DAMASK_EICMD/src/math.f90

1431 lines
54 KiB
Fortran
Raw Normal View History

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Mathematical library, including random number generation and tensor representations
!--------------------------------------------------------------------------------------------------
module math
2019-05-11 15:21:57 +05:30
use prec
2019-06-10 00:50:38 +05:30
use IO
use numerics
2019-05-11 15:21:57 +05:30
implicit none
public
#if __INTEL_COMPILER >= 1900
! do not make use associated entities available to other modules
private :: &
prec, &
IO, &
numerics
#endif
real(pReal), parameter :: PI = acos(-1.0_pReal) !< ratio of a circle's circumference to its diameter
real(pReal), parameter :: INDEG = 180.0_pReal/PI !< conversion from radian into degree
real(pReal), parameter :: INRAD = PI/180.0_pReal !< conversion from degree into radian
complex(pReal), parameter :: TWOPIIMG = cmplx(0.0_pReal,2.0_pReal*PI) !< Re(0.0), Im(2xPi)
real(pReal), dimension(3,3), parameter :: &
math_I3 = reshape([&
2019-05-11 15:21:57 +05:30
1.0_pReal,0.0_pReal,0.0_pReal, &
0.0_pReal,1.0_pReal,0.0_pReal, &
0.0_pReal,0.0_pReal,1.0_pReal &
],[3,3]) !< 3x3 Identity
real(pReal), dimension(6), parameter, private :: &
NRMMANDEL = [&
2019-05-11 15:21:57 +05:30
1.0_pReal, 1.0_pReal, 1.0_pReal, &
2020-02-04 02:09:00 +05:30
sqrt(2.0_pReal), sqrt(2.0_pReal), sqrt(2.0_pReal) ] !< forward weighting for Mandel notation
2019-05-11 15:21:57 +05:30
2020-02-04 02:09:00 +05:30
real(pReal), dimension(6), parameter, private :: &
INVNRMMANDEL = 1.0_pReal/NRMMANDEL !< backward weighting for Mandel notation
2019-05-11 15:21:57 +05:30
integer, dimension (2,6), parameter, private :: &
MAPNYE = reshape([&
2019-05-11 15:21:57 +05:30
1,1, &
2,2, &
3,3, &
1,2, &
2,3, &
1,3 &
],[2,6]) !< arrangement in Nye notation.
integer, dimension (2,6), parameter, private :: &
MAPVOIGT = reshape([&
2019-05-11 15:21:57 +05:30
1,1, &
2,2, &
3,3, &
2,3, &
1,3, &
1,2 &
],[2,6]) !< arrangement in Voigt notation
integer, dimension (2,9), parameter, private :: &
MAPPLAIN = reshape([&
2019-05-11 15:21:57 +05:30
1,1, &
1,2, &
1,3, &
2,1, &
2,2, &
2,3, &
3,1, &
3,2, &
3,3 &
],[2,9]) !< arrangement in Plain notation
2020-03-01 14:17:20 +05:30
interface math_mul33xx33
module procedure math_tensordot
end interface math_mul33xx33
!---------------------------------------------------------------------------------------------------
private :: &
unitTest
contains
!--------------------------------------------------------------------------------------------------
2019-05-11 15:21:57 +05:30
!> @brief initialization of random seed generator and internal checks
!--------------------------------------------------------------------------------------------------
subroutine math_init
2019-05-11 15:21:57 +05:30
integer :: i
real(pReal), dimension(4) :: randTest
integer :: randSize
integer, dimension(:), allocatable :: randInit
2020-03-01 14:17:20 +05:30
2020-02-01 13:34:02 +05:30
write(6,'(/,a)') ' <<<+- math init -+>>>'; flush(6)
2019-05-11 15:21:57 +05:30
call random_seed(size=randSize)
allocate(randInit(randSize))
if (randomSeed > 0) then
randInit = randomSeed
else
call random_seed()
call random_seed(get = randInit)
randInit(2:randSize) = randInit(1)
endif
2020-02-01 13:34:02 +05:30
call random_seed(put=randInit)
2019-05-11 15:21:57 +05:30
do i = 1, 4
call random_number(randTest(i))
enddo
2020-02-01 13:34:02 +05:30
write(6,'(a,i2)') ' size of random seed: ', randSize
write(6,'(a,i0)') ' value of random seed: ', randInit(1)
2019-05-11 15:21:57 +05:30
write(6,'(a,4(/,26x,f17.14),/)') ' start of random sequence: ', randTest
call random_seed(put = randInit)
2020-02-04 02:09:00 +05:30
call unitTest
end subroutine math_init
!--------------------------------------------------------------------------------------------------
!> @brief Quicksort algorithm for two-dimensional integer arrays
2019-02-11 14:38:34 +05:30
! Sorting is done with respect to array(sort,:) and keeps array(/=sort,:) linked to it.
! default: sort=1
!--------------------------------------------------------------------------------------------------
recursive subroutine math_sort(a, istart, iend, sortDim)
2007-04-03 13:47:58 +05:30
2019-05-11 15:21:57 +05:30
integer, dimension(:,:), intent(inout) :: a
integer, intent(in),optional :: istart,iend, sortDim
integer :: ipivot,s,e,d
2019-05-11 15:21:57 +05:30
if(present(istart)) then
s = istart
else
s = lbound(a,2)
endif
2019-05-11 15:21:57 +05:30
if(present(iend)) then
e = iend
else
e = ubound(a,2)
endif
2020-03-01 14:17:20 +05:30
2019-06-16 00:12:16 +05:30
if(present(sortDim)) then
2019-05-11 15:21:57 +05:30
d = sortDim
else
d = 1
endif
2019-05-11 15:21:57 +05:30
if (s < e) then
ipivot = qsort_partition(a,s, e, d)
call math_sort(a, s, ipivot-1, d)
call math_sort(a, ipivot+1, e, d)
endif
2007-04-03 13:47:58 +05:30
2019-05-11 15:21:57 +05:30
contains
!-------------------------------------------------------------------------------------------------
!> @brief Partitioning required for quicksort
!-------------------------------------------------------------------------------------------------
integer function qsort_partition(a, istart, iend, sort)
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
integer, dimension(:,:), intent(inout) :: a
integer, intent(in) :: istart,iend,sort
integer, dimension(size(a,1)) :: tmp
integer :: i,j
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
do
! find the first element on the right side less than or equal to the pivot point
do j = iend, istart, -1
if (a(sort,j) <= a(sort,istart)) exit
enddo
! find the first element on the left side greater than the pivot point
do i = istart, iend
if (a(sort,i) > a(sort,istart)) exit
enddo
2020-02-04 04:18:09 +05:30
cross: if (i >= j) then ! exchange left value with pivot and return with the partition index
2019-05-11 15:21:57 +05:30
tmp = a(:,istart)
a(:,istart) = a(:,j)
a(:,j) = tmp
qsort_partition = j
return
2020-02-04 04:18:09 +05:30
else cross ! exchange values
2019-05-11 15:21:57 +05:30
tmp = a(:,i)
a(:,i) = a(:,j)
a(:,j) = tmp
endif cross
enddo
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
end function qsort_partition
2007-04-03 13:47:58 +05:30
end subroutine math_sort
2007-04-03 13:47:58 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief vector expansion
!> @details takes a set of numbers (a,b,c,...) and corresponding multiples (x,y,z,...)
2020-03-01 14:17:20 +05:30
!> to return a vector of x times a, y times b, z times c, ...
!--------------------------------------------------------------------------------------------------
pure function math_expand(what,how)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(:), intent(in) :: what
2020-02-04 04:18:09 +05:30
integer, dimension(:), intent(in) :: how
2019-05-11 15:21:57 +05:30
real(pReal), dimension(sum(how)) :: math_expand
integer :: i
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
if (sum(how) == 0) return
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
do i = 1, size(how)
math_expand(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1,size(what))+1)
enddo
end function math_expand
!--------------------------------------------------------------------------------------------------
!> @brief range of integers starting at one
!--------------------------------------------------------------------------------------------------
pure function math_range(N)
2019-05-11 15:21:57 +05:30
integer, intent(in) :: N !< length of range
integer :: i
integer, dimension(N) :: math_range
2019-05-11 15:21:57 +05:30
math_range = [(i,i=1,N)]
end function math_range
!--------------------------------------------------------------------------------------------------
!> @brief second rank identity tensor of specified dimension
!--------------------------------------------------------------------------------------------------
pure function math_identity2nd(d)
integer, intent(in) :: d !< tensor dimension
2019-05-11 15:21:57 +05:30
integer :: i
real(pReal), dimension(d,d) :: math_identity2nd
2019-05-11 15:21:57 +05:30
math_identity2nd = 0.0_pReal
do i=1,d
2019-05-11 15:21:57 +05:30
math_identity2nd(i,i) = 1.0_pReal
enddo
end function math_identity2nd
!--------------------------------------------------------------------------------------------------
!> @brief symmetric fourth rank identity tensor of specified dimension
! from http://en.wikipedia.org/wiki/Tensor_derivative_(continuum_mechanics)#Derivative_of_a_second-order_tensor_with_respect_to_itself
!--------------------------------------------------------------------------------------------------
pure function math_identity4th(d)
integer, intent(in) :: d !< tensor dimension
2019-05-11 15:21:57 +05:30
integer :: i,j,k,l
real(pReal), dimension(d,d,d,d) :: math_identity4th
real(pReal), dimension(d,d) :: identity2nd
identity2nd = math_identity2nd(d)
do i=1,d; do j=1,d; do k=1,d; do l=1,d
2020-02-04 04:18:09 +05:30
math_identity4th(i,j,k,l) = 0.5_pReal &
*(identity2nd(i,k)*identity2nd(j,l)+identity2nd(i,l)*identity2nd(j,k))
enddo; enddo; enddo; enddo
end function math_identity4th
!--------------------------------------------------------------------------------------------------
!> @brief permutation tensor e_ijk used for computing cross product of two tensors
! e_ijk = 1 if even permutation of ijk
! e_ijk = -1 if odd permutation of ijk
! e_ijk = 0 otherwise
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_civita(i,j,k)
2019-05-11 15:21:57 +05:30
integer, intent(in) :: i,j,k
2019-05-11 15:21:57 +05:30
math_civita = 0.0_pReal
if (((i == 1).and.(j == 2).and.(k == 3)) .or. &
((i == 2).and.(j == 3).and.(k == 1)) .or. &
((i == 3).and.(j == 1).and.(k == 2))) math_civita = 1.0_pReal
if (((i == 1).and.(j == 3).and.(k == 2)) .or. &
((i == 2).and.(j == 1).and.(k == 3)) .or. &
((i == 3).and.(j == 2).and.(k == 1))) math_civita = -1.0_pReal
2008-03-27 17:24:34 +05:30
end function math_civita
2008-03-27 17:24:34 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief kronecker delta function d_ij
2008-03-27 17:24:34 +05:30
! d_ij = 1 if i = j
! d_ij = 0 otherwise
! inspired by http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_delta(i,j)
2008-03-27 17:24:34 +05:30
2019-05-11 15:21:57 +05:30
integer, intent (in) :: i,j
2008-03-27 17:24:34 +05:30
2019-05-11 15:21:57 +05:30
math_delta = merge(0.0_pReal, 1.0_pReal, i /= j)
2008-03-27 17:24:34 +05:30
end function math_delta
!--------------------------------------------------------------------------------------------------
!> @brief cross product a x b
!--------------------------------------------------------------------------------------------------
2019-03-08 02:52:49 +05:30
pure function math_cross(A,B)
2009-01-20 00:40:58 +05:30
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3), intent(in) :: A,B
real(pReal), dimension(3) :: math_cross
2009-01-20 00:40:58 +05:30
2019-05-11 15:21:57 +05:30
math_cross = [ A(2)*B(3) -A(3)*B(2), &
A(3)*B(1) -A(1)*B(3), &
A(1)*B(2) -A(2)*B(1) ]
2009-01-20 00:40:58 +05:30
2019-03-08 02:52:49 +05:30
end function math_cross
2009-01-20 00:40:58 +05:30
!--------------------------------------------------------------------------------------------------
2019-03-08 02:52:49 +05:30
!> @brief outer product A \otimes B of arbitrary sized vectors A and B
!--------------------------------------------------------------------------------------------------
2019-03-08 02:52:49 +05:30
pure function math_outer(A,B)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(:), intent(in) :: A,B
real(pReal), dimension(size(A,1),size(B,1)) :: math_outer
integer :: i,j
do i=1,size(A,1); do j=1,size(B,1)
math_outer(i,j) = A(i)*B(j)
enddo; enddo
2019-03-08 02:52:49 +05:30
end function math_outer
!--------------------------------------------------------------------------------------------------
2019-03-08 02:52:49 +05:30
!> @brief outer product A \otimes B of arbitrary sized vectors A and B
!--------------------------------------------------------------------------------------------------
2019-03-08 02:52:49 +05:30
real(pReal) pure function math_inner(A,B)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(:), intent(in) :: A
real(pReal), dimension(size(A,1)), intent(in) :: B
2019-05-11 15:21:57 +05:30
math_inner = sum(A*B)
2019-03-08 02:52:49 +05:30
end function math_inner
2009-01-20 00:40:58 +05:30
!--------------------------------------------------------------------------------------------------
2020-03-01 14:17:20 +05:30
!> @brief 3x3 tensor double contraction: ij * ij
!--------------------------------------------------------------------------------------------------
2020-03-01 14:17:20 +05:30
real(pReal) pure function math_tensordot(A,B)
real(pReal), dimension(3,3), intent(in) :: A,B
2020-03-01 14:17:20 +05:30
math_tensordot = sum(A*B)
2020-03-01 14:17:20 +05:30
end function math_tensordot
!--------------------------------------------------------------------------------------------------
2020-03-01 14:11:42 +05:30
!> @brief matrix multiplication 3333x33 = 33 (double contraction --> ijkl * kl)
!--------------------------------------------------------------------------------------------------
pure function math_mul3333xx33(A,B)
real(pReal), dimension(3,3,3,3), intent(in) :: A
real(pReal), dimension(3,3), intent(in) :: B
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_mul3333xx33
2020-03-01 14:17:20 +05:30
integer :: i,j
do i=1,3; do j=1,3
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
enddo; enddo
end function math_mul3333xx33
!--------------------------------------------------------------------------------------------------
2020-03-01 14:11:42 +05:30
!> @brief matrix multiplication 3333x3333 = 3333 (ijkl * klmn)
!--------------------------------------------------------------------------------------------------
pure function math_mul3333xx3333(A,B)
2019-05-11 15:21:57 +05:30
integer :: i,j,k,l
real(pReal), dimension(3,3,3,3), intent(in) :: A
real(pReal), dimension(3,3,3,3), intent(in) :: B
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3,3,3) :: math_mul3333xx3333
do i=1,3; do j=1,3; do k=1,3; do l=1,3
2019-05-11 15:21:57 +05:30
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
enddo; enddo; enddo; enddo
end function math_mul3333xx3333
!--------------------------------------------------------------------------------------------------
!> @brief 3x3 matrix exponential up to series approximation order n (default 5)
!--------------------------------------------------------------------------------------------------
pure function math_exp33(A,n)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3), intent(in) :: A
2020-03-01 14:11:42 +05:30
integer, intent(in), optional :: n
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: B, math_exp33
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
real(pReal) :: invFac
integer :: n_,i
2019-09-20 02:50:02 +05:30
if (present(n)) then
2020-01-10 06:41:19 +05:30
n_ = n
2019-09-20 02:50:02 +05:30
else
2020-01-10 06:41:19 +05:30
n_ = 5
2019-09-20 02:50:02 +05:30
endif
2020-01-10 06:41:19 +05:30
invFac = 1.0_pReal ! 0!
B = math_I3
math_exp33 = math_I3 ! A^0 = I
do i = 1, n_
2020-01-03 01:19:02 +05:30
invFac = invFac/real(i,pReal) ! invfac = 1/(i!)
2019-05-11 15:21:57 +05:30
B = matmul(B,A)
2020-01-03 01:19:02 +05:30
math_exp33 = math_exp33 + invFac*B ! exp = SUM (A^i)/(i!)
2019-05-11 15:21:57 +05:30
enddo
end function math_exp33
!--------------------------------------------------------------------------------------------------
!> @brief Cramer inversion of 33 matrix (function)
2020-03-01 14:17:20 +05:30
!> @details Direct Cramer inversion of matrix A. Returns all zeroes if not possible, i.e.
! if determinant is close to zero
!--------------------------------------------------------------------------------------------------
pure function math_inv33(A)
2020-03-01 14:11:42 +05:30
real(pReal), dimension(3,3), intent(in) :: A
real(pReal), dimension(3,3) :: math_inv33
2020-03-01 14:17:20 +05:30
2020-03-01 14:11:42 +05:30
real(pReal) :: DetA
logical :: error
2019-09-21 07:03:12 +05:30
call math_invert33(math_inv33,DetA,error,A)
if(error) math_inv33 = 0.0_pReal
end function math_inv33
!--------------------------------------------------------------------------------------------------
!> @brief Cramer inversion of 33 matrix (subroutine)
!> @details Direct Cramer inversion of matrix A. Also returns determinant
! Returns an error if not possible, i.e. if determinant is close to zero
!--------------------------------------------------------------------------------------------------
2019-09-21 06:58:46 +05:30
pure subroutine math_invert33(InvA, DetA, error, A)
2020-03-01 14:11:42 +05:30
real(pReal), dimension(3,3), intent(out) :: InvA
real(pReal), intent(out) :: DetA
logical, intent(out) :: error
real(pReal), dimension(3,3), intent(in) :: A
2019-05-11 15:21:57 +05:30
InvA(1,1) = A(2,2) * A(3,3) - A(2,3) * A(3,2)
InvA(2,1) = -A(2,1) * A(3,3) + A(2,3) * A(3,1)
InvA(3,1) = A(2,1) * A(3,2) - A(2,2) * A(3,1)
2019-05-11 15:21:57 +05:30
DetA = A(1,1) * InvA(1,1) + A(1,2) * InvA(2,1) + A(1,3) * InvA(3,1)
2019-05-11 15:21:57 +05:30
if (dEq0(DetA)) then
InvA = 0.0_pReal
error = .true.
else
InvA(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2)
InvA(2,2) = A(1,1) * A(3,3) - A(1,3) * A(3,1)
InvA(3,2) = -A(1,1) * A(3,2) + A(1,2) * A(3,1)
2019-05-11 15:21:57 +05:30
InvA(1,3) = A(1,2) * A(2,3) - A(1,3) * A(2,2)
InvA(2,3) = -A(1,1) * A(2,3) + A(1,3) * A(2,1)
InvA(3,3) = A(1,1) * A(2,2) - A(1,2) * A(2,1)
2019-05-11 15:21:57 +05:30
InvA = InvA/DetA
error = .false.
endif
end subroutine math_invert33
!--------------------------------------------------------------------------------------------------
!> @brief Inversion of symmetriced 3x3x3x3 tensor.
!--------------------------------------------------------------------------------------------------
function math_invSym3333(A)
2019-05-11 15:21:57 +05:30
real(pReal),dimension(3,3,3,3) :: math_invSym3333
real(pReal),dimension(3,3,3,3),intent(in) :: A
integer :: ierr
2019-09-22 10:22:58 +05:30
integer, dimension(6) :: ipiv6
real(pReal), dimension(6,6) :: temp66
real(pReal), dimension(6*(64+2)) :: work
logical :: error
2019-05-11 15:21:57 +05:30
external :: &
2020-01-03 01:19:02 +05:30
dgetrf, &
dgetri
2019-05-11 15:21:57 +05:30
2019-09-22 10:22:58 +05:30
temp66 = math_sym3333to66(A)
call dgetrf(6,6,temp66,6,ipiv6,ierr)
error = (ierr /= 0)
call dgetri(6,temp66,6,ipiv6,work,size(work,1),ierr)
error = error .or. (ierr /= 0)
if (error) then
2019-05-11 15:21:57 +05:30
call IO_error(400, ext_msg = 'math_invSym3333')
2019-09-22 10:22:58 +05:30
else
math_invSym3333 = math_66toSym3333(temp66)
2019-05-11 15:21:57 +05:30
endif
end function math_invSym3333
!--------------------------------------------------------------------------------------------------
!> @brief invert quadratic matrix of arbitrary dimension
!--------------------------------------------------------------------------------------------------
2019-09-21 06:50:33 +05:30
subroutine math_invert(InvA, error, A)
2019-09-21 07:14:23 +05:30
real(pReal), dimension(:,:), intent(in) :: A
2019-05-11 15:21:57 +05:30
real(pReal), dimension(size(A,1),size(A,1)), intent(out) :: invA
2019-09-21 07:14:23 +05:30
logical, intent(out) :: error
2019-09-22 10:22:58 +05:30
integer, dimension(size(A,1)) :: ipiv
real(pReal), dimension(size(A,1)*(64+2)) :: work
integer :: ierr
2019-05-11 15:21:57 +05:30
external :: &
2020-01-03 01:19:02 +05:30
dgetrf, &
dgetri
2019-09-21 07:14:23 +05:30
2020-03-01 14:17:20 +05:30
invA = A
2019-09-21 07:14:23 +05:30
call dgetrf(size(A,1),size(A,1),invA,size(A,1),ipiv,ierr)
2019-09-22 10:22:58 +05:30
error = (ierr /= 0)
call dgetri(size(A,1),InvA,size(A,1),ipiv,work,size(work,1),ierr)
error = error .or. (ierr /= 0)
2020-03-01 14:17:20 +05:30
2019-09-21 07:14:23 +05:30
end subroutine math_invert
!--------------------------------------------------------------------------------------------------
!> @brief symmetrize a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_symmetric33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_symmetric33
real(pReal), dimension(3,3), intent(in) :: m
2019-09-22 09:55:55 +05:30
2019-05-11 15:21:57 +05:30
math_symmetric33 = 0.5_pReal * (m + transpose(m))
end function math_symmetric33
!--------------------------------------------------------------------------------------------------
!> @brief symmetrize a 66 matrix
!--------------------------------------------------------------------------------------------------
pure function math_symmetric66(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(6,6) :: math_symmetric66
real(pReal), dimension(6,6), intent(in) :: m
2019-05-11 15:21:57 +05:30
math_symmetric66 = 0.5_pReal * (m + transpose(m))
end function math_symmetric66
!--------------------------------------------------------------------------------------------------
!> @brief skew part of a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_skew33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_skew33
real(pReal), dimension(3,3), intent(in) :: m
2019-05-11 15:21:57 +05:30
math_skew33 = m - math_symmetric33(m)
end function math_skew33
!--------------------------------------------------------------------------------------------------
!> @brief hydrostatic part of a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_spherical33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_spherical33
real(pReal), dimension(3,3), intent(in) :: m
2019-05-11 15:21:57 +05:30
math_spherical33 = math_I3 * math_trace33(m)/3.0_pReal
end function math_spherical33
!--------------------------------------------------------------------------------------------------
!> @brief deviatoric part of a 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_deviatoric33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_deviatoric33
real(pReal), dimension(3,3), intent(in) :: m
2019-05-11 15:21:57 +05:30
math_deviatoric33 = m - math_spherical33(m)
end function math_deviatoric33
!--------------------------------------------------------------------------------------------------
2014-10-14 09:00:59 +05:30
!> @brief trace of a 33 matrix
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_trace33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3), intent(in) :: m
2019-05-11 15:21:57 +05:30
math_trace33 = m(1,1) + m(2,2) + m(3,3)
end function math_trace33
!--------------------------------------------------------------------------------------------------
!> @brief determinant of a 33 matrix
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_det33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3), intent(in) :: m
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
math_det33 = m(1,1)* (m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
- m(1,2)* (m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
+ m(1,3)* (m(2,1)*m(3,2)-m(2,2)*m(3,1))
end function math_det33
2007-03-21 15:50:25 +05:30
2016-02-02 17:53:45 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief determinant of a symmetric 33 matrix
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_detSym33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3), intent(in) :: m
2020-03-01 14:17:20 +05:30
2019-03-13 11:16:59 +05:30
math_detSym33 = -(m(1,1)*m(2,3)**2 + m(2,2)*m(1,3)**2 + m(3,3)*m(1,2)**2) &
+ m(1,1)*m(2,2)*m(3,3) + 2.0_pReal * m(1,2)*m(1,3)*m(2,3)
2016-02-02 17:53:45 +05:30
end function math_detSym33
!--------------------------------------------------------------------------------------------------
!> @brief convert 33 matrix into vector 9
!--------------------------------------------------------------------------------------------------
pure function math_33to9(m33)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(9) :: math_33to9
real(pReal), dimension(3,3), intent(in) :: m33
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
integer :: i
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
do i = 1, 9
math_33to9(i) = m33(MAPPLAIN(1,i),MAPPLAIN(2,i))
2019-05-11 15:21:57 +05:30
enddo
end function math_33to9
!--------------------------------------------------------------------------------------------------
!> @brief convert 9 vector into 33 matrix
!--------------------------------------------------------------------------------------------------
pure function math_9to33(v9)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_9to33
real(pReal), dimension(9), intent(in) :: v9
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
integer :: i
2019-05-11 15:21:57 +05:30
do i = 1, 9
math_9to33(MAPPLAIN(1,i),MAPPLAIN(2,i)) = v9(i)
2019-05-11 15:21:57 +05:30
enddo
end function math_9to33
!--------------------------------------------------------------------------------------------------
!> @brief convert symmetric 33 matrix into 6 vector
!> @details Weighted conversion (default) rearranges according to Nye and weights shear
! components according to Mandel. Advisable for matrix operations.
! Unweighted conversion only changes order according to Nye
!--------------------------------------------------------------------------------------------------
2019-01-14 21:06:08 +05:30
pure function math_sym33to6(m33,weighted)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(6) :: math_sym33to6
2019-09-22 09:55:55 +05:30
real(pReal), dimension(3,3), intent(in) :: m33 !< symmetric matrix (no internal check)
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
real(pReal), dimension(6) :: w
integer :: i
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
if(present(weighted)) then
w = merge(NRMMANDEL,1.0_pReal,weighted)
2019-05-11 15:21:57 +05:30
else
w = NRMMANDEL
2019-05-11 15:21:57 +05:30
endif
2019-05-11 15:21:57 +05:30
do i = 1, 6
math_sym33to6(i) = w(i)*m33(MAPNYE(1,i),MAPNYE(2,i))
2020-03-01 14:17:20 +05:30
enddo
2019-01-14 21:06:08 +05:30
end function math_sym33to6
!--------------------------------------------------------------------------------------------------
!> @brief convert 6 vector into symmetric 33 matrix
!> @details Weighted conversion (default) rearranges according to Nye and weights shear
! components according to Mandel. Advisable for matrix operations.
! Unweighted conversion only changes order according to Nye
!--------------------------------------------------------------------------------------------------
2019-01-14 21:06:08 +05:30
pure function math_6toSym33(v6,weighted)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_6toSym33
real(pReal), dimension(6), intent(in) :: v6
2019-09-22 09:55:55 +05:30
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(6) :: w
integer :: i
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
if(present(weighted)) then
w = merge(INVNRMMANDEL,1.0_pReal,weighted)
2019-05-11 15:21:57 +05:30
else
w = INVNRMMANDEL
2019-05-11 15:21:57 +05:30
endif
2019-05-11 15:21:57 +05:30
do i=1,6
math_6toSym33(MAPNYE(1,i),MAPNYE(2,i)) = w(i)*v6(i)
math_6toSym33(MAPNYE(2,i),MAPNYE(1,i)) = w(i)*v6(i)
2019-05-11 15:21:57 +05:30
enddo
2019-01-14 21:06:08 +05:30
end function math_6toSym33
!--------------------------------------------------------------------------------------------------
!> @brief convert 3333 matrix into 99 matrix
!--------------------------------------------------------------------------------------------------
pure function math_3333to99(m3333)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(9,9) :: math_3333to99
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
2019-05-11 15:21:57 +05:30
integer :: i,j
2019-05-11 15:21:57 +05:30
do i=1,9; do j=1,9
math_3333to99(i,j) = m3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j))
2019-05-11 15:21:57 +05:30
enddo; enddo
end function math_3333to99
!--------------------------------------------------------------------------------------------------
!> @brief convert 99 matrix into 3333 matrix
!--------------------------------------------------------------------------------------------------
pure function math_99to3333(m99)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3,3,3) :: math_99to3333
real(pReal), dimension(9,9), intent(in) :: m99
2019-05-11 15:21:57 +05:30
integer :: i,j
2019-05-11 15:21:57 +05:30
do i=1,9; do j=1,9
math_99to3333(MAPPLAIN(1,i),MAPPLAIN(2,i),MAPPLAIN(1,j),MAPPLAIN(2,j)) = m99(i,j)
2019-05-11 15:21:57 +05:30
enddo; enddo
end function math_99to3333
!--------------------------------------------------------------------------------------------------
!> @brief convert symmetric 3333 matrix into 66 matrix
!> @details Weighted conversion (default) rearranges according to Nye and weights shear
! components according to Mandel. Advisable for matrix operations.
! Unweighted conversion only changes order according to Nye
!--------------------------------------------------------------------------------------------------
2019-01-14 21:06:08 +05:30
pure function math_sym3333to66(m3333,weighted)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(6,6) :: math_sym3333to66
2019-09-22 09:55:55 +05:30
real(pReal), dimension(3,3,3,3), intent(in) :: m3333 !< symmetric matrix (no internal check)
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(6) :: w
integer :: i,j
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
if(present(weighted)) then
w = merge(NRMMANDEL,1.0_pReal,weighted)
2019-05-11 15:21:57 +05:30
else
w = NRMMANDEL
2019-05-11 15:21:57 +05:30
endif
2019-05-11 15:21:57 +05:30
do i=1,6; do j=1,6
math_sym3333to66(i,j) = w(i)*w(j)*m3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j))
2019-05-11 15:21:57 +05:30
enddo; enddo
2019-01-14 21:06:08 +05:30
end function math_sym3333to66
!--------------------------------------------------------------------------------------------------
!> @brief convert 66 matrix into symmetric 3333 matrix
!> @details Weighted conversion (default) rearranges according to Nye and weights shear
! components according to Mandel. Advisable for matrix operations.
! Unweighted conversion only changes order according to Nye
!--------------------------------------------------------------------------------------------------
2019-01-14 21:06:08 +05:30
pure function math_66toSym3333(m66,weighted)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3,3,3) :: math_66toSym3333
real(pReal), dimension(6,6), intent(in) :: m66
2019-09-22 09:55:55 +05:30
logical, optional, intent(in) :: weighted !< weight according to Mandel (.true. by default)
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
real(pReal), dimension(6) :: w
integer :: i,j
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
if(present(weighted)) then
w = merge(INVNRMMANDEL,1.0_pReal,weighted)
2019-05-11 15:21:57 +05:30
else
w = INVNRMMANDEL
2019-05-11 15:21:57 +05:30
endif
do i=1,6; do j=1,6
math_66toSym3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(1,j),MAPNYE(2,j)) = w(i)*w(j)*m66(i,j)
math_66toSym3333(MAPNYE(2,i),MAPNYE(1,i),MAPNYE(1,j),MAPNYE(2,j)) = w(i)*w(j)*m66(i,j)
math_66toSym3333(MAPNYE(1,i),MAPNYE(2,i),MAPNYE(2,j),MAPNYE(1,j)) = w(i)*w(j)*m66(i,j)
math_66toSym3333(MAPNYE(2,i),MAPNYE(1,i),MAPNYE(2,j),MAPNYE(1,j)) = w(i)*w(j)*m66(i,j)
2019-05-11 15:21:57 +05:30
enddo; enddo
2019-01-14 21:06:08 +05:30
end function math_66toSym3333
!--------------------------------------------------------------------------------------------------
!> @brief convert 66 Voigt matrix into symmetric 3333 matrix
!--------------------------------------------------------------------------------------------------
pure function math_Voigt66to3333(m66)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
real(pReal), dimension(6,6), intent(in) :: m66
integer :: i,j
2019-05-11 15:21:57 +05:30
do i=1,6; do j=1, 6
math_Voigt66to3333(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(1,j),MAPVOIGT(2,j)) = m66(i,j)
math_Voigt66to3333(MAPVOIGT(2,i),MAPVOIGT(1,i),MAPVOIGT(1,j),MAPVOIGT(2,j)) = m66(i,j)
math_Voigt66to3333(MAPVOIGT(1,i),MAPVOIGT(2,i),MAPVOIGT(2,j),MAPVOIGT(1,j)) = m66(i,j)
math_Voigt66to3333(MAPVOIGT(2,i),MAPVOIGT(1,i),MAPVOIGT(2,j),MAPVOIGT(1,j)) = m66(i,j)
2019-05-11 15:21:57 +05:30
enddo; enddo
end function math_Voigt66to3333
!--------------------------------------------------------------------------------------------------
!> @brief draw a random sample from Gauss variable
!--------------------------------------------------------------------------------------------------
real(pReal) function math_sampleGaussVar(meanvalue, stddev, width)
2019-05-11 15:21:57 +05:30
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
stddev ! standard deviation of gauss distribution
real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation
real(pReal), dimension(2) :: rnd ! random numbers
real(pReal) :: scatter, & ! normalized scatter around meanvalue
2020-01-10 06:41:19 +05:30
width_
2019-05-11 15:21:57 +05:30
if (abs(stddev) < tol_math_check) then
math_sampleGaussVar = meanvalue
else
2020-01-10 06:41:19 +05:30
if (present(width)) then
width_ = width
else
width_ = 3.0_pReal ! use +-3*sigma as default scatter
endif
2019-05-11 15:21:57 +05:30
do
call random_number(rnd)
2020-01-10 06:41:19 +05:30
scatter = width_ * (2.0_pReal * rnd(1) - 1.0_pReal)
2019-05-11 15:21:57 +05:30
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) exit ! test if scattered value is drawn
enddo
math_sampleGaussVar = scatter * stddev
endif
end function math_sampleGaussVar
!--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric matrix m
! ToDo: has wrong oder of arguments
!--------------------------------------------------------------------------------------------------
subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)), intent(out) :: values
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: vectors
logical, intent(out) :: error
2019-09-22 10:22:58 +05:30
integer :: ierr
2019-05-11 15:21:57 +05:30
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
external :: &
2019-09-22 10:22:58 +05:30
dsyev
2019-05-11 15:21:57 +05:30
vectors = m ! copy matrix to input (doubles as output) array
2019-09-22 10:22:58 +05:30
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,size(work,1),ierr)
error = (ierr /= 0)
end subroutine math_eigenValuesVectorsSym
!--------------------------------------------------------------------------------------------------
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m using an analytical expression
!> and the general LAPACK powered version for arbritrary sized matrices as fallback
!> @author Joachim Kopp, Max-Planck-Institut für Kernphysik, Heidelberg (Copyright (C) 2006)
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
! ToDo: has wrong oder of arguments
!--------------------------------------------------------------------------------------------------
subroutine math_eigenValuesVectorsSym33(m,values,vectors)
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3),intent(in) :: m
real(pReal), dimension(3), intent(out) :: values
real(pReal), dimension(3,3),intent(out) :: vectors
real(pReal) :: T, U, norm, threshold
logical :: error
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
values = math_eigenvaluesSym33(m)
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
vectors(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), &
m(1, 3) * m(1, 2) - m(2, 3) * m(1, 1), &
m(1, 2)**2]
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
T = maxval(abs(values))
U = max(T, T**2)
threshold = sqrt(5.68e-14_pReal * U**2)
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
vectors(2,2) + m(2, 3) * values(1), &
(m(1,1) - values(1)) * (m(2,2) - values(1)) - vectors(3,2)]
norm = norm2(vectors(1:3, 1))
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
fallback1: if(norm < threshold) then
call math_eigenValuesVectorsSym(m,values,vectors,error)
return
endif fallback1
2020-03-01 14:17:20 +05:30
vectors(1:3,1) = vectors(1:3, 1) / norm
2019-05-11 15:21:57 +05:30
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
vectors(1:3,2) = [ vectors(1,2) + m(1, 3) * values(2), &
vectors(2,2) + m(2, 3) * values(2), &
(m(1,1) - values(2)) * (m(2,2) - values(2)) - vectors(3,2)]
norm = norm2(vectors(1:3, 2))
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
fallback2: if(norm < threshold) then
call math_eigenValuesVectorsSym(m,values,vectors,error)
return
endif fallback2
vectors(1:3,2) = vectors(1:3, 2) / norm
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
! Calculate third eigenvector according to v[2] = v[0] x v[1]
vectors(1:3,3) = math_cross(vectors(1:3,1),vectors(1:3,2))
end subroutine math_eigenValuesVectorsSym33
!--------------------------------------------------------------------------------------------------
!> @brief eigenvector basis of symmetric matrix m
!--------------------------------------------------------------------------------------------------
function math_eigenvectorBasisSym(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)) :: values
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
real(pReal), dimension(size(m,1),size(m,1)) :: math_eigenvectorBasisSym
logical :: error
integer :: i
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
math_eigenvectorBasisSym = 0.0_pReal
call math_eigenValuesVectorsSym(m,values,vectors,error)
if(error) return
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
do i=1, size(m,1)
math_eigenvectorBasisSym = math_eigenvectorBasisSym &
+ sqrt(values(i)) * math_outer(vectors(:,i),vectors(:,i))
enddo
end function math_eigenvectorBasisSym
!--------------------------------------------------------------------------------------------------
!> @brief eigenvector basis of symmetric 33 matrix m
!--------------------------------------------------------------------------------------------------
pure function math_eigenvectorBasisSym33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33
real(pReal), dimension(3) :: invariants, values
real(pReal), dimension(3,3), intent(in) :: m
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
real(pReal), dimension(3,3,3) :: N, EB
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
invariants = math_invariantsSym33(m)
EB = 0.0_pReal
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
values = invariants(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
EB(3,3,3)=1.0_pReal
else threeSimilarEigenvalues
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + invariants(1)/3.0_pReal
N(1:3,1:3,1) = m-values(1)*math_I3
N(1:3,1:3,2) = m-values(2)*math_I3
N(1:3,1:3,3) = m-values(3)*math_I3
2020-03-01 14:17:20 +05:30
twoSimilarEigenvalues: if(abs(values(1)-values(2)) < TOL) then
2019-05-11 15:21:57 +05:30
EB(1:3,1:3,3)=matmul(N(1:3,1:3,1),N(1:3,1:3,2))/ &
((values(3)-values(1))*(values(3)-values(2)))
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,3)
elseif(abs(values(2)-values(3)) < TOL) then twoSimilarEigenvalues
EB(1:3,1:3,1)=matmul(N(1:3,1:3,2),N(1:3,1:3,3))/ &
((values(1)-values(2))*(values(1)-values(3)))
EB(1:3,1:3,2)=math_I3-EB(1:3,1:3,1)
2020-03-01 14:17:20 +05:30
elseif(abs(values(3)-values(1)) < TOL) then twoSimilarEigenvalues
2019-05-11 15:21:57 +05:30
EB(1:3,1:3,2)=matmul(N(1:3,1:3,1),N(1:3,1:3,3))/ &
((values(2)-values(1))*(values(2)-values(3)))
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,2)
else twoSimilarEigenvalues
EB(1:3,1:3,1)=matmul(N(1:3,1:3,2),N(1:3,1:3,3))/ &
((values(1)-values(2))*(values(1)-values(3)))
EB(1:3,1:3,2)=matmul(N(1:3,1:3,1),N(1:3,1:3,3))/ &
((values(2)-values(1))*(values(2)-values(3)))
EB(1:3,1:3,3)=matmul(N(1:3,1:3,1),N(1:3,1:3,2))/ &
((values(3)-values(1))*(values(3)-values(2)))
endif twoSimilarEigenvalues
endif threeSimilarEigenvalues
math_eigenvectorBasisSym33 = sqrt(values(1)) * EB(1:3,1:3,1) &
+ sqrt(values(2)) * EB(1:3,1:3,2) &
+ sqrt(values(3)) * EB(1:3,1:3,3)
end function math_eigenvectorBasisSym33
2017-07-27 19:51:02 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief logarithm eigenvector basis of symmetric 33 matrix m
!--------------------------------------------------------------------------------------------------
pure function math_eigenvectorBasisSym33_log(m)
2017-07-27 19:51:02 +05:30
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33_log
real(pReal), dimension(3) :: invariants, values
real(pReal), dimension(3,3), intent(in) :: m
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
real(pReal), dimension(3,3,3) :: N, EB
invariants = math_invariantsSym33(m)
EB = 0.0_pReal
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
values = invariants(1)/3.0_pReal
! this is not really correct, but at least the basis is correct
EB(1,1,1)=1.0_pReal
EB(2,2,2)=1.0_pReal
EB(3,3,3)=1.0_pReal
else threeSimilarEigenvalues
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + invariants(1)/3.0_pReal
N(1:3,1:3,1) = m-values(1)*math_I3
N(1:3,1:3,2) = m-values(2)*math_I3
N(1:3,1:3,3) = m-values(3)*math_I3
2020-03-01 14:17:20 +05:30
twoSimilarEigenvalues: if(abs(values(1)-values(2)) < TOL) then
2019-05-11 15:21:57 +05:30
EB(1:3,1:3,3)=matmul(N(1:3,1:3,1),N(1:3,1:3,2))/ &
((values(3)-values(1))*(values(3)-values(2)))
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,3)
elseif(abs(values(2)-values(3)) < TOL) then twoSimilarEigenvalues
EB(1:3,1:3,1)=matmul(N(1:3,1:3,2),N(1:3,1:3,3))/ &
((values(1)-values(2))*(values(1)-values(3)))
EB(1:3,1:3,2)=math_I3-EB(1:3,1:3,1)
2020-03-01 14:17:20 +05:30
elseif(abs(values(3)-values(1)) < TOL) then twoSimilarEigenvalues
2019-05-11 15:21:57 +05:30
EB(1:3,1:3,2)=matmul(N(1:3,1:3,1),N(1:3,1:3,3))/ &
((values(2)-values(1))*(values(2)-values(3)))
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,2)
else twoSimilarEigenvalues
EB(1:3,1:3,1)=matmul(N(1:3,1:3,2),N(1:3,1:3,3))/ &
((values(1)-values(2))*(values(1)-values(3)))
EB(1:3,1:3,2)=matmul(N(1:3,1:3,1),N(1:3,1:3,3))/ &
((values(2)-values(1))*(values(2)-values(3)))
EB(1:3,1:3,3)=matmul(N(1:3,1:3,1),N(1:3,1:3,2))/ &
((values(3)-values(1))*(values(3)-values(2)))
endif twoSimilarEigenvalues
endif threeSimilarEigenvalues
math_eigenvectorBasisSym33_log = log(sqrt(values(1))) * EB(1:3,1:3,1) &
+ log(sqrt(values(2))) * EB(1:3,1:3,2) &
+ log(sqrt(values(3))) * EB(1:3,1:3,3)
2017-07-27 19:51:02 +05:30
end function math_eigenvectorBasisSym33_log
!--------------------------------------------------------------------------------------------------
!> @brief rotational part from polar decomposition of 33 tensor m
!--------------------------------------------------------------------------------------------------
function math_rotationalPart33(m)
2019-05-11 15:21:57 +05:30
real(pReal), intent(in), dimension(3,3) :: m
real(pReal), dimension(3,3) :: math_rotationalPart33
real(pReal), dimension(3,3) :: U , Uinv
2019-05-11 15:21:57 +05:30
U = math_eigenvectorBasisSym33(matmul(transpose(m),m))
Uinv = math_inv33(U)
2019-05-11 15:21:57 +05:30
inversionFailed: if (all(dEq0(Uinv))) then
math_rotationalPart33 = math_I3
call IO_warning(650)
else inversionFailed
math_rotationalPart33 = matmul(m,Uinv)
endif inversionFailed
end function math_rotationalPart33
!--------------------------------------------------------------------------------------------------
2016-02-02 02:07:27 +05:30
!> @brief Eigenvalues of symmetric matrix m
! will return NaN on error
!--------------------------------------------------------------------------------------------------
2016-02-02 02:07:27 +05:30
function math_eigenvaluesSym(m)
2020-03-01 14:17:20 +05:30
2019-05-11 15:21:57 +05:30
real(pReal), dimension(:,:), intent(in) :: m
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
2019-09-22 10:22:58 +05:30
real(pReal), dimension(size(m,1),size(m,1)) :: m_
integer :: ierr
2019-05-11 15:21:57 +05:30
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
external :: &
dsyev
2019-09-22 10:22:58 +05:30
m_= m ! copy matrix to input (will be destroyed)
call dsyev('N','U',size(m,1),m_,size(m,1),math_eigenvaluesSym,work,size(work,1),ierr)
if (ierr /= 0) math_eigenvaluesSym = IEEE_value(1.0_pReal,IEEE_quiet_NaN)
2016-02-02 02:07:27 +05:30
end function math_eigenvaluesSym
!--------------------------------------------------------------------------------------------------
!> @brief eigenvalues of symmetric 33 matrix m using an analytical expression
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @details similar to http://arxiv.org/abs/physics/0610206 (DSYEVC3)
!> but apparently more stable solution and has general LAPACK powered version for arbritrary sized
!> matrices as fallback
!--------------------------------------------------------------------------------------------------
2016-02-02 02:07:27 +05:30
function math_eigenvaluesSym33(m)
2019-05-11 15:21:57 +05:30
real(pReal), intent(in), dimension(3,3) :: m
real(pReal), dimension(3) :: math_eigenvaluesSym33,invariants
real(pReal) :: P, Q, rho, phi
real(pReal), parameter :: TOL=1.e-14_pReal
2016-02-02 02:07:27 +05:30
2019-05-11 15:21:57 +05:30
invariants = math_invariantsSym33(m) ! invariants are coefficients in characteristic polynomial apart for the sign of c0 and c2 in http://arxiv.org/abs/physics/0610206
2016-02-02 17:53:45 +05:30
2019-05-11 15:21:57 +05:30
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal ! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
2016-02-02 02:07:27 +05:30
2019-05-11 15:21:57 +05:30
if(all(abs([P,Q]) < TOL)) then
math_eigenvaluesSym33 = math_eigenvaluesSym(m)
else
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
[cos(phi/3.0_pReal), &
cos((phi+2.0_pReal*PI)/3.0_pReal), &
cos((phi+4.0_pReal*PI)/3.0_pReal) &
] + invariants(1)/3.0_pReal
endif
2016-02-02 02:07:27 +05:30
end function math_eigenvaluesSym33
2016-02-02 17:53:45 +05:30
!--------------------------------------------------------------------------------------------------
2016-02-02 17:53:45 +05:30
!> @brief invariants of symmetrix 33 matrix m
2016-02-02 14:14:51 +05:30
!--------------------------------------------------------------------------------------------------
pure function math_invariantsSym33(m)
2019-05-11 15:21:57 +05:30
real(pReal), dimension(3,3), intent(in) :: m
real(pReal), dimension(3) :: math_invariantsSym33
2016-02-02 14:14:51 +05:30
2019-05-11 15:21:57 +05:30
math_invariantsSym33(1) = math_trace33(m)
math_invariantsSym33(2) = m(1,1)*m(2,2) + m(1,1)*m(3,3) + m(2,2)*m(3,3) &
-(m(1,2)**2 + m(1,3)**2 + m(2,3)**2)
math_invariantsSym33(3) = math_detSym33(m)
2016-02-02 14:14:51 +05:30
end function math_invariantsSym33
!--------------------------------------------------------------------------------------------------
!> @brief factorial
!--------------------------------------------------------------------------------------------------
2019-03-13 11:16:59 +05:30
integer pure function math_factorial(n)
2019-05-11 15:21:57 +05:30
integer, intent(in) :: n
math_factorial = product(math_range(n))
end function math_factorial
!--------------------------------------------------------------------------------------------------
!> @brief binomial coefficient
!--------------------------------------------------------------------------------------------------
2019-03-13 11:16:59 +05:30
integer pure function math_binomial(n,k)
2019-05-11 15:21:57 +05:30
integer, intent(in) :: n, k
2019-09-23 10:11:00 +05:30
integer :: i, k_, n_
2020-03-01 14:17:20 +05:30
2019-09-23 10:11:00 +05:30
k_ = min(k,n-k)
n_ = n
math_binomial = merge(1,0,k_>-1) ! handling special cases k < 0 or k > n
do i = 1, k_
math_binomial = (math_binomial * n_)/i
n_ = n_ -1
enddo
end function math_binomial
!--------------------------------------------------------------------------------------------------
!> @brief multinomial coefficient
!--------------------------------------------------------------------------------------------------
2019-03-13 11:16:59 +05:30
integer pure function math_multinomial(alpha)
2019-05-11 15:21:57 +05:30
integer, intent(in), dimension(:) :: alpha
integer :: i
2019-05-11 15:21:57 +05:30
math_multinomial = 1
do i = 1, size(alpha)
math_multinomial = math_multinomial*math_binomial(sum(alpha(1:i)),alpha(i))
2020-03-01 14:17:20 +05:30
enddo
end function math_multinomial
!--------------------------------------------------------------------------------------------------
!> @brief volume of tetrahedron given by four vertices
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_volTetrahedron(v1,v2,v3,v4)
2009-01-20 00:40:58 +05:30
2019-05-11 15:21:57 +05:30
real(pReal), dimension (3), intent(in) :: v1,v2,v3,v4
real(pReal), dimension (3,3) :: m
2019-05-11 15:21:57 +05:30
m(1:3,1) = v1-v2
m(1:3,2) = v1-v3
m(1:3,3) = v1-v4
2009-01-20 00:40:58 +05:30
math_volTetrahedron = abs(math_det33(m))/6.0_pReal
2009-01-20 00:40:58 +05:30
end function math_volTetrahedron
2009-01-20 00:40:58 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief area of triangle given by three vertices
!--------------------------------------------------------------------------------------------------
real(pReal) pure function math_areaTriangle(v1,v2,v3)
2019-05-11 15:21:57 +05:30
real(pReal), dimension (3), intent(in) :: v1,v2,v3
2019-05-11 15:21:57 +05:30
math_areaTriangle = 0.5_pReal * norm2(math_cross(v1-v2,v1-v3))
end function math_areaTriangle
!--------------------------------------------------------------------------------------------------
!> @brief limits a scalar value to a certain range (either one or two sided)
! Will return NaN if left > right
!--------------------------------------------------------------------------------------------------
2018-12-05 00:05:29 +05:30
real(pReal) pure elemental function math_clip(a, left, right)
2019-05-11 15:21:57 +05:30
real(pReal), intent(in) :: a
real(pReal), intent(in), optional :: left, right
2019-05-11 15:21:57 +05:30
math_clip = a
2019-09-21 05:09:33 +05:30
if (present(left)) math_clip = max(left,math_clip)
if (present(right)) math_clip = min(right,math_clip)
2019-05-11 15:21:57 +05:30
if (present(left) .and. present(right)) &
math_clip = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_clip, left>right)
2018-07-28 05:01:02 +05:30
end function math_clip
2018-02-14 17:33:50 +05:30
2019-09-22 09:55:55 +05:30
!--------------------------------------------------------------------------------------------------
!> @brief check correctness of (some) math functions
!--------------------------------------------------------------------------------------------------
subroutine unitTest
2019-09-22 09:55:55 +05:30
integer, dimension(2,4) :: &
sort_in_ = reshape([+1,+5, +5,+6, -1,-1, +3,-2],[2,4])
integer, dimension(2,4), parameter :: &
sort_out_ = reshape([-1,-1, +1,+5, +5,+6, +3,-2],[2,4])
integer, dimension(5) :: range_out_ = [1,2,3,4,5]
2019-09-22 09:55:55 +05:30
real(pReal) :: det
2019-10-17 00:43:26 +05:30
real(pReal), dimension(3) :: v3_1,v3_2,v3_3,v3_4
2019-09-22 09:55:55 +05:30
real(pReal), dimension(6) :: v6
real(pReal), dimension(9) :: v9
real(pReal), dimension(3,3) :: t33,t33_2
real(pReal), dimension(6,6) :: t66
real(pReal), dimension(9,9) :: t99,t99_2
real(pReal), dimension(:,:), &
allocatable :: txx,txx_2
real(pReal) :: r
integer :: d
2019-09-22 09:55:55 +05:30
logical :: e
2019-09-22 09:55:55 +05:30
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,3.0_pReal,3.0_pReal,3.0_pReal] - &
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1,2,3,0])) > tol_math_check)) &
call IO_error(0,ext_msg='math_expand [1,2,3] by [1,2,3,0] => [1,2,2,3,3,3]')
2019-09-22 09:55:55 +05:30
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal] - &
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1,2])) > tol_math_check)) &
call IO_error(0,ext_msg='math_expand [1,2,3] by [1,2] => [1,2,2]')
2019-09-22 09:55:55 +05:30
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal] - &
math_expand([1.0_pReal,2.0_pReal],[1,2,3])) > tol_math_check)) &
call IO_error(0,ext_msg='math_expand [1,2] by [1,2,3] => [1,2,2,1,1,1]')
2019-09-22 09:55:55 +05:30
call math_sort(sort_in_,1,3,2)
if(any(sort_in_ /= sort_out_)) &
call IO_error(0,ext_msg='math_sort')
2019-09-22 09:55:55 +05:30
if(any(math_range(5) /= range_out_)) &
call IO_error(0,ext_msg='math_range')
if(any(dNeq(math_exp33(math_I3,0),math_I3))) &
call IO_error(0,ext_msg='math_exp33(math_I3,1)')
if(any(dNeq(math_exp33(math_I3,256),exp(1.0_pReal)*math_I3))) &
call IO_error(0,ext_msg='math_exp33(math_I3,256)')
2019-09-22 09:55:55 +05:30
call random_number(v9)
if(any(dNeq(math_33to9(math_9to33(v9)),v9))) &
call IO_error(0,ext_msg='math_33to9/math_9to33')
2020-03-01 14:17:20 +05:30
2019-09-22 09:55:55 +05:30
call random_number(t99)
if(any(dNeq(math_3333to99(math_99to3333(t99)),t99))) &
call IO_error(0,ext_msg='math_3333to99/math_99to3333')
2019-09-22 09:55:55 +05:30
call random_number(v6)
if(any(dNeq(math_sym33to6(math_6toSym33(v6)),v6))) &
call IO_error(0,ext_msg='math_sym33to6/math_6toSym33')
2019-09-22 09:55:55 +05:30
call random_number(t66)
if(any(dNeq(math_sym3333to66(math_66toSym3333(t66)),t66))) &
call IO_error(0,ext_msg='math_sym3333to66/math_66toSym3333')
2019-09-22 09:55:55 +05:30
call random_number(v6)
if(any(dNeq0(math_6toSym33(v6) - math_symmetric33(math_6toSym33(v6))))) &
call IO_error(0,ext_msg='math_symmetric33')
2019-10-17 00:43:26 +05:30
call random_number(v3_1)
call random_number(v3_2)
call random_number(v3_3)
call random_number(v3_4)
2019-10-17 00:43:26 +05:30
if(dNeq(abs(dot_product(math_cross(v3_1-v3_4,v3_2-v3_4),v3_3-v3_4))/6.0, &
math_volTetrahedron(v3_1,v3_2,v3_3,v3_4),tol=1.0e-12_pReal)) &
call IO_error(0,ext_msg='math_volTetrahedron')
2019-09-22 09:55:55 +05:30
call random_number(t33)
if(dNeq(math_det33(math_symmetric33(t33)),math_detSym33(math_symmetric33(t33)),tol=1.0e-12_pReal)) &
call IO_error(0,ext_msg='math_det33/math_detSym33')
2020-03-01 14:17:20 +05:30
if(any(dNeq0(math_identity2nd(3),math_inv33(math_I3)))) &
call IO_error(0,ext_msg='math_inv33(math_I3)')
do while(abs(math_det33(t33))<1.0e-9_pReal)
call random_number(t33)
enddo
if(any(dNeq0(matmul(t33,math_inv33(t33)) - math_identity2nd(3),tol=1.0e-9_pReal))) &
call IO_error(0,ext_msg='math_inv33')
call math_invert33(t33_2,det,e,t33)
if(any(dNeq0(matmul(t33,t33_2) - math_identity2nd(3),tol=1.0e-9_pReal)) .or. e) &
call IO_error(0,ext_msg='math_invert33: T:T^-1 != I')
if(dNeq(det,math_det33(t33),tol=1.0e-12_pReal)) &
call IO_error(0,ext_msg='math_invert33 (determinant)')
call math_invert(t33_2,e,t33)
if(any(dNeq0(matmul(t33,t33_2) - math_identity2nd(3),tol=1.0e-9_pReal)) .or. e) &
call IO_error(0,ext_msg='math_invert t33')
t33_2 = transpose(math_rotationalPart33(t33))
2020-02-04 02:09:00 +05:30
if(any(dNeq0(matmul(t33_2,math_rotationalPart33(t33)) - MATH_I3,tol=5.0e-4_pReal))) &
call IO_error(0,ext_msg='math_rotationalPart33')
call random_number(r)
d = int(r*5.0_pReal) + 1
txx = math_identity2nd(d)
allocate(txx_2(d,d))
call math_invert(txx_2,e,txx)
if(any(dNeq0(txx_2,txx) .or. e)) &
call IO_error(0,ext_msg='math_invert(txx)/math_identity2nd')
2019-09-22 09:55:55 +05:30
2020-03-01 14:17:20 +05:30
call math_invert(t99_2,e,t99) ! not sure how likely it is that we get a singular matrix
2019-09-22 09:55:55 +05:30
if(any(dNeq0(matmul(t99_2,t99)-math_identity2nd(9),tol=1.0e-9_pReal)) .or. e) &
call IO_error(0,ext_msg='math_invert(t99)')
2019-09-22 09:55:55 +05:30
if(any(dNeq(math_clip([4.0_pReal,9.0_pReal],5.0_pReal,6.5_pReal),[5.0_pReal,6.5_pReal]))) &
2020-03-01 14:17:20 +05:30
call IO_error(0,ext_msg='math_clip')
2019-09-23 10:11:00 +05:30
if(math_factorial(10) /= 3628800) &
2020-03-01 14:17:20 +05:30
call IO_error(0,ext_msg='math_factorial')
2019-09-23 10:11:00 +05:30
if(math_binomial(49,6) /= 13983816) &
2020-03-01 14:17:20 +05:30
call IO_error(0,ext_msg='math_binomial')
2019-09-23 10:11:00 +05:30
2019-09-22 09:55:55 +05:30
end subroutine unitTest
end module math