#include #include #include "tm4c123gh6pm.h" #include #include #include #define MAX_FIELD_SIZE 100 volatile char nmea_sentence[MAX_FIELD_SIZE]; volatile uint8_t nmea_index = 0; volatile bool nmea_ready = false; void GPIO_PORT_F_init(void); void GPIO_PORT_B_init(void); void UART1_WRITE(char data); void control_leds_based_on_speed(float speed_kmh); void process_nmea_sentence(const char *nmea_sentence); void GPIO_PORT_F_init(void) { SYSCTL_RCGC2_R |= 0x00000020; // ENABLE CLOCK TO GPIOF GPIO_PORTF_LOCK_R = 0x4C4F434B; // UNLOCK COMMIT REGISTER GPIO_PORTF_CR_R = 0x1F; // MAKE PORTF0 CONFIGURABLE GPIO_PORTF_DEN_R = 0x1F; // SET PORTF DIGITAL ENABLE GPIO_PORTF_DIR_R = 0x0E; // SET PF0, PF4 as input and PF1, PF2 and PF3 as output GPIO_PORTF_PUR_R = 0x11; // PORTF PF0 and PF4 IS PULLED UP } #define STRELOAD *((volatile uint32_t *) 0xE000E014) // RELOAD VALUE REGISTER #define STCURRENT *((volatile uint32_t *) 0xE000E018) // CURRENT VALUE REGISTER #define STCTRL *((volatile uint32_t *) 0xE000E010) // CONTROL AND STATUS REGISTER #define COUNT_FLAG (1 << 16) // BIT 16 OF CSR AUTOMATICALLY SET TO 1 #define ENABLE (1 << 0) // BIT 0 OF CSR TO ENABLE THE TIMER #define CLKINT (1 << 2) // BIT 2 OF CSR TO SPECIFY CPU CLOCK #define INTEN (1 << 1) // BIT 1 OF CSR TO ENABLE INTERRUPT #define CLOCK_HZ 16000000 // CLOCK FREQUENCY OF EK-TM4C123GXL #define SYSTICK_RELOAD_VALUE(us) ((CLOCK_HZ /1000000) * (us) - 1 ) // SYSTICK RELOAD VALUE IN MICROSECONDS BASED ON CLOCK FREQUENCY #define RED_LED 0x02; #define BLUE_LED 0x04; #define GREEN_LED 0x08; volatile uint8_t LED_STATE = 0; void systick_setting(void) // SYSTICK SETUP FUNCTION { STRELOAD = SYSTICK_RELOAD_VALUE(500000); // SYSTICK RELOAD VALUE 500 milliseconds STCURRENT = 0; //CLEARING STCURRENT REGISTER VALUE STCTRL |= (CLKINT | ENABLE | INTEN); // SET INTERNAL CLOCK, ENABLE THE TIMER AND INTERRUPT ENABLE } void delay(int us) //DEFINING DELAY FUNCTION { STRELOAD = SYSTICK_RELOAD_VALUE(us) ; // RELOAD VALUE FOR REQUIRED DELAY IN MICROSECONDS STCURRENT = 0; //CLEARING STCURRENT REGISTER VALUE STCTRL |= (CLKINT | ENABLE | INTEN ); // SET INTERNAL CLOCK, ENABLE THE TIMER while ((STCTRL & COUNT_FLAG) == 0) //WAIT UNTIL FLAG IS SET { // DO NOTHING } STCTRL &= 0x0; // STOP THE TIMER } void SystickHandler(void) //SYSTICK INTERRUPT HANDLER { GPIO_PORTF_DATA_R ^= LED_STATE; } void GPIO_PORT_B_init(void) { SYSCTL_RCGCGPIO_R |= 0x02; // ENABLE CLOCK FOR GPIOB SYSCTL_RCGCUART_R |= 0x02; // ENABLE CLOCK FOR UART1 GPIO_PORTB_DEN_R |= 0x03; // DIGITAL ENABLE FOR PB0 AND PB1 GPIO_PORTB_AFSEL_R |= 0x03; // ENABLE ALTERNATE FUNCTION ON PB0,PB1 GPIO_PORTB_PCTL_R = (GPIO_PORTB_PCTL_R & 0xFFFFFF00) | 0x00000011; // Set PB0, PB1 for UART UART1_CTL_R &= ~0x01; // DISABLE UART1 DURING SETUP UART1_IBRD_R = 104; // Set integer part of baud rate (for 9600 baud at 16 MHz clock) UART1_FBRD_R = 11; // Set fractional part of baud rate UART1_LCRH_R = 0x60; // 8-bit, No parity, 1 stop bit UART1_CC_R = 0x00; // Use system clock UART1_CTL_R |= 0x301; // Enable UART1, RX, and TX0 UART1_IM_R |= 0x10; NVIC_EN0_R |= (1 << 6); } void control_leds_based_on_speed(float speed_kmh) // Control LEDs based on speed { GPIO_PORTF_DATA_R &= 0x00; // Clear all LED bits (assuming LEDs are connected to bits 1, 2, and 3) if (speed_kmh >= 0.0 && speed_kmh < 0.5) // Range 0-0.5 km/h { //GPIO_PORTF_DATA_R |= 0x08; // Blink Green LED LED_STATE = GREEN_LED; } else if (speed_kmh >= 0.5 && speed_kmh < 10.0) // Range 0.5-10 km/h { GPIO_PORTF_DATA_R |= 0x08; // Green LED } else if (speed_kmh >= 10.0 && speed_kmh < 20.0) // Range 10-20 km/h { GPIO_PORTF_DATA_R |= 0x0C; // Cyan LED } else if (speed_kmh >= 20.0 && speed_kmh < 30.0) // Range 20-30 km/h { GPIO_PORTF_DATA_R |= 0x04; // Blue LED } else if (speed_kmh >= 30.0 && speed_kmh < 40.0) // Range 30-40 km/h { GPIO_PORTF_DATA_R |= 0x06; // Yellow LED (Red + Green) } else if (speed_kmh >= 40.0 && speed_kmh < 50.0) // Range 40-50 km/h { GPIO_PORTF_DATA_R |= 0x02; // RED LED } else // Above 50 km/h { LED_STATE = RED_LED; // TOGGLING RED LED } } void nmea_sentence_process(const char *nmea_sentence) { uint8_t i = 0; uint8_t field_number = 0; float speed_knots = 0.0; float speed_kmh = 0.0; uint8_t field_index = 0; if (nmea_sentence[0] != '$') return; // Invalid sentence, exit if (strncmp(nmea_sentence + 1, "GPRMC", 5) == 0) { for (i = 6; nmea_sentence[i] != '\0'; i++) { if (nmea_sentence[i] == ',') { if (field_number == 7) // Speed in knots (field 7) { speed_knots = atof(nmea_sentence + i - field_index); speed_kmh = speed_knots * 1.852; control_leds_based_on_speed(speed_kmh); } field_number++; field_index = 0; } else if (nmea_sentence[i] == '*') { break; } else { field_index++; } } } else if (strncmp(nmea_sentence + 1, "GPVTG", 5) == 0) // Process GPVTG sentence { for (i = 7; nmea_sentence[i] != '\0'; i++) { if (nmea_sentence[i] == ',') { if (field_number == 6) { speed_knots = atof(nmea_sentence + i - field_index); speed_kmh = speed_knots * 1.852; control_leds_based_on_speed(speed_kmh); } field_number++; field_index = 0; } else if (nmea_sentence[i] == '*') { break; } else { field_index++; } } } } void UART1_Handler(void) { char data = UART1_DR_R & 0xFF; if (data == '\n' || data == '\r') { nmea_sentence[nmea_index] = '\0'; if (strncmp((const char *)nmea_sentence, "$GPRMC", 6) == 0) { nmea_ready = true; } nmea_index = 0; } else if (nmea_index < MAX_FIELD_SIZE - 1) { nmea_sentence[nmea_index++] = data; } } int main(void) { GPIO_PORT_F_init(); GPIO_PORT_B_init(); systick_setting(); while (1) { if (nmea_ready) { nmea_ready = false; nmea_sentence_process((const char *)nmea_sentence); } } }