corrected divergence calculation. Still some open questions, but improved understanding a lot

This commit is contained in:
Martin Diehl 2011-12-23 12:30:35 +00:00
parent 6dee2616f5
commit ee401520d7
1 changed files with 77 additions and 81 deletions

View File

@ -122,13 +122,15 @@ program DAMASK_spectral
! variables storing information for spectral method and FFTW
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
integer(pInt), dimension(3) :: k_s
integer*8, dimension(3) :: fftw_plan ! plans for fftw (forward and backward)
! loop variables, convergence etc.
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc ! elapsed time, begin of interval, time interval
real(pReal) :: guessmode, err_div, err_stress, err_stress_tol, p_hat_avg
complex(pReal) :: err_div_avg_complex
complex(pReal), dimension(3) :: divergence_complex
complex(pReal), parameter :: img = cmplx(0.0_pReal,1.0_pReal)
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
complex(pReal), dimension(3,3) :: temp33_Complex
@ -139,6 +141,7 @@ program DAMASK_spectral
logical :: errmatinv, regrid = .false.
real(pReal) :: defgradDet, defgradDetMax, defgradDetMin
real(pReal) :: correctionFactor
integer(pInt), dimension(3) :: cutting_freq
! --- debugging variables
real(pReal), dimension(:,:,:,:), allocatable :: divergence
@ -156,12 +159,10 @@ program DAMASK_spectral
bc_init%rotation = math_I3 ! assume no rotation
! --- initializing model size independed parameters
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
if (.not.(command_argument_count()==4 .or. command_argument_count()==6)) &! check for correct number of given arguments
call IO_error(error_ID=102_pInt)
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
call DAMASK_interface_init()
print '(a)', ''
print '(a,a)', ' <<<+- DAMASK_spectral init -+>>>'
print '(a,a)', ' $Id$'
@ -474,11 +475,12 @@ program DAMASK_spectral
allocate (defgradold ( res(1),res(2),res(3),3,3)); defgradold = 0.0_pReal
allocate (coordinates(3,res(1),res(2),res(3))); coordinates = 0.0_pReal
allocate (temperature( res(1),res(2),res(3))); temperature = bc(1)%temperature ! start out isothermally
allocate (xi (3,res(1)/2+1,res(2),res(3))); xi =0.0_pReal
allocate (xi (3,res(1)/2+1,res(2),res(3))); xi =0.0_pReal
allocate (workfft(res(1)+2,res(2),res(3),3,3)); workfft = 0.0_pReal
if (debugDivergence) allocate (divergence(res(1)+2,res(2),res(3),3)); divergence = 0.0_pReal
wgt = 1.0_pReal/real(Npoints, pReal)
call dfftw_plan_many_dft_r2c(fftw_plan(1),3,(/res(1),res(2),res(3)/),9,&
workfft,(/res(1) +2_pInt,res(2),res(3)/),1,(res(1) +2_pInt)*res(2)*res(3),&
workfft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),fftw_planner_flag)
@ -538,24 +540,26 @@ program DAMASK_spectral
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
do i = 1, res(1)/2_pInt + 1_pInt
k_s(1) = i - 1_pInt
xi(3,i,j,k) = 0.0_pReal ! 2D case
if(res(3) > 1_pInt) xi(3,i,j,k) = real(k_s(3), pReal)/geomdimension(3) ! 3D case
xi(2,i,j,k) = real(k_s(2), pReal)/geomdimension(2)
xi(1,i,j,k) = real(k_s(1), pReal)/geomdimension(1)
xi(3,i,j,k) = 0.0_pReal ! 2D case
if(res(3) > 1_pInt) xi(3,i,j,k) = real(k_s(3), pReal)/geomdimension(3) ! 3D case
xi(2,i,j,k) = real(k_s(2), pReal)/geomdimension(2) ! 2D and 3D case
xi(1,i,j,k) = real(k_s(1), pReal)/geomdimension(1) ! 2D and 3D case
enddo; enddo; enddo
!remove highest frequencies for calculation of divergence (CAREFULL, they will be used for pre calculatet gamma operator!)
!remove the given highest frequencies for calculation of the gamma operator
cutting_freq = (/0_pInt,0_pInt,0_pInt/) ! for 0,0,0, just the highest freq. is removed
do k = 1_pInt ,res(3); do j = 1_pInt ,res(2); do i = 1_pInt,res(1)/2_pInt + 1_pInt
if(k==res(3)/2_pInt+1_pInt) xi(3,i,j,k)= 0.0_pReal
if(j==res(2)/2_pInt+1_pInt) xi(2,i,j,k)= 0.0_pReal
if(i==res(1)/2_pInt+1_pInt) xi(1,i,j,k)= 0.0_pReal
if((k .gt. res(3)/2_pInt - cutting_freq(3)).and.(k .le. res(3)/2_pInt + 1_pInt + cutting_freq(3))) xi(3,i,j,k)= 0.0_pReal
if((j .gt. res(2)/2_pInt - cutting_freq(2)).and.(j .le. res(2)/2_pInt + 1_pInt + cutting_freq(2))) xi(2,i,j,k)= 0.0_pReal
if((i .gt. res(1)/2_pInt - cutting_freq(1)).and.(i .le. res(2)/2_pInt + 1_pInt + cutting_freq(1))) xi(1,i,j,k)= 0.0_pReal
enddo; enddo; enddo
if(memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(1,1,1,3,3,3,3)); gamma_hat = 0.0_pReal
else ! precalculation of gamma_hat field
allocate (gamma_hat(res(1)/2_pInt + 1_pInt ,res(2),res(3),3,3,3,3)); gamma_hat = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)/2_pInt + 1_pInt
if (any(xi(:,i,j,k) /= 0.0_pReal)) then
if (any(xi(1:3,i,j,k) /= 0.0_pReal)) then
do l = 1_pInt ,3_pInt; do m = 1_pInt,3_pInt
xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k)
enddo; enddo
@ -651,7 +655,7 @@ program DAMASK_spectral
iter = 0_pInt
err_div = 2.0_pReal * err_div_tol ! go into loop
c_prev = math_rotate_forward3x3x3x3(c_current*wgt,bc(loadcase)%rotation) ! calculate stiffness from former step
c_prev = math_rotate_forward3x3x3x3(c_current*wgt,bc(loadcase)%rotation) ! calculate stiffness from former step
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
c_prev99 = math_Plain3333to99(c_prev)
k = 0_pInt ! build reduced stiffness
@ -731,7 +735,7 @@ program DAMASK_spectral
cstress,dsde, pstress,dPdF)
CPFEM_mode = 2_pInt
workfft(i,j,k,1:3,1:3) = pstress ! build up average P-K stress
workfft(i,j,k,1:3,1:3) = pstress ! build up average P-K stress
c_current = c_current + dPdF
enddo; enddo; enddo
@ -742,32 +746,60 @@ program DAMASK_spectral
print '(a)', ''
print '(a)', '... calculating equilibrium with spectral method ............'
call dfftw_execute_dft_r2c(fftw_plan(1),workfft,workfft) ! FFT of pstress
p_hat_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(workfft(1,1,1,1:3,1:3),& ! L_2 norm of average stress in fourier space,
math_transpose3x3(workfft(1,1,1,1:3,1:3)))))) ! ignore imaginary part as it is always zero for real only input))
err_div = 0.0_pReal
err_div_max = 0.0_pReal ! only if if(debugDivergence) == .true. of importace
call dfftw_execute_dft_r2c(fftw_plan(1),workfft,workfft) ! FFT of pstress
p_hat_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(workfft(1,1,1,1:3,1:3),& ! L_2 norm of average stress (freq 0,0,0) in fourier space,
math_transpose3x3(workfft(1,1,1,1:3,1:3)))))) ! ignore imaginary part as it is always zero for real only input
err_div_avg_complex = 0.0_pReal
err_div_max = 0.0_pReal ! only if debugDivergence == .true. of importance
divergence = 0.0_pReal ! - '' -
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)/2_pInt+1_pInt
err_div = err_div + sqrt(sum((& ! avg of L_2 norm of div(stress) in fourier space (Suquet small strain)
math_mul33x3_complex(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3) + &
workfft(i*2_pInt ,j,k,1:3,1:3)*img,&
xi(1:3,i,j,k))&
)**2.0_pReal))
if(debugDivergence) &
err_div_max = max(err_div_max,abs(sqrt(sum((& ! maximum of L two norm of div(stress) in fourier space (Suquet large strain)
math_mul33x3_complex(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3)+&
workfft(i*2_pInt ,j,k,1:3,1:3)*img,&
xi(1:3,i,j,k))&
)**2.0_pReal))))
divergence_complex = math_mul33x3_complex(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3)& ! calculate divergence out of the real and imaginary part of the stress
+ workfft(i*2_pInt ,j,k,1:3,1:3)*img,xi(1:3,i,j,k))
if(i==1_pInt .or. i == res(1)/2_pInt + 1_pInt) then ! We are on one of the two slides without conjg. complex counterpart
err_div_avg_complex = err_div_avg_complex + sum(divergence_complex**2.0_pReal) ! Avg of L_2 norm of div(stress) in fourier space (Suquet small strain)
else ! Has somewhere a conj. complex counterpart. Therefore count it twice.
err_div_avg_complex = err_div_avg_complex +2.0*real(sum(divergence_complex**2.0_pReal)) ! Ignore img part (conjg. complex sum will end up 0). This and the different order
endif ! compared to c2c transform results in slight numerical deviations.
if(debugDivergence) then
err_div_max = max(err_div_max,abs(sqrt(sum(divergence_complex**2.0_pReal)))) ! maximum of L two norm of div(stress) in fourier space (Suquet large strain)
divergence(i*2_pInt-1_pInt,j,k,1:3) = -aimag(divergence_complex)*pi*2.0_pReal ! real part at i*2-1, imaginary part at i*2, multiply by i
divergence(i*2_pInt ,j,k,1:3) = real(divergence_complex)*pi*2.0_pReal ! ==> switch order and change sign of img part
endif
enddo; enddo; enddo
err_div = err_div*wgt/p_hat_avg*correctionFactor ! weighting by points and average stress and multiplying with correction factor
err_div_max = err_div_max/p_hat_avg*correctionFactor ! weighting by average stress and multiplying with correction factor, only if if(debugDivergence) == .true. of importace
err_div = abs(sqrt (err_div_avg_complex*wgt)) ! weighting by and taking square root. abs(...) because result is a complex number
err_div = err_div *correctionFactor/p_hat_avg ! weighting by average stress and multiplying with correction factor
err_div_max = err_div_max*correctionFactor/p_hat_avg ! - '' - only if debugDivergence == .true. of importance
! calculate additional divergence criteria and report -------------
if(debugDivergence) then
call dfftw_execute_dft_c2r(fftw_plan(3),divergence,divergence)
divergence = divergence * wgt
err_real_div_avg = 0.0_pReal
err_real_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
err_real_div_avg = err_real_div_avg + sum(divergence(i,j,k,1:3)**2.0_pReal) ! avg of L_2 norm of div(stress) in real space
err_real_div_max = max(err_real_div_max, sqrt(sum(divergence(i,j,k,1:3)**2.0_pReal))) ! maximum of L two norm of div(stress) in real space
enddo; enddo; enddo
p_real_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(pstress_av_lab,& ! L_2 norm of average stress in real space,
math_transpose3x3(pstress_av_lab)))))
err_real_div_avg = sqrt(wgt*err_real_div_avg)*correctionFactor/p_hat_avg
err_real_div_max = err_real_div_max *correctionFactor/p_hat_avg
print '(a,es10.4,a,f6.2)', 'error divergence FT avg = ',err_div, ', ', err_div/err_div_tol
print '(a,es10.4)', 'error divergence FT max = ',err_div_max
print '(a,es10.4)', 'error divergence Real avg = ',err_real_div_avg
print '(a,es10.4)', 'error divergence Real max = ',err_real_div_max
else
print '(a,es10.4,a,f6.2)', 'error divergence = ',err_div, ', ', err_div/err_div_tol
endif
! --------------------------
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res(1)/2_pInt+1_pInt
if (any(xi(:,i,j,k) /= 0.0_pReal)) then
if (any(xi(1:3,i,j,k) /= 0.0_pReal)) then
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt
xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k)
enddo; enddo
@ -798,53 +830,17 @@ program DAMASK_spectral
enddo; enddo; enddo
endif
! calculate additional divergence criteria and report -------------
if(debugDivergence) then
divergence = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)/2_pInt+1_pInt
! real part at i*2-1, imaginary part at i*2 and multiply by i ==> switch and change sign
divergence(i*2_pInt-1_pInt,j,k,1:3) = workfft(i*2_pInt ,j,k,1:3,1)*xi(1:3,i,j,k)*pi*2.0_pReal&
+ workfft(i*2_pInt ,j,k,1:3,2)*xi(1:3,i,j,k)*pi*2.0_pReal&
+ workfft(i*2_pInt ,j,k,1:3,3)*xi(1:3,i,j,k)*pi*2.0_pReal
divergence(i*2_pInt,j,k,1:3) = - workfft(i*2_pInt-1_pInt,j,k,1:3,1)*xi(1:3,i,j,k)*pi*2.0_pReal&
- workfft(i*2_pInt-1_pInt,j,k,1:3,2)*xi(1:3,i,j,k)*pi*2.0_pReal&
- workfft(i*2_pInt-1_pInt,j,k,1:3,3)*xi(1:3,i,j,k)*pi*2.0_pReal
enddo; enddo; enddo
divergence = divergence*correctionFactor
call dfftw_execute_dft_c2r(fftw_plan(3),divergence,divergence)
divergence = divergence * wgt
err_real_div_avg = 0.0_pReal
err_real_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
err_real_div_avg = err_real_div_avg + sqrt(sum((divergence(i,j,k,1:3))**2.0_pReal)) ! avg of L_2 norm of div(stress) in fourier space (Suquet small strain)
err_real_div_max = max(err_real_div_max,abs(sqrt(sum((divergence(i,j,k,1:3))**2.0_pReal)))) ! maximum of L two norm of div(stress) in fourier space (Suquet large strain)
enddo; enddo; enddo
p_real_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(pstress_av_lab,& ! L_2 norm of average stress in real space,
math_transpose3x3(pstress_av_lab))))) ! ignore imaginary part as it is always zero for real only input))
err_real_div_avg = err_real_div_avg*wgt/p_real_avg
err_real_div_max = err_real_div_max/p_real_avg
print '(a,es10.4,a,f6.2)', 'error divergence FT avg = ',err_div, ', ', err_div/err_div_tol
print '(a,es10.4)', 'error divergence FT max = ',err_div_max
print '(a,es10.4)', 'error divergence Real avg = ',err_real_div_avg
print '(a,es10.4)', 'error divergence Real max = ',err_real_div_max
else
print '(a,es10.4,a,f6.2)', 'error divergence = ',err_div, ', ', err_div/err_div_tol
endif
! --------------------------
workfft(1,1,1,1:3,1:3) = defgrad_av_lab - math_I3 ! assign zero frequency (real part) with average displacement gradient
workfft(2,1,1,1:3,1:3) = 0.0_pReal ! zero frequency (imaginary part)
workfft(1,1,1,1:3,1:3) = defgrad_av_lab - math_I3 ! assign zero frequency (real part) with average displacement gradient
workfft(2,1,1,1:3,1:3) = 0.0_pReal ! zero frequency (imaginary part)
call dfftw_execute_dft_c2r(fftw_plan(2),workfft,workfft) ! backtransformation of fluct deformation gradient
call dfftw_execute_dft_c2r(fftw_plan(2),workfft,workfft) ! back transform of fluct deformation gradient
defgrad = defgrad + workfft(1:res(1),1:res(2),1:res(3),1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
defgrad = defgrad + workfft(1:res(1),1:res(2),1:res(3),1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
defgrad_av_lab(m,n) = sum(defgrad(1:res(1),1:res(2),1:res(3),m,n))*wgt ! ToDo: check whether this needs recalculation or is equivalent to former defgrad_av
defgrad_av_lab(m,n) = sum(defgrad(1:res(1),1:res(2),1:res(3),m,n))*wgt ! ToDo: check whether this needs recalculation or is equivalent to former defgrad_av
enddo; enddo
! stress boundary condition check -------------
pstress_av = math_rotate_forward3x3(pstress_av_lab,bc(loadcase)%rotation)
print '(a,/,3(3(f12.7,x)/)$)', 'Piola-Kirchhoff stress / MPa: ',math_transpose3x3(pstress_av)/1.e6
@ -865,10 +861,10 @@ program DAMASK_spectral
! ------------------------------
! homogeneous correction towards avg deformation gradient -------------
defgradAim_lab = math_rotate_backward3x3(defgradAim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame
defgradAim_lab = math_rotate_backward3x3(defgradAim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
defgrad(1:res(1),1:res(2),1:res(3),m,n) = &
defgrad(1:res(1),1:res(2),1:res(3),m,n) + (defgradAim_lab(m,n) - defgrad_av_lab(m,n)) ! anticipated target minus current state
defgrad(1:res(1),1:res(2),1:res(3),m,n) + (defgradAim_lab(m,n) - defgrad_av_lab(m,n)) ! anticipated target minus current state
enddo; enddo
! ------------------------------