|
|
|
|
|
!
|
|
|
|
|
! Modified:
|
|
|
|
|
!
|
|
|
|
|
! 29 April 2005
|
|
|
|
|
!
|
|
|
|
|
! Author:
|
|
|
|
|
!
|
|
|
|
|
! Franz Roters
|
|
|
|
|
!
|
|
|
|
|
use prec, only: pReal, pInt
|
2007-03-20 19:25:22 +05:30
|
|
|
|
implicit none
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt), parameter :: prime_max = 1500
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
integer(pInt), save :: icall = 0
|
|
|
|
|
integer(pInt) n
|
|
|
|
|
integer(pInt), save, dimension ( prime_max ) :: npvec
|
|
|
|
|
integer(pInt) prime
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
if ( icall == 0 ) then
|
|
|
|
|
|
|
|
|
|
icall = 1
|
|
|
|
|
|
2007-03-21 15:50:25 +05:30
|
|
|
|
npvec(1:100) = (/&
|
|
|
|
|
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, &
|
|
|
|
|
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, &
|
|
|
|
|
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, &
|
|
|
|
|
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, &
|
|
|
|
|
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, &
|
|
|
|
|
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, &
|
|
|
|
|
283, 293, 307, 311, 313, 317, 331, 337, 347, 349, &
|
|
|
|
|
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, &
|
|
|
|
|
419, 421, 431, 433, 439, 443, 449, 457, 461, 463, &
|
|
|
|
|
467, 479, 487, 491, 499, 503, 509, 521, 523, 541 /)
|
|
|
|
|
|
|
|
|
|
npvec(101:200) = (/ &
|
|
|
|
|
547, 557, 563, 569, 571, 577, 587, 593, 599, 601, &
|
|
|
|
|
607, 613, 617, 619, 631, 641, 643, 647, 653, 659, &
|
|
|
|
|
661, 673, 677, 683, 691, 701, 709, 719, 727, 733, &
|
|
|
|
|
739, 743, 751, 757, 761, 769, 773, 787, 797, 809, &
|
|
|
|
|
811, 821, 823, 827, 829, 839, 853, 857, 859, 863, &
|
|
|
|
|
877, 881, 883, 887, 907, 911, 919, 929, 937, 941, &
|
|
|
|
|
947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, &
|
|
|
|
|
1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, &
|
|
|
|
|
1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, &
|
|
|
|
|
1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223 /)
|
|
|
|
|
|
|
|
|
|
npvec(201:300) = (/ &
|
|
|
|
|
1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, &
|
|
|
|
|
1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, &
|
|
|
|
|
1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, &
|
|
|
|
|
1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, &
|
|
|
|
|
1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, &
|
|
|
|
|
1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, &
|
|
|
|
|
1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, &
|
|
|
|
|
1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, &
|
2009-06-29 20:59:07 +05:30
|
|
|
|
1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, &
|
2007-03-21 15:50:25 +05:30
|
|
|
|
1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987 /)
|
|
|
|
|
|
|
|
|
|
npvec(301:400) = (/ &
|
|
|
|
|
1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, &
|
|
|
|
|
2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, &
|
|
|
|
|
2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, &
|
|
|
|
|
2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, &
|
|
|
|
|
2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, &
|
|
|
|
|
2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, &
|
|
|
|
|
2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, &
|
|
|
|
|
2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, &
|
|
|
|
|
2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, &
|
|
|
|
|
2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741 /)
|
|
|
|
|
|
|
|
|
|
npvec(401:500) = (/ &
|
|
|
|
|
2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, &
|
|
|
|
|
2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, &
|
|
|
|
|
2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, &
|
|
|
|
|
3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, &
|
|
|
|
|
3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, &
|
|
|
|
|
3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, &
|
|
|
|
|
3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, &
|
|
|
|
|
3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, &
|
|
|
|
|
3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, &
|
|
|
|
|
3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571 /)
|
|
|
|
|
|
|
|
|
|
npvec(501:600) = (/ &
|
|
|
|
|
3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, &
|
|
|
|
|
3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, &
|
|
|
|
|
3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, &
|
|
|
|
|
3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, &
|
|
|
|
|
3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, &
|
|
|
|
|
4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, &
|
|
|
|
|
4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, &
|
|
|
|
|
4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, &
|
|
|
|
|
4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, &
|
|
|
|
|
4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409 /)
|
|
|
|
|
|
|
|
|
|
npvec(601:700) = (/ &
|
|
|
|
|
4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, &
|
|
|
|
|
4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, &
|
|
|
|
|
4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, &
|
|
|
|
|
4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, &
|
|
|
|
|
4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, &
|
|
|
|
|
4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, &
|
|
|
|
|
4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, &
|
|
|
|
|
5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, &
|
|
|
|
|
5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, &
|
|
|
|
|
5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279 /)
|
|
|
|
|
|
|
|
|
|
npvec(701:800) = (/ &
|
|
|
|
|
5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, &
|
|
|
|
|
5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, &
|
|
|
|
|
5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, &
|
|
|
|
|
5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, &
|
|
|
|
|
5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, &
|
|
|
|
|
5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, &
|
|
|
|
|
5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, &
|
|
|
|
|
5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, &
|
|
|
|
|
5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, &
|
|
|
|
|
6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133 /)
|
|
|
|
|
|
|
|
|
|
npvec(801:900) = (/ &
|
|
|
|
|
6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, &
|
|
|
|
|
6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, &
|
|
|
|
|
6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, &
|
|
|
|
|
6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, &
|
|
|
|
|
6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, &
|
|
|
|
|
6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, &
|
|
|
|
|
6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, &
|
|
|
|
|
6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, &
|
|
|
|
|
6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, &
|
|
|
|
|
6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997 /)
|
|
|
|
|
|
|
|
|
|
npvec(901:1000) = (/ &
|
|
|
|
|
7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, &
|
|
|
|
|
7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, &
|
|
|
|
|
7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, &
|
|
|
|
|
7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, &
|
|
|
|
|
7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, &
|
|
|
|
|
7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, &
|
|
|
|
|
7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, &
|
|
|
|
|
7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, &
|
|
|
|
|
7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, &
|
|
|
|
|
7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919 /)
|
|
|
|
|
|
|
|
|
|
npvec(1001:1100) = (/ &
|
|
|
|
|
7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, &
|
|
|
|
|
8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, &
|
|
|
|
|
8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, &
|
|
|
|
|
8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, &
|
|
|
|
|
8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, &
|
|
|
|
|
8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, &
|
|
|
|
|
8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, &
|
|
|
|
|
8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, &
|
|
|
|
|
8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, &
|
|
|
|
|
8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831 /)
|
|
|
|
|
|
|
|
|
|
npvec(1101:1200) = (/ &
|
|
|
|
|
8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, &
|
|
|
|
|
8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, &
|
|
|
|
|
9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, &
|
|
|
|
|
9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, &
|
|
|
|
|
9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, &
|
|
|
|
|
9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, &
|
|
|
|
|
9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, &
|
|
|
|
|
9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, &
|
|
|
|
|
9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, &
|
|
|
|
|
9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733 /)
|
|
|
|
|
|
|
|
|
|
npvec(1201:1300) = (/ &
|
|
|
|
|
9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, &
|
|
|
|
|
9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, &
|
|
|
|
|
9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, &
|
|
|
|
|
10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, &
|
|
|
|
|
10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, &
|
|
|
|
|
10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, &
|
|
|
|
|
10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, &
|
|
|
|
|
10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, &
|
|
|
|
|
10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, &
|
|
|
|
|
10589,10597,10601,10607,10613,10627,10631,10639,10651,10657 /)
|
|
|
|
|
|
|
|
|
|
npvec(1301:1400) = (/ &
|
|
|
|
|
10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, &
|
|
|
|
|
10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, &
|
|
|
|
|
10861,10867,10883,10889,10891,10903,10909,19037,10939,10949, &
|
|
|
|
|
10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, &
|
|
|
|
|
11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, &
|
|
|
|
|
11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, &
|
|
|
|
|
11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, &
|
|
|
|
|
11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, &
|
|
|
|
|
11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, &
|
|
|
|
|
11549,11551,11579,11587,11593,11597,11617,11621,11633,11657 /)
|
|
|
|
|
|
|
|
|
|
npvec(1401:1500) = (/ &
|
|
|
|
|
11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, &
|
|
|
|
|
11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, &
|
|
|
|
|
11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, &
|
|
|
|
|
11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, &
|
|
|
|
|
12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, &
|
|
|
|
|
12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, &
|
|
|
|
|
12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, &
|
|
|
|
|
12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, &
|
|
|
|
|
12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, &
|
|
|
|
|
12491,12497,12503,12511,12517,12527,12539,12541,12547,12553 /)
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
if ( n == -1 ) then
|
|
|
|
|
prime = prime_max
|
|
|
|
|
else if ( n == 0 ) then
|
|
|
|
|
prime = 1
|
|
|
|
|
else if ( n <= prime_max ) then
|
|
|
|
|
prime = npvec(n)
|
|
|
|
|
else
|
|
|
|
|
prime = 0
|
2008-07-09 01:08:22 +05:30
|
|
|
|
!$OMP CRITICAL (write2out)
|
2007-03-29 21:02:52 +05:30
|
|
|
|
write ( 6, '(a)' ) ' '
|
|
|
|
|
write ( 6, '(a)' ) 'PRIME - Fatal error!'
|
|
|
|
|
write ( 6, '(a,i6)' ) ' Illegal prime index N = ', n
|
|
|
|
|
write ( 6, '(a,i6)' ) ' N must be between 0 and PRIME_MAX =',prime_max
|
2007-03-20 19:25:22 +05:30
|
|
|
|
call flush(6)
|
2008-07-09 01:08:22 +05:30
|
|
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
|
|
2007-03-20 19:25:22 +05:30
|
|
|
|
stop
|
|
|
|
|
end if
|
|
|
|
|
|
|
|
|
|
return
|
2007-03-21 15:50:25 +05:30
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
|
!**************************************************************************
|
|
|
|
|
! volume of tetrahedron given by four vertices
|
|
|
|
|
!**************************************************************************
|
2010-05-06 19:37:21 +05:30
|
|
|
|
pure function math_volTetrahedron(v1,v2,v3,v4)
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
|
|
use prec, only: pReal
|
|
|
|
|
implicit none
|
|
|
|
|
|
|
|
|
|
real(pReal) math_volTetrahedron
|
|
|
|
|
real(pReal), dimension (3), intent(in) :: v1,v2,v3,v4
|
|
|
|
|
real(pReal), dimension (3,3) :: m
|
2007-03-20 19:25:22 +05:30
|
|
|
|
|
2009-01-20 00:40:58 +05:30
|
|
|
|
m(:,1) = v1-v2
|
|
|
|
|
m(:,2) = v2-v3
|
|
|
|
|
m(:,3) = v3-v4
|
|
|
|
|
|
|
|
|
|
math_volTetrahedron = math_det3x3(m)/6.0_pReal
|
|
|
|
|
return
|
|
|
|
|
|
2010-05-06 19:37:21 +05:30
|
|
|
|
endfunction
|
2009-01-20 00:40:58 +05:30
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
END MODULE math
|