135 lines
6.6 KiB
Python
Executable File
135 lines
6.6 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,sys,string
|
|
import numpy as np
|
|
from optparse import OptionParser
|
|
import damask
|
|
|
|
scriptID = string.replace('$Id$','\n','\\n')
|
|
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Blows up each value to a surrounding data block of size 'packing' thus increasing the former resolution
|
|
to resolution*packing.
|
|
|
|
""", version = scriptID)
|
|
|
|
parser.add_option('-c','--coordinates', dest='coords', metavar='string',
|
|
help='column heading for coordinates [%default]')
|
|
parser.add_option('-p','--packing', dest='packing', type='int', nargs=3, metavar='int int int',
|
|
help='dimension of packed group %default')
|
|
parser.add_option('-g','--grid', dest='resolution', type='int', nargs=3, metavar='int int int',
|
|
help='resolution in x,y,z [autodetect]')
|
|
parser.add_option('-s','--size', dest='dimension', type='float', nargs=3, metavar='int int int',
|
|
help='dimension in x,y,z [autodetect]')
|
|
parser.set_defaults(coords = 'ip')
|
|
parser.set_defaults(packing = [2,2,2])
|
|
parser.set_defaults(grid = [0,0,0])
|
|
parser.set_defaults(size = [0.0,0.0,0.0])
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
|
|
options.packing = np.array(options.packing)
|
|
prefix = 'blowUp%ix%ix%i_'%(options.packing[0],options.packing[1],options.packing[2])
|
|
|
|
# ------------------------------------------ setup file handles ------------------------------------
|
|
files = []
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
|
|
|
#--- loop over input files -------------------------------------------------------------------------
|
|
for file in files:
|
|
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
|
|
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
|
table.head_read() # read ASCII header info
|
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
|
|
|
# --------------- figure out size and grid ---------------------------------------------------------
|
|
try:
|
|
elemCol = table.labels.index('elem')
|
|
locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data
|
|
except ValueError:
|
|
try:
|
|
locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data (legacy naming scheme)
|
|
except ValueError:
|
|
file['croak'].write('no coordinate (1_%s/%s.x) and/or elem data found...\n'%(options.coords,options.coords))
|
|
continue
|
|
|
|
if (any(options.grid)==0 or any(options.size)==0.0):
|
|
coords = [{},{},{}]
|
|
while table.data_read(): # read next data line of ASCII table
|
|
for j in xrange(3):
|
|
coords[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z
|
|
grid = np.array([len(coords[0]),\
|
|
len(coords[1]),\
|
|
len(coords[2]),],'i') # resolution is number of distinct coordinates found
|
|
size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \
|
|
np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\
|
|
max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\
|
|
max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\
|
|
],'d') # size from bounding box, corrected for cell-centeredness
|
|
origin = np.array([min(map(float,coords[0].keys())),\
|
|
min(map(float,coords[1].keys())),\
|
|
min(map(float,coords[2].keys())),\
|
|
],'d') - 0.5 * size / grid
|
|
else:
|
|
grid = np.array(options.grid,'i')
|
|
size = np.array(options.size,'d')
|
|
origin = np.zeros(3,'d')
|
|
|
|
for i, res in enumerate(grid):
|
|
if res == 1:
|
|
options.packing[i] = 1
|
|
options.shift[i] = 0
|
|
mask = np.ones(3,dtype=bool)
|
|
mask[i]=0
|
|
size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing
|
|
|
|
packing = np.array(options.packing,'i')
|
|
outSize = grid*packing
|
|
|
|
# ------------------------------------------ assemble header ---------------------------------------
|
|
table.head_write()
|
|
|
|
# ------------------------------------------ process data -------------------------------------------
|
|
table.data_rewind()
|
|
data = np.zeros(outSize.tolist()+[len(table.labels)])
|
|
p = np.zeros(3,'i')
|
|
|
|
for p[2] in xrange(grid[2]):
|
|
for p[1] in xrange(grid[1]):
|
|
for p[0] in xrange(grid[0]):
|
|
d = p*packing
|
|
table.data_read()
|
|
data[d[0]:d[0]+packing[0],
|
|
d[1]:d[1]+packing[1],
|
|
d[2]:d[2]+packing[2],
|
|
: ] = np.tile(np.array(table.data_asFloat(),'d'),packing.tolist()+[1]) # tile to match blowUp voxel size
|
|
|
|
elementSize = size/grid/packing
|
|
elem = 1
|
|
for c in xrange(outSize[2]):
|
|
for b in xrange(outSize[1]):
|
|
for a in xrange(outSize[0]):
|
|
data[a,b,c,locationCol:locationCol+3] = [a+0.5,b+0.5,c+0.5]*elementSize
|
|
data[a,b,c,elemCol] = elem
|
|
table.data = data[a,b,c,:].tolist()
|
|
outputAlive = table.data_write() # output processed line
|
|
elem += 1
|
|
|
|
# ------------------------------------------ output result -----------------------------------------
|
|
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
|
|
|
table.input_close() # close input ASCII table
|
|
table.output_close() # close output ASCII table
|
|
os.rename(file['name']+'_tmp',\
|
|
os.path.join(os.path.dirname(file['name']),prefix+os.path.basename(file['name'])))
|