202 lines
8.1 KiB
Fortran
202 lines
8.1 KiB
Fortran
! ###################################################################
|
|
! Copyright (c) 2013-2015, Marc De Graef/Carnegie Mellon University
|
|
! Modified 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
|
! All rights reserved.
|
|
!
|
|
! Redistribution and use in source and binary forms, with or without modification, are
|
|
! permitted provided that the following conditions are met:
|
|
!
|
|
! - Redistributions of source code must retain the above copyright notice, this list
|
|
! of conditions and the following disclaimer.
|
|
! - Redistributions in binary form must reproduce the above copyright notice, this
|
|
! list of conditions and the following disclaimer in the documentation and/or
|
|
! other materials provided with the distribution.
|
|
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
|
! of its contributors may be used to endorse or promote products derived from
|
|
! this software without specific prior written permission.
|
|
!
|
|
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
! ###################################################################
|
|
|
|
!--------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief Mapping homochoric <-> cubochoric
|
|
!
|
|
!> @details
|
|
!> D. Rosca, A. Morawiec, and M. De Graef. “A new method of constructing a grid
|
|
!> in the space of 3D rotations and its applications to texture analysis”.
|
|
!> Modeling and Simulations in Materials Science and Engineering 22, 075013 (2014).
|
|
!--------------------------------------------------------------------------
|
|
module Lambert
|
|
use prec
|
|
use math
|
|
|
|
implicit none
|
|
private
|
|
|
|
real(pReal), parameter :: &
|
|
SPI = sqrt(PI), &
|
|
PREF = sqrt(6.0_pReal/PI), &
|
|
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
|
|
AP = PI**(2.0_pReal/3.0_pReal), &
|
|
SC = A/AP, &
|
|
BETA = A/2.0_pReal, &
|
|
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
|
|
R2 = sqrt(2.0_pReal), &
|
|
PI12 = PI/12.0_pReal, &
|
|
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
|
|
|
|
public :: &
|
|
Lambert_CubeToBall, &
|
|
Lambert_BallToCube
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief map from 3D cubic grid to 3D ball
|
|
!--------------------------------------------------------------------------
|
|
pure function Lambert_CubeToBall(cube) result(ball)
|
|
|
|
real(pReal), intent(in), dimension(3) :: cube
|
|
real(pReal), dimension(3) :: ball, LamXYZ, XYZ
|
|
real(pReal), dimension(2) :: T
|
|
real(pReal) :: c, s, q
|
|
real(pReal), parameter :: eps = 1.0e-8_pReal
|
|
integer, dimension(3) :: p
|
|
integer, dimension(2) :: order
|
|
|
|
if (maxval(abs(cube)) > AP/2.0+eps) then
|
|
ball = IEEE_value(cube,IEEE_positive_inf)
|
|
return
|
|
end if
|
|
|
|
! transform to the sphere grid via the curved square, and intercept the zero point
|
|
center: if (all(dEq0(cube))) then
|
|
ball = 0.0_pReal
|
|
else center
|
|
! get pyramide and scale by grid parameter ratio
|
|
p = GetPyramidOrder(cube)
|
|
XYZ = cube(p) * sc
|
|
|
|
! intercept all the points along the z-axis
|
|
special: if (all(dEq0(XYZ(1:2)))) then
|
|
LamXYZ = [ 0.0_pReal, 0.0_pReal, pref * XYZ(3) ]
|
|
else special
|
|
order = merge( [2,1], [1,2], abs(XYZ(2)) <= abs(XYZ(1))) ! order of absolute values of XYZ
|
|
q = PI12 * XYZ(order(1))/XYZ(order(2)) ! smaller by larger
|
|
c = cos(q)
|
|
s = sin(q)
|
|
q = prek * XYZ(order(2))/ sqrt(R2-c)
|
|
T = [ (R2*c - 1.0), R2 * s] * q
|
|
|
|
! transform to sphere grid (inverse Lambert)
|
|
! [note that there is no need to worry about dividing by zero, since XYZ(3) can not become zero]
|
|
c = sum(T**2)
|
|
s = Pi * c/(24.0*XYZ(3)**2)
|
|
c = sPi * c / sqrt(24.0_pReal) / XYZ(3)
|
|
q = sqrt( 1.0 - s )
|
|
LamXYZ = [ T(order(2)) * q, T(order(1)) * q, pref * XYZ(3) - c ]
|
|
endif special
|
|
|
|
! reverse the coordinates back to order according to the original pyramid number
|
|
ball = LamXYZ(p)
|
|
|
|
endif center
|
|
|
|
end function Lambert_CubeToBall
|
|
|
|
|
|
!--------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief map from 3D ball to 3D cubic grid
|
|
!--------------------------------------------------------------------------
|
|
pure function Lambert_BallToCube(xyz) result(cube)
|
|
|
|
real(pReal), intent(in), dimension(3) :: xyz
|
|
real(pReal), dimension(3) :: cube, xyz1, xyz3
|
|
real(pReal), dimension(2) :: Tinv, xyz2
|
|
real(pReal) :: rs, qxy, q2, sq2, q, tt
|
|
integer, dimension(3) :: p
|
|
|
|
rs = norm2(xyz)
|
|
if (rs > R1) then
|
|
cube = IEEE_value(cube,IEEE_positive_inf)
|
|
return
|
|
endif
|
|
|
|
center: if (all(dEq0(xyz))) then
|
|
cube = 0.0_pReal
|
|
else center
|
|
p = GetPyramidOrder(xyz)
|
|
xyz3 = xyz(p)
|
|
|
|
! inverse M_3
|
|
xyz2 = xyz3(1:2) * sqrt( 2.0*rs/(rs+abs(xyz3(3))) )
|
|
|
|
! inverse M_2
|
|
qxy = sum(xyz2**2)
|
|
|
|
special: if (dEq0(qxy)) then
|
|
Tinv = 0.0_pReal
|
|
else special
|
|
q2 = qxy + maxval(abs(xyz2))**2
|
|
sq2 = sqrt(q2)
|
|
q = (beta/R2/R1) * sqrt(q2*qxy/(q2-maxval(abs(xyz2))*sq2))
|
|
tt = (minval(abs(xyz2))**2+maxval(abs(xyz2))*sq2)/R2/qxy
|
|
Tinv = q * sign(1.0_pReal,xyz2) * merge([ 1.0_pReal, acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12], &
|
|
[ acos(math_clip(tt,-1.0_pReal,1.0_pReal))/PI12, 1.0_pReal], &
|
|
abs(xyz2(2)) <= abs(xyz2(1)))
|
|
endif special
|
|
|
|
! inverse M_1
|
|
xyz1 = [ Tinv(1), Tinv(2), sign(1.0_pReal,xyz3(3)) * rs / pref ] /sc
|
|
|
|
! reverse the coordinates back to order according to the original pyramid number
|
|
cube = xyz1(p)
|
|
|
|
endif center
|
|
|
|
end function Lambert_BallToCube
|
|
|
|
|
|
!--------------------------------------------------------------------------
|
|
!> @author Marc De Graef, Carnegie Mellon University
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief determine to which pyramid a point in a cubic grid belongs
|
|
!--------------------------------------------------------------------------
|
|
pure function GetPyramidOrder(xyz)
|
|
|
|
real(pReal),intent(in),dimension(3) :: xyz
|
|
integer, dimension(3) :: GetPyramidOrder
|
|
|
|
if (((abs(xyz(1)) <= xyz(3)).and.(abs(xyz(2)) <= xyz(3))) .or. &
|
|
((abs(xyz(1)) <= -xyz(3)).and.(abs(xyz(2)) <= -xyz(3)))) then
|
|
GetPyramidOrder = [1,2,3]
|
|
else if (((abs(xyz(3)) <= xyz(1)).and.(abs(xyz(2)) <= xyz(1))) .or. &
|
|
((abs(xyz(3)) <= -xyz(1)).and.(abs(xyz(2)) <= -xyz(1)))) then
|
|
GetPyramidOrder = [2,3,1]
|
|
else if (((abs(xyz(1)) <= xyz(2)).and.(abs(xyz(3)) <= xyz(2))) .or. &
|
|
((abs(xyz(1)) <= -xyz(2)).and.(abs(xyz(3)) <= -xyz(2)))) then
|
|
GetPyramidOrder = [3,1,2]
|
|
else
|
|
GetPyramidOrder = -1 ! should be impossible, but might simplify debugging
|
|
end if
|
|
|
|
end function GetPyramidOrder
|
|
|
|
end module Lambert
|