DAMASK_EICMD/code/DAMASK_spectral.f90

1095 lines
66 KiB
Fortran
Raw Normal View History

! Copyright 2012 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced Material Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##################################################################################################
!* $Id$
!##################################################################################################
2010-06-08 15:38:15 +05:30
! Material subroutine for BVP solution using spectral method
!
! Run 'DAMASK_spectral.exe --help' to get usage hints
!
2010-06-08 15:38:15 +05:30
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts,
! D.D. Tjahjanto,
! C. Kords,
! M. Diehl,
2010-06-08 15:38:15 +05:30
! R. Lebensohn
!
! MPI fuer Eisenforschung, Duesseldorf
#include "spectral_quit.f90"
2010-06-08 15:38:15 +05:30
program DAMASK_spectral
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use DAMASK_interface, only: &
DAMASK_interface_init, &
loadCaseFile, &
geometryFile, &
getSolverWorkingDirectoryName, &
getSolverJobName, &
appendToOutFile
use prec, only: &
pInt, &
pReal, &
DAMASK_NaN
use IO, only: &
IO_isBlank, &
IO_open_file, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_error, &
IO_lc, &
IO_read_jobBinaryFile, &
IO_write_jobBinaryFile
use debug, only: &
debug_level, &
debug_spectral, &
debug_levelBasic, &
debug_spectralDivergence, &
debug_spectralRestart, &
debug_spectralFFTW, &
debug_reset, &
debug_info
use math
use mesh, only : &
homog, &
res, &
res1_red, &
mesh_NcpElems, &
wgt, &
geomdim, &
virt_dim, &
deformed_FFT
use CPFEM, only: &
CPFEM_general, &
CPFEM_initAll
use FEsolving, only: &
restartWrite, &
restartInc
use numerics, only: &
err_div_tol, &
err_stress_tolrel, &
err_stress_tolabs, &
rotation_tol, &
itmax,&
itmin, &
memory_efficient, &
DAMASK_NumThreadsInt, &
fftw_planner_flag, &
fftw_timelimit
use homogenization, only: &
materialpoint_sizeResults, &
materialpoint_results
2010-06-08 15:38:15 +05:30
implicit none
!--------------------------------------------------------------------------------------------------
! variables related to information from load case and geom file
real(pReal), dimension(9) :: &
temp_valueVector !> temporarily from loadcase file when reading in tensors
logical, dimension(9) :: &
temp_maskVector !> temporarily from loadcase file when reading in tensors
integer(pInt), parameter :: maxNchunksLoadcase = (1_pInt + 9_pInt)*3_pInt +& ! deformation, rotation, and stress
(1_pInt + 1_pInt)*5_pInt +& ! time, (log)incs, temp, restartfrequency, and outputfrequency
1_pInt, & ! dropguessing
maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values
myUnit = 234_pInt
integer(pInt), dimension(1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing
integer(pInt) :: &
N_l = 0_pInt, &
N_t = 0_pInt, &
N_n = 0_pInt, &
N_Fdot = 0_pInt
character(len=1024) :: &
2012-04-12 00:16:36 +05:30
line
type bc_type
real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient
stress = 0.0_pReal, & ! stress BC (if applicable)
rotation = math_I3 ! rotation of BC (if applicable)
real(pReal) :: time = 0.0_pReal, & ! length of increment
temperature = 300.0_pReal ! isothermal starting conditions
integer(pInt) :: incs = 0_pInt, & ! number of increments
outputfrequency = 1_pInt, & ! frequency of result writes
restartfrequency = 0_pInt, & ! frequency of restart writes
logscale = 0_pInt ! linear/logaritmic time inc flag
logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase
velGradApplied = .false. ! decide wether velocity gradient or fdot is given
logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions
maskStress = .false. ! mask of stress boundary conditions
logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions
end type
type(bc_type), allocatable, dimension(:) :: bc
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), dimension(3,3) :: &
P_av, &
F_aim = math_I3, &
F_aim_lastInc = math_I3, &
Favg = 0.0_pReal, &
mask_stress, &
mask_defgrad, &
deltaF_aim, &
F_aim_lab, &
F_aim_lab_lastIter, &
P_av_lab
real(pReal), dimension(3,3,3,3) :: &
dPdF, &
C_ref = 0.0_pReal, &
C = 0.0_pReal, &
S_lastInc, &
C_lastInc ! stiffness and compliance
real(pReal), dimension(6) :: sigma ! cauchy stress
real(pReal), dimension(6,6) :: dsde
real(pReal), dimension(9,9) :: temp99_Real ! compliance and stiffness in matrix notation
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
integer(pInt) :: size_reduced = 0_pInt ! number of stress BCs
!--------------------------------------------------------------------------------------------------
! pointwise data
type(C_PTR) :: tensorField ! field in real an fourier space
real(pReal), dimension(:,:,:,:,:), pointer :: P_real, deltaF_real ! field in real space (pointer)
complex(pReal), dimension(:,:,:,:,:), pointer :: P_fourier,deltaF_fourier ! field in fourier space (pointer)
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
real(pReal), dimension(:,:,:), allocatable :: temperature
!--------------------------------------------------------------------------------------------------
! variables storing information for spectral method and FFTW
type(C_PTR) :: plan_stress, plan_correction ! plans for fftw
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
integer(pInt), dimension(3) :: k_s
!--------------------------------------------------------------------------------------------------
! loop variables, convergence etc.
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval
real(pReal) :: guessmode, err_div, err_stress, err_stress_tol
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
complex(pReal), dimension(3) :: temp3_Complex
complex(pReal), dimension(3,3) :: temp33_Complex
real(pReal), dimension(3,3) :: temp33_Real
integer(pInt) :: i, j, k, l, m, n, p, errorID
integer(pInt) :: N_Loadcases, loadcase = 0_pInt, inc, iter, ielem, CPFEM_mode=1_pInt, &
ierr, totalIncsCounter = 0_pInt,&
notConvergedCounter = 0_pInt, convergedCounter = 0_pInt
logical :: errmatinv
real(pReal) :: defgradDet
character(len=6) :: loadcase_string
!--------------------------------------------------------------------------------------------------
!variables controlling debugging
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
!--------------------------------------------------------------------------------------------------
!variables for additional output due to general debugging
real(pReal) :: defgradDetMax, defgradDetMin, maxCorrectionSym, maxCorrectionSkew
!--------------------------------------------------------------------------------------------------
! variables for additional output of divergence calculations
type(C_PTR) :: divergence, plan_divergence
real(pReal), dimension(:,:,:,:), pointer :: divergence_real
complex(pReal), dimension(:,:,:,:), pointer :: divergence_fourier
real(pReal), dimension(:,:,:,:), allocatable :: divergence_post
real(pReal) :: pstress_av_L2, err_div_RMS, err_real_div_RMS, err_post_div_RMS,&
err_div_max, err_real_div_max
!--------------------------------------------------------------------------------------------------
! variables for debugging fft using a scalar field
type(C_PTR) :: scalarField_realC, scalarField_fourierC,&
plan_scalarField_forth, plan_scalarField_back
complex(pReal), dimension(:,:,:), pointer :: scalarField_real
complex(pReal), dimension(:,:,:), pointer :: scalarField_fourier
integer(pInt) :: row, column
!##################################################################################################
! reading of information from load case file and geometry file
!##################################################################################################
!--------------------------------------------------------------------------------------------------
! initialization of all related DAMASK modules (e.g. mesh.f90 reads in geometry)
call CPFEM_initAll(temperature = 300.0_pReal, element = 1_pInt, IP= 1_pInt)
write(6,'(a)') ''
write(6,'(a)') ' <<<+- DAMASK_spectral init -+>>>'
write(6,'(a)') ' $Id$'
#include "compilation_info.f90"
write(6,'(a)') ' Working Directory: ',trim(getSolverWorkingDirectoryName())
write(6,'(a)') ' Solver Job Name: ',trim(getSolverJobName())
write(6,'(a)') ''
!--------------------------------------------------------------------------------------------------
! reading the load case file and allocate data structure containing load cases
call IO_open_file(myUnit,trim(loadCaseFile))
rewind(myUnit)
do
read(myUnit,'(a1024)',END = 100) line
if (IO_isBlank(line)) cycle ! skip empty lines
positions = IO_stringPos(line,maxNchunksLoadcase)
do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase
select case (IO_lc(IO_stringValue(line,positions,i)))
case('l','velocitygrad','velgrad','velocitygradient')
N_l = N_l + 1_pInt
case('fdot','dotf')
N_Fdot = N_Fdot + 1_pInt
case('t','time','delta')
N_t = N_t + 1_pInt
case('n','incs','increments','steps','logincs','logincrements','logsteps')
N_n = N_n + 1_pInt
end select
enddo ! count all identifiers to allocate memory and do sanity check
enddo
100 N_Loadcases = N_n
if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
call IO_error(error_ID=837_pInt,ext_msg = trim(loadCaseFile)) ! error message for incomplete loadcase
allocate (bc(N_Loadcases))
!--------------------------------------------------------------------------------------------------
! reading the load case and assign values to the allocated data structure
rewind(myUnit)
do
read(myUnit,'(a1024)',END = 101) line
if (IO_isBlank(line)) cycle ! skip empty lines
loadcase = loadcase + 1_pInt
positions = IO_stringPos(line,maxNchunksLoadcase)
do j = 1_pInt,maxNchunksLoadcase
select case (IO_lc(IO_stringValue(line,positions,j)))
2012-02-13 18:11:44 +05:30
case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix
bc(loadcase)%velGradApplied = &
(IO_lc(IO_stringValue(line,positions,j)) == 'l'.or. & ! in case of given L, set flag to true
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad'.or.&
IO_lc(IO_stringValue(line,positions,j)) == 'velgrad'.or.&
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient')
temp_valueVector = 0.0_pReal
temp_maskVector = .false.
forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*'
do k = 1_pInt,9_pInt
if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
enddo
bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,[ 3,3]))
bc(loadcase)%deformation = math_plain9to33(temp_valueVector)
case('p','pk1','piolakirchhoff','stress')
temp_valueVector = 0.0_pReal
forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) =&
IO_stringValue(line,positions,j+k) /= '*'
do k = 1_pInt,9_pInt
if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) =&
IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%stress matrix
enddo
bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,[ 3,3]))
bc(loadcase)%stress = math_plain9to33(temp_valueVector)
case('t','time','delta') ! increment time
bc(loadcase)%time = IO_floatValue(line,positions,j+1_pInt)
case('temp','temperature') ! starting temperature
bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt)
case('n','incs','increments','steps') ! number of increments
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
bc(loadcase)%logscale = 1_pInt
case('f','freq','frequency','outputfreq') ! frequency of result writings
bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt)
case('r','restart','restartwrite') ! frequency of writing restart information
bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt))
case('guessreset','dropguessing')
bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
case('euler') ! rotation of loadcase given in euler angles
p = 1_pInt ! assuming values given in radians
l = 1_pInt ! assuming keyword indicating degree/radians
select case (IO_lc(IO_stringValue(line,positions,j+1_pInt)))
case('deg','degree') ! for conversion from degree to radian
case('rad','radian')
p = 0_pInt
case default
l = 0_pInt ! immediately reading in angles, assuming radians
end select
forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = IO_floatValue(line,positions,j+l+k)
if (p==1_pInt) temp33_Real = temp33_Real * inRad
bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1))
case('rotation','rot') ! assign values for the rotation of loadcase matrix
temp_valueVector = 0.0_pReal
forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
bc(loadcase)%rotation = math_plain9to33(temp_valueVector)
end select
enddo; enddo
101 close(myUnit)
!--------------------------------------------------------------------------------------------------
! output of geometry
write(6,'(a)') ''
write(6,'(a)') '#############################################################'
write(6,'(a)') 'DAMASK spectral:'
write(6,'(a)') 'The spectral method boundary value problem solver for'
write(6,'(a)') 'the Duesseldorf Advanced Material Simulation Kit'
write(6,'(a)') '#############################################################'
write(6,'(a)') 'geometry file: ',trim(geometryFile)
write(6,'(a)') '============================================================='
write(6,'(a,3(i12 ))') 'resolution a b c:', res
write(6,'(a,3(f12.5))') 'dimension x y z:', geomdim
write(6,'(a,i5)') 'homogenization: ',homog
write(6,'(a)') '#############################################################'
write(6,'(a)') 'loadcase file: ',trim(loadCaseFile)
!--------------------------------------------------------------------------------------------------
! consistency checks and output of load case
bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first loadcase
errorID = 0_pInt
do loadcase = 1_pInt, N_Loadcases
write (loadcase_string, '(i6)' ) loadcase
write(6,'(a)') '============================================================='
write(6,'(a,i6)') 'loadcase: ', loadcase
if (.not. bc(loadcase)%followFormerTrajectory) write(6,'(a)') 'drop guessing along trajectory'
if (bc(loadcase)%velGradApplied) then
do j = 1_pInt, 3_pInt
if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. &
any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 832_pInt ! each row should be either fully or not at all defined
enddo
write(6,'(a)')'velocity gradient:'
else
write(6,'(a)')'deformation gradient rate:'
endif
write(6,'(3(3(f12.7,1x)/))',advance='no') merge(math_transpose33(bc(loadcase)%deformation),&
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskDeformation))
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') ' stress / GPa:',&
1e-9_pReal*merge(math_transpose33(bc(loadcase)%stress),&
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskStress))
if (any(bc(loadcase)%rotation /= math_I3)) &
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') ' rotation of loadframe:',&
math_transpose33(bc(loadcase)%rotation)
write(6,'(a,f12.6)') 'temperature:', bc(loadcase)%temperature
write(6,'(a,f12.6)') 'time: ', bc(loadcase)%time
write(6,'(a,i5)') 'increments: ', bc(loadcase)%incs
write(6,'(a,i5)') 'output frequency: ', bc(loadcase)%outputfrequency
write(6,'(a,i5)') 'restart frequency: ', bc(loadcase)%restartfrequency
if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 831_pInt ! exclusive or masking only
if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. &
reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) &
errorID = 838_pInt ! no rotation is allowed by stress BC
if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose33(bc(loadcase)%rotation))&
-math_I3) > reshape(spread(rotation_tol,1,9),[ 3,3]))&
.or. abs(math_det33(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol)&
errorID = 846_pInt ! given rotation matrix contains strain
if (bc(loadcase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
if (bc(loadcase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count
if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string)
enddo
!--------------------------------------------------------------------------------------------------
! debugging parameters
debugGeneral = iand(debug_level(debug_spectral),debug_levelBasic) /= 0
debugDivergence = iand(debug_level(debug_spectral),debug_spectralDivergence) /= 0
debugRestart = iand(debug_level(debug_spectral),debug_spectralRestart) /= 0
debugFFTW = iand(debug_level(debug_spectral),debug_spectralFFTW) /= 0
!##################################################################################################
! initialization
!##################################################################################################
allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal)
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
allocate (temperature( res(1), res(2),res(3)), source = bc(1)%temperature) ! start out isothermally
tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8)
call c_f_pointer(tensorField, P_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
call c_f_pointer(tensorField, deltaF_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for a real representation on tensorField
call c_f_pointer(tensorField, P_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
call c_f_pointer(tensorField, deltaF_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for a complex representation on tensorField
!--------------------------------------------------------------------------------------------------
! general initialization of fftw (see manual on fftw.org for more details)
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt) ! check for correct precision in C
!$ if(DAMASK_NumThreadsInt > 0_pInt) then
!$ ierr = fftw_init_threads()
!$ if (ierr == 0_pInt) call IO_error(error_ID = 809_pInt)
!$ call fftw_plan_with_nthreads(DAMASK_NumThreadsInt)
!$ endif
call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation
!--------------------------------------------------------------------------------------------------
! creating plans
plan_stress = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order
P_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
P_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,fftw_planner_flag)
plan_correction =fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,&
deltaF_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,&
deltaF_real,[ res(3),res(2) ,res(1)+2_pInt],&
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
!--------------------------------------------------------------------------------------------------
! depending on (debug) options, allocate more memory and create additional plans
if (debugDivergence) then
divergence = fftw_alloc_complex(int(res1_red*res(2)*res(3)*3_pInt,C_SIZE_T))
call c_f_pointer(divergence, divergence_real, [ res(1)+2_pInt,res(2),res(3),3])
call c_f_pointer(divergence, divergence_fourier, [ res1_red, res(2),res(3),3])
allocate (divergence_post(res(1),res(2),res(3),3)); divergence_post = 0.0_pReal
plan_divergence = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],3,&
divergence_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,&
divergence_real,[ res(3),res(2) ,res(1)+2_pInt],&
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
endif
if (debugFFTW) then
scalarField_realC = fftw_alloc_complex(int(res(1)*res(2)*res(3),C_SIZE_T)) ! do not do an inplace transform
scalarField_fourierC = fftw_alloc_complex(int(res(1)*res(2)*res(3),C_SIZE_T))
call c_f_pointer(scalarField_realC, scalarField_real, [res(1),res(2),res(3)])
call c_f_pointer(scalarField_fourierC, scalarField_fourier, [res(1),res(2),res(3)])
plan_scalarField_forth = fftw_plan_dft_3d(res(3),res(2),res(1),& !reversed order
scalarField_real,scalarField_fourier,-1,fftw_planner_flag)
plan_scalarField_back = fftw_plan_dft_3d(res(3),res(2),res(1),& !reversed order
scalarField_fourier,scalarField_real,+1,fftw_planner_flag)
endif
if (debugGeneral) write(6,'(a)') 'FFTW initialized'
!--------------------------------------------------------------------------------------------------
! init fields
if (restartInc == 1_pInt) then ! no deformation (no restart)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = math_I3
F_lastInc(i,j,k,1:3,1:3) = math_I3
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) &
- geomdim/real(2_pInt*res,pReal)
enddo; enddo; enddo
elseif (restartInc > 1_pInt) then ! using old values from file
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
restartInc - 1_pInt,' from file'
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',&
trim(getSolverJobName()),size(F_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim))
read (777,rec=1) F_aim
close (777)
call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc))
read (777,rec=1) F_aim_lastInc
close (777)
coordinates = 0.0 ! change it later!!!
CPFEM_mode = 2_pInt
if (debugRestart) write(6,'(a)') 'Data read in'
endif
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(3_pInt,coordinates(i,j,k,1:3),F(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3),temperature(i,j,k),&
0.0_pReal,ielem,1_pInt,sigma,dsde,P_real(i,j,k,1:3,1:3),dPdF)
enddo; enddo; enddo
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),F(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3),temperature(i,j,k),&
0.0_pReal,ielem,1_pInt,sigma,dsde,P_real(i,j,k,1:3,1:3),dPdF)
C = C + dPdF
enddo; enddo; enddo
if (debugGeneral) write(6,'(a)') 'First call to CPFEM finished'
C = C * wgt
!--------------------------------------------------------------------------------------------------
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
do k = 1_pInt, res(3)
k_s(3) = k - 1_pInt
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
do j = 1_pInt, res(2)
k_s(2) = j - 1_pInt
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
do i = 1_pInt, res1_red
k_s(1) = i - 1_pInt
xi(1:3,i,j,k) = real(k_s, pReal)/virt_dim
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculate the gamma operator
if (restartInc == 1_pInt) then
C_ref = C
call IO_write_jobBinaryFile(777,'C_ref',size(C_ref))
write (777,rec=1) C_ref
close(777)
elseif (restartInc > 1_pInt) then
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C_ref))
read (777,rec=1) C_ref
close (777)
endif
if(memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
else ! precalculation of gamma_hat field
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source =0.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, p=1_pInt:3_pInt)&
gamma_hat(i,j,k, l,m,n,p) = temp33_Real(l,n)*xiDyad(m,p)
endif
enddo; enddo; enddo
gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
endif
!--------------------------------------------------------------------------------------------------
! write header of output file
if (appendToOutFile) then
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'.spectralOut',&
form='UNFORMATTED', position='APPEND', status='OLD')
if (debugRestart) write(6,'(a)') 'Result File opened for appending'
else
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'.spectralOut',&
form='UNFORMATTED',status='REPLACE')
write(538) 'load', trim(loadCaseFile)
write(538) 'workingdir', trim(getSolverWorkingDirectoryName())
write(538) 'geometry', trim(geometryFile)
write(538) 'resolution', res
write(538) 'dimension', geomdim
write(538) 'materialpoint_sizeResults', materialpoint_sizeResults
write(538) 'loadcases', N_Loadcases
write(538) 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase
write(538) 'times', bc(1:N_Loadcases)%time ! one entry per loadcase
write(538) 'logscales', bc(1:N_Loadcases)%logscale
write(538) 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase
write(538) 'startingIncrement', restartInc - 1_pInt ! start with writing out the previous inc
write(538) 'eoh' ! end of header
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:mesh_NcpElems) ! initial (non-deformed or read-in) results
if (debugGeneral) write(6,'(a)') 'Header of result file written out'
endif
2012-07-19 19:46:59 +05:30
!##################################################################################################
! Loop over loadcases defined in the loadcase file
!##################################################################################################
do loadcase = 1_pInt, N_Loadcases
time0 = time
if (bc(loadcase)%followFormerTrajectory) then
guessmode = 1.0_pReal
else
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc
endif
!--------------------------------------------------------------------------------------------------
! arrays for mixed boundary conditions
mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation)
mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress)
size_reduced = int(count(bc(loadcase)%maskStressVector), pInt)
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
!##################################################################################################
! loop oper incs defined in input file for current loadcase
!##################################################################################################
do inc = 1_pInt, bc(loadcase)%incs
totalIncsCounter = totalIncsCounter + 1_pInt
!--------------------------------------------------------------------------------------------------
! forwarding time
timeinc_old = timeinc
if (bc(loadcase)%logscale == 0_pInt) then ! linear scale
timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
else
if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale
if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale
timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
else ! not-1st inc of 1st loadcase of logarithmic scale
timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal))
endif
else ! not-1st loadcase of logarithmic scale
timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/&
real(bc(loadcase)%incs ,pReal))&
-(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/&
real(bc(loadcase)%incs ,pReal)) )
endif
endif
time = time + timeinc
if(totalIncsCounter >= restartInc) then ! do calculations (otherwise just forwarding)
if (bc(loadcase)%velGradApplied) then ! calculate deltaF_aim from given L and current F
deltaF_aim = timeinc * mask_defgrad * math_mul33x33(bc(loadcase)%deformation, F_aim)
else ! deltaF_aim = fDot *timeinc where applicable
deltaF_aim = timeinc * mask_defgrad * bc(loadcase)%deformation
endif
!--------------------------------------------------------------------------------------------------
! winding forward of deformation aim in loadcase system
temp33_Real = F_aim
F_aim = F_aim &
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
+ deltaF_aim
F_aim_lastInc = temp33_Real
!--------------------------------------------------------------------------------------------------
! update local deformation gradient and coordinates
deltaF_aim = math_rotate_backward33(deltaF_aim,bc(loadcase)%rotation)
Favg = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = F(i,j,k,1:3,1:3)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing...
*timeinc/timeinc_old &
+ (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
Favg = Favg + F(i,j,k,1:3,1:3)
enddo; enddo; enddo
deltaF_aim = guessmode *(Favg*wgt -math_rotate_backward33(F_aim,bc(loadcase)%rotation)) ! average correction in case of guessing to
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - deltaF_aim ! correct in case avg of F is not F_aim
enddo; enddo; enddo
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,bc(loadcase)%rotation),& ! calculate current coordinates
1.0_pReal,F_lastInc,coordinates)
!--------------------------------------------------------------------------------------------------
! calculate reduced compliance
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
C_lastInc = math_rotate_forward3333(C,bc(loadcase)%rotation) ! calculate stiffness from former inc
temp99_Real = math_Plain3333to99(C_lastInc)
k = 0_pInt ! build reduced stiffness
do n = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(m)) then
j = j + 1_pInt
c_reduced(k,j) = temp99_Real(n,m)
endif; enddo; endif; enddo
call math_invert(size_reduced,c_reduced, s_reduced, errmatinv) ! invert reduced stiffness
if(errmatinv) call IO_error(error_ID=400_pInt)
temp99_Real = 0.0_pReal ! build full compliance
k = 0_pInt
do n = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(m)) then
j = j + 1_pInt
temp99_Real(n,m) = s_reduced(k,j)
endif; enddo; endif; enddo
S_lastInc = (math_Plain99to3333(temp99_Real))
endif
!--------------------------------------------------------------------------------------------------
! report begin of new increment
write(6,'(a)') '##################################################################'
write(6,'(A,I5.5,A,es12.5)') 'Increment ', totalIncsCounter, ' Time ',time
iter = 0_pInt
err_div = huge(err_div_tol) ! go into loop
!##################################################################################################
! convergence loop (looping over iterations)
!##################################################################################################
do while((iter < itmax .and. (err_div > err_div_tol .or. err_stress > err_stress_tol))&
.or. iter < itmin)
iter = iter + 1_pInt
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
write(6,'(6(a,i6.6))') 'Loadcase ',loadcase,' Inc. ',inc,'/',bc(loadcase)%incs,&
' @ Iter. ',itmin,' < ',iter,' < ',itmax
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
math_transpose33(F_aim)
write(6,'(a)') ''
write(6,'(a)') '... update stress field P(F) .....................................'
if (restartWrite) write(6,'(a)') 'writing CP restart information for last increment'
F_aim_lab_lastIter = math_rotate_backward33(F_aim,bc(loadcase)%rotation)
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(3_pInt,& ! collect cycle
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),F(i,j,k,1:3,1:3), &
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde,&
P_real(i,j,k,1:3,1:3),dPdF)
enddo; enddo; enddo
P_real = 0.0_pReal ! needed because of the padding for FFTW
C = 0.0_pReal
ielem = 0_pInt
call debug_reset()
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
coordinates(i,j,k,1:3),F_lastInc(i,j,k,1:3,1:3), F(i,j,k,1:3,1:3), & ! others get 2 (saves winding forward effort)
temperature(i,j,k),timeinc,ielem,1_pInt,sigma,dsde, &
P_real(i,j,k,1:3,1:3),dPdF)
CPFEM_mode = 2_pInt
C = C + dPdF
enddo; enddo; enddo
call debug_info()
restartWrite = .false.
! for test of regridding
! if( bc(loadcase)%restartFrequency > 0_pInt .and. &
! mod(inc-1,bc(loadcase)%restartFrequency) == 0_pInt .and. &
! restartInc/=inc) call quit(-1*(restartInc+1)) ! trigger exit to regrid
!--------------------------------------------------------------------------------------------------
! copy one component of the stress field to to a single FT and check for mismatch
if (debugFFTW) then
row = (mod(totalIncsCounter+iter-2_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1
column = (mod(totalIncsCounter+iter-2_pInt,3_pInt)) + 1_pInt
scalarField_real(1:res(1),1:res(2),1:res(3)) =& ! store the selected component
cmplx(P_real(1:res(1),1:res(2),1:res(3),row,column),0.0_pReal,pReal)
endif
!--------------------------------------------------------------------------------------------------
! call function to calculate divergence from math (for post processing) to check results
if (debugDivergence) &
divergence_post = math_divergenceFFT(virt_dim,P_real(1:res(1),1:res(2),1:res(3),1:3,1:3)) ! padding
!--------------------------------------------------------------------------------------------------
! doing the FT because it simplifies calculation of average stress in real space also
call fftw_execute_dft_r2c(plan_stress,P_real,P_fourier)
P_av_lab = real(P_fourier(1,1,1,1:3,1:3),pReal)*wgt
P_av = math_rotate_forward33(P_av_lab,bc(loadcase)%rotation)
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'Piola-Kirchhoff stress / MPa =',&
math_transpose33(P_av)/1.e6_pReal
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 FT results
if (debugFFTW) then
call fftw_execute_dft(plan_scalarField_forth,scalarField_real,scalarField_fourier)
write(6,'(a,i1,1x,i1)') 'checking FT results of compontent ', row, column
write(6,'(a,2(es11.4,1x))') 'max FT relative error = ',&
maxval( real((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
P_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
scalarField_fourier(1:res1_red,1:res(2),1:res(3)))), &
maxval(aimag((scalarField_fourier(1:res1_red,1:res(2),1:res(3))-&
P_fourier(1:res1_red,1:res(2),1:res(3),row,column))/&
scalarField_fourier(1:res1_red,1:res(2),1:res(3))))
endif
!--------------------------------------------------------------------------------------------------
! removing highest frequencies
P_fourier ( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
P_fourier (1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
if(res(3)>1_pInt) &
P_fourier (1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
!--------------------------------------------------------------------------------------------------
! stress BC handling
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
err_stress = maxval(abs(mask_stress * (P_av - bc(loadcase)%stress))) ! maximum deviaton (tensor norm not applicable)
err_stress_tol = min(maxval(abs(P_av)) * err_stress_tolrel,err_stress_tolabs) ! don't use any tensor norm for the relative criterion because the comparison should be coherent
write(6,'(a)') ''
write(6,'(a)') '... correcting deformation gradient to fulfill BCs ...............'
write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, &
' (',err_stress,' Pa)'
F_aim = F_aim - math_mul3333xx33(S_lastInc, ((P_av - bc(loadcase)%stress))) ! residual on given stress components
write(6,'(a,1x,es11.4)')'determinant of new deformation = ',math_det33(F_aim)
else
err_stress_tol = +huge(1.0_pReal)
endif
F_aim_lab = math_rotate_backward33(F_aim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame
!--------------------------------------------------------------------------------------------------
! actual spectral method
write(6,'(a)') ''
write(6,'(a)') '... calculating equilibrium with spectral method .................'
!--------------------------------------------------------------------------------------------------
! calculating RMS divergence criterion in Fourier space
pstress_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(P_av_lab,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html)
math_transpose33(P_av_lab)))))
err_div_RMS = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
err_div_RMS = err_div_RMS &
+ 2.0_pReal*(sum (real(math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3),&
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
enddo
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
+ sum( real(math_mul33x3_complex(P_fourier(1 ,j,k,1:3,1:3),&
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum(aimag(math_mul33x3_complex(P_fourier(1 ,j,k,1:3,1:3),&
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum( real(math_mul33x3_complex(P_fourier(res1_red,j,k,1:3,1:3),&
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum(aimag(math_mul33x3_complex(P_fourier(res1_red,j,k,1:3,1:3),&
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
enddo; enddo
err_div_RMS = sqrt(err_div_RMS)*wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
if (err_div_RMS/pstress_av_L2 > err_div &
.and. err_stress < err_stress_tol &
.and. iter >= itmin ) then
write(6,'(a)') 'Increasing divergence, stopping iterations'
iter = itmax
endif
err_div = err_div_RMS/pstress_av_L2 ! criterion to stop iterations
!--------------------------------------------------------------------------------------------------
! calculate additional divergence criteria and report
if (debugDivergence) then ! calculate divergence again
err_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
temp3_Complex = math_mul33x3_complex(P_fourier(i,j,k,1:3,1:3)*wgt,& ! weighting P_fourier
xi(1:3,i,j,k))*TWOPIIMG
err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal))
divergence_fourier(i,j,k,1:3) = temp3_Complex ! need divergence NOT squared
enddo; enddo; enddo
call fftw_execute_dft_c2r(plan_divergence,divergence_fourier,divergence_real) ! already weighted
err_real_div_RMS = 0.0_pReal
err_post_div_RMS = 0.0_pReal
err_real_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
err_real_div_RMS = err_real_div_RMS + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
err_post_div_RMS = err_post_div_RMS + sum(divergence_post(i,j,k,1:3)**2.0_pReal) ! avg of squared L_2 norm of div(stress) in real space
err_real_div_max = max(err_real_div_max,sum(divergence_real(i,j,k,1:3)**2.0_pReal)) ! max of squared L_2 norm of div(stress) in real space
enddo; enddo; enddo
err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space
err_post_div_RMS = sqrt(wgt*err_post_div_RMS) ! RMS in real space
err_real_div_max = sqrt( err_real_div_max) ! max in real space
err_div_max = sqrt( err_div_max) ! max in Fourier space
write(6,'(a,es11.4)') 'error divergence FT RMS = ',err_div_RMS
write(6,'(a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS
write(6,'(a,es11.4)') 'error divergence post RMS = ',err_post_div_RMS
write(6,'(a,es11.4)') 'error divergence FT max = ',err_div_max
write(6,'(a,es11.4)') 'error divergence Real max = ',err_real_div_max
endif
write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/err_div_tol,&
' (',err_div,' N/m³)'
!--------------------------------------------------------------------------------------------------
! to the actual spectral method calculation (mechanical equilibrium)
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Real(l,m) = sum(C_ref(l,m,1:3,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, p=1_pInt:3_pInt)&
gamma_hat(1,1,1, l,m,n,p) = temp33_Real(l,n)*xiDyad(m,p)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Complex(l,m) = sum(gamma_hat(1,1,1, l,m, 1:3,1:3) *&
P_fourier(i,j,k,1:3,1:3))
deltaF_fourier(i,j,k,1:3,1:3) = temp33_Complex
endif
enddo; enddo; enddo
else ! use precalculated gamma-operator
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
forall( m = 1_pInt:3_pInt, n = 1_pInt:3_pInt) &
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) *&
P_fourier(i,j,k,1:3,1:3))
deltaF_fourier(i,j,k, 1:3,1:3) = temp33_Complex
enddo; enddo; enddo
endif
deltaF_fourier(1,1,1,1:3,1:3) = cmplx((F_aim_lab_lastIter - F_aim_lab) & ! assign (negative) average deformation gradient change to zero frequency (real part)
* real(mesh_NcpElems,pReal),0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 inverse FT results
if (debugFFTW) then
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
scalarField_fourier(i,j,k) = deltaF_fourier(i,j,k,row,column)
enddo; enddo; enddo
do i = 0_pInt, res(1)/2_pInt-2_pInt ! unpack fft data for conj complex symmetric part
m = 1_pInt
do k = 1_pInt, res(3)
n = 1_pInt
do j = 1_pInt, res(2)
scalarField_fourier(res(1)-i,j,k) = conjg(scalarField_fourier(2+i,n,m))
if(n == 1_pInt) n = res(2) + 1_pInt
n = n-1_pInt
enddo
if(m == 1_pInt) m = res(3) + 1_pInt
m = m -1_pInt
enddo; enddo
endif
!--------------------------------------------------------------------------------------------------
! doing the inverse FT
call fftw_execute_dft_c2r(plan_correction,deltaF_fourier,deltaF_real) ! back transform of fluct deformation gradient
!--------------------------------------------------------------------------------------------------
! comparing 1 and 3x3 inverse FT results
if (debugFFTW) then
write(6,'(a,i1,1x,i1)') 'checking iFT results of compontent ', row, column
call fftw_execute_dft(plan_scalarField_back,scalarField_fourier,scalarField_real)
write(6,'(a,es11.4)') 'max iFT relative error = ',&
maxval((real(scalarField_real(1:res(1),1:res(2),1:res(3)))-&
deltaF_real(1:res(1),1:res(2),1:res(3),row,column))/&
real(scalarField_real(1:res(1),1:res(2),1:res(3))))
endif
!--------------------------------------------------------------------------------------------------
! calculate some additional output
if(debugGeneral) then
maxCorrectionSkew = 0.0_pReal
maxCorrectionSym = 0.0_pReal
temp33_Real = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
maxCorrectionSym = max(maxCorrectionSym,&
maxval(math_symmetric33(deltaF_real(i,j,k,1:3,1:3))))
maxCorrectionSkew = max(maxCorrectionSkew,&
maxval(math_skew33(deltaF_real(i,j,k,1:3,1:3))))
temp33_Real = temp33_Real + deltaF_real(i,j,k,1:3,1:3)
enddo; enddo; enddo
write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
maxCorrectionSym*wgt
write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
maxCorrectionSkew*wgt
write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
maxval(math_symmetric33(temp33_real))/&
maxval(math_skew33(temp33_real))
endif
!--------------------------------------------------------------------------------------------------
! updated deformation gradient
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - deltaF_real(i,j,k,1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculate bounds of det(F) and report
if(debugGeneral) then
defgradDetMax = -huge(1.0_pReal)
defgradDetMin = +huge(1.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
defgradDet = math_det33(F(i,j,k,1:3,1:3))
defgradDetMax = max(defgradDetMax,defgradDet)
defgradDetMin = min(defgradDetMin,defgradDet)
enddo; enddo; enddo
write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
endif
enddo ! end looping when convergency is achieved
CPFEM_mode = 1_pInt ! winding forward
C = C * wgt
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
if(err_div > err_div_tol .or. err_stress > err_stress_tol) then
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' NOT converged'
notConvergedCounter = notConvergedCounter + 1_pInt
else
convergedCounter = convergedCounter + 1_pInt
write(6,'(A,I5.5,A)') 'increment ', totalIncsCounter, ' converged'
endif
if (mod(inc,bc(loadcase)%outputFrequency) == 0_pInt) then ! at output frequency
write(6,'(a)') ''
write(6,'(a)') '... writing results to file ......................................'
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:mesh_NcpElems) ! write result to file
flush(538)
endif
if( bc(loadcase)%restartFrequency > 0_pInt .and. &
mod(inc,bc(loadcase)%restartFrequency) == 0_pInt) then ! at frequency of writing restart information set restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
2012-07-19 19:46:59 +05:30
restartInc=totalIncsCounter
restartWrite = .true.
write(6,'(a)') 'writing converged results for restart'
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F)) ! writing deformation gradient field to file
write (777,rec=1) F
close (777)
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',size(F_lastInc)) ! writing F_lastInc field to file
write (777,rec=1) F_lastInc
close (777)
call IO_write_jobBinaryFile(777,'F_aim',size(F_aim))
write (777,rec=1) F_aim
close(777)
call IO_write_jobBinaryFile(777,'F_aim_lastInc',size(F_aim_lastInc))
write (777,rec=1) F_aim_lastInc
close(777)
endif
endif ! end calculation/forwarding
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
enddo ! end looping over incs in current loadcase
deallocate(c_reduced)
deallocate(s_reduced)
enddo ! end looping over loadcases
write(6,'(a)') ''
write(6,'(a)') '##################################################################'
write(6,'(i6.6,a,i6.6,a,f5.1,a)') convergedCounter, ' out of ', &
notConvergedCounter + convergedCounter, ' (', &
real(convergedCounter, pReal)/&
real(notConvergedCounter + convergedCounter,pReal)*100.0_pReal, &
' %) increments converged!'
close(538)
call fftw_destroy_plan(plan_stress); call fftw_destroy_plan(plan_correction)
if (debugDivergence) call fftw_destroy_plan(plan_divergence)
if (debugFFTW) then
call fftw_destroy_plan(plan_scalarField_forth)
call fftw_destroy_plan(plan_scalarField_back)
endif
if (notConvergedCounter > 0_pInt) call quit(3_pInt)
call quit(0_pInt)
end program DAMASK_spectral