#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string import numpy as np from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Blows up each value to a surrounding data block of size 'packing' thus increasing the former resolution to resolution*packing. """, version = scriptID) parser.add_option('-c','--coordinates', dest='coords', metavar='string', help='column heading for coordinates [%default]') parser.add_option('-p','--packing', dest='packing', type='int', nargs=3, metavar='int int int', help='dimension of packed group %default') parser.add_option('-g','--grid', dest='resolution', type='int', nargs=3, metavar='int int int', help='resolution in x,y,z [autodetect]') parser.add_option('-s','--size', dest='dimension', type='float', nargs=3, metavar='int int int', help='dimension in x,y,z [autodetect]') parser.set_defaults(coords = 'ip') parser.set_defaults(packing = [2,2,2]) parser.set_defaults(grid = [0,0,0]) parser.set_defaults(size = [0.0,0.0,0.0]) (options,filenames) = parser.parse_args() options.packing = np.array(options.packing) prefix = 'blowUp%ix%ix%i_'%(options.packing[0],options.packing[1],options.packing[2]) # ------------------------------------------ setup file handles ------------------------------------ files = [] for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) #--- loop over input files ------------------------------------------------------------------------- for file in files: file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table table.head_read() # read ASCII header info table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) # --------------- figure out size and grid --------------------------------------------------------- try: elemCol = table.labels.index('elem') locationCol = table.labels.index('1_%s'%options.coords) # columns containing location data except ValueError: try: locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data (legacy naming scheme) except ValueError: file['croak'].write('no coordinate (1_%s/%s.x) and/or elem data found...\n'%(options.coords,options.coords)) continue if (any(options.grid)==0 or any(options.size)==0.0): coords = [{},{},{}] while table.data_read(): # read next data line of ASCII table for j in xrange(3): coords[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z grid = np.array([len(coords[0]),\ len(coords[1]),\ len(coords[2]),],'i') # resolution is number of distinct coordinates found size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \ np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\ max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\ max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\ ],'d') # size from bounding box, corrected for cell-centeredness origin = np.array([min(map(float,coords[0].keys())),\ min(map(float,coords[1].keys())),\ min(map(float,coords[2].keys())),\ ],'d') - 0.5 * size / grid else: grid = np.array(options.grid,'i') size = np.array(options.size,'d') origin = np.zeros(3,'d') for i, res in enumerate(grid): if res == 1: options.packing[i] = 1 options.shift[i] = 0 mask = np.ones(3,dtype=bool) mask[i]=0 size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing packing = np.array(options.packing,'i') outSize = grid*packing # ------------------------------------------ assemble header --------------------------------------- table.head_write() # ------------------------------------------ process data ------------------------------------------- table.data_rewind() data = np.zeros(outSize.tolist()+[len(table.labels)]) p = np.zeros(3,'i') for p[2] in xrange(grid[2]): for p[1] in xrange(grid[1]): for p[0] in xrange(grid[0]): d = p*packing table.data_read() data[d[0]:d[0]+packing[0], d[1]:d[1]+packing[1], d[2]:d[2]+packing[2], : ] = np.tile(np.array(table.data_asFloat(),'d'),packing.tolist()+[1]) # tile to match blowUp voxel size elementSize = size/grid/packing elem = 1 for c in xrange(outSize[2]): for b in xrange(outSize[1]): for a in xrange(outSize[0]): data[a,b,c,locationCol:locationCol+3] = [a+0.5,b+0.5,c+0.5]*elementSize data[a,b,c,elemCol] = elem table.data = data[a,b,c,:].tolist() outputAlive = table.data_write() # output processed line elem += 1 # ------------------------------------------ output result ----------------------------------------- outputAlive and table.output_flush() # just in case of buffered ASCII table table.input_close() # close input ASCII table table.output_close() # close output ASCII table os.rename(file['name']+'_tmp',\ os.path.join(os.path.dirname(file['name']),prefix+os.path.basename(file['name'])))