Group21_Project/main.c

224 lines
7.2 KiB
C

#include <stdint.h>
#include <stdbool.h>
#include "tm4c123gh6pm.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MAX_FIELD_SIZE 100
volatile char nmea_sentence[MAX_FIELD_SIZE];
volatile uint8_t nmea_index = 0;
volatile bool nmea_ready = false;
void GPIO_PORT_F_init(void);
void GPIO_PORT_B_init(void);
void UART1_WRITE(char data);
void control_leds_based_on_speed(float speed_kmh);
void process_nmea_sentence(const char *nmea_sentence);
void GPIO_PORT_F_init(void)
{ SYSCTL_RCGC2_R |= 0x00000020; // ENABLE CLOCK TO GPIOF
GPIO_PORTF_LOCK_R = 0x4C4F434B; // UNLOCK COMMIT REGISTER
GPIO_PORTF_CR_R = 0x1F; // MAKE PORTF0 CONFIGURABLE
GPIO_PORTF_DEN_R = 0x1F; // SET PORTF DIGITAL ENABLE
GPIO_PORTF_DIR_R = 0x0E; // SET PF0, PF4 as input and PF1, PF2 and PF3 as output
GPIO_PORTF_PUR_R = 0x11; // PORTF PF0 and PF4 IS PULLED UP
}
#define STRELOAD *((volatile uint32_t *) 0xE000E014) // RELOAD VALUE REGISTER
#define STCURRENT *((volatile uint32_t *) 0xE000E018) // CURRENT VALUE REGISTER
#define STCTRL *((volatile uint32_t *) 0xE000E010) // CONTROL AND STATUS REGISTER
#define COUNT_FLAG (1 << 16) // BIT 16 OF CSR AUTOMATICALLY SET TO 1
#define ENABLE (1 << 0) // BIT 0 OF CSR TO ENABLE THE TIMER
#define CLKINT (1 << 2) // BIT 2 OF CSR TO SPECIFY CPU CLOCK
#define INTEN (1 << 1) // BIT 1 OF CSR TO ENABLE INTERRUPT
#define CLOCK_HZ 16000000 // CLOCK FREQUENCY OF EK-TM4C123GXL
#define SYSTICK_RELOAD_VALUE(us) ((CLOCK_HZ /1000000) * (us) - 1 ) // SYSTICK RELOAD VALUE IN MICROSECONDS BASED ON CLOCK FREQUENCY
#define RED_LED 0x02;
#define BLUE_LED 0x04;
#define GREEN_LED 0x08;
volatile uint8_t LED_STATE = 0;
void systick_setting(void) // SYSTICK SETUP FUNCTION
{
STRELOAD = SYSTICK_RELOAD_VALUE(500000); // SYSTICK RELOAD VALUE 500 milliseconds
STCURRENT = 0; //CLEARING STCURRENT REGISTER VALUE
STCTRL |= (CLKINT | ENABLE | INTEN); // SET INTERNAL CLOCK, ENABLE THE TIMER AND INTERRUPT ENABLE
}
void delay(int us) //DEFINING DELAY FUNCTION
{
STRELOAD = SYSTICK_RELOAD_VALUE(us) ; // RELOAD VALUE FOR REQUIRED DELAY IN MICROSECONDS
STCURRENT = 0; //CLEARING STCURRENT REGISTER VALUE
STCTRL |= (CLKINT | ENABLE | INTEN ); // SET INTERNAL CLOCK, ENABLE THE TIMER
while ((STCTRL & COUNT_FLAG) == 0) //WAIT UNTIL FLAG IS SET
{ // DO NOTHING
}
STCTRL &= 0x0; // STOP THE TIMER
}
void SystickHandler(void) //SYSTICK INTERRUPT HANDLER
{
GPIO_PORTF_DATA_R ^= LED_STATE;
}
void GPIO_PORT_B_init(void)
{
SYSCTL_RCGCGPIO_R |= 0x02; // ENABLE CLOCK FOR GPIOB
SYSCTL_RCGCUART_R |= 0x02; // ENABLE CLOCK FOR UART1
GPIO_PORTB_DEN_R |= 0x03; // DIGITAL ENABLE FOR PB0 AND PB1
GPIO_PORTB_AFSEL_R |= 0x03; // ENABLE ALTERNATE FUNCTION ON PB0,PB1
GPIO_PORTB_PCTL_R = (GPIO_PORTB_PCTL_R & 0xFFFFFF00) | 0x00000011; // Set PB0, PB1 for UART
UART1_CTL_R &= ~0x01; // DISABLE UART1 DURING SETUP
UART1_IBRD_R = 104; // Set integer part of baud rate (for 9600 baud at 16 MHz clock)
UART1_FBRD_R = 11; // Set fractional part of baud rate
UART1_LCRH_R = 0x60; // 8-bit, No parity, 1 stop bit
UART1_CC_R = 0x00; // Use system clock
UART1_CTL_R |= 0x301; // Enable UART1, RX, and TX0
UART1_IM_R |= 0x10;
NVIC_EN0_R |= (1 << 6);
}
void control_leds_based_on_speed(float speed_kmh) // Control LEDs based on speed
{
GPIO_PORTF_DATA_R &= 0x00; // Clear all LED bits (assuming LEDs are connected to bits 1, 2, and 3)
if (speed_kmh >= 0.0 && speed_kmh < 0.5) // Range 0-0.5 km/h
{
//GPIO_PORTF_DATA_R |= 0x08; // Blink Green LED
LED_STATE = GREEN_LED;
}
else if (speed_kmh >= 0.5 && speed_kmh < 10.0) // Range 0.5-10 km/h
{
GPIO_PORTF_DATA_R |= 0x08; // Green LED
}
else if (speed_kmh >= 10.0 && speed_kmh < 20.0) // Range 10-20 km/h
{
GPIO_PORTF_DATA_R |= 0x0C; // Cyan LED
}
else if (speed_kmh >= 20.0 && speed_kmh < 30.0) // Range 20-30 km/h
{
GPIO_PORTF_DATA_R |= 0x04; // Blue LED
}
else if (speed_kmh >= 30.0 && speed_kmh < 40.0) // Range 30-40 km/h
{
GPIO_PORTF_DATA_R |= 0x06; // Yellow LED (Red + Green)
}
else if (speed_kmh >= 40.0 && speed_kmh < 50.0) // Range 40-50 km/h
{
GPIO_PORTF_DATA_R |= 0x02; // RED LED
}
else // Above 50 km/h
{
LED_STATE = RED_LED; // TOGGLING RED LED
}
}
void nmea_sentence_process(const char *nmea_sentence)
{
uint8_t i = 0;
uint8_t field_number = 0;
float speed_knots = 0.0;
float speed_kmh = 0.0;
uint8_t field_index = 0;
if (nmea_sentence[0] != '$') return; // Invalid sentence, exit
if (strncmp(nmea_sentence + 1, "GPRMC", 5) == 0)
{
for (i = 6; nmea_sentence[i] != '\0'; i++)
{
if (nmea_sentence[i] == ',')
{
if (field_number == 7) // Speed in knots (field 7)
{
speed_knots = atof(nmea_sentence + i - field_index);
speed_kmh = speed_knots * 1.852;
control_leds_based_on_speed(speed_kmh);
}
field_number++;
field_index = 0;
}
else if (nmea_sentence[i] == '*')
{
break;
}
else
{
field_index++;
}
}
}
else if (strncmp(nmea_sentence + 1, "GPVTG", 5) == 0) // Process GPVTG sentence
{
for (i = 7; nmea_sentence[i] != '\0'; i++)
{
if (nmea_sentence[i] == ',')
{
if (field_number == 6)
{
speed_knots = atof(nmea_sentence + i - field_index);
speed_kmh = speed_knots * 1.852;
control_leds_based_on_speed(speed_kmh);
}
field_number++;
field_index = 0;
}
else if (nmea_sentence[i] == '*')
{
break;
}
else {
field_index++;
}
}
}
}
void UART1_Handler(void)
{
char data = UART1_DR_R & 0xFF;
if (data == '\n' || data == '\r')
{
nmea_sentence[nmea_index] = '\0';
if (strncmp((const char *)nmea_sentence, "$GPRMC", 6) == 0)
{
nmea_ready = true;
}
nmea_index = 0;
}
else if (nmea_index < MAX_FIELD_SIZE - 1)
{
nmea_sentence[nmea_index++] = data;
}
}
int main(void)
{
GPIO_PORT_F_init();
GPIO_PORT_B_init();
systick_setting();
while (1)
{
if (nmea_ready)
{
nmea_ready = false;
nmea_sentence_process((const char *)nmea_sentence);
}
}
}