DAMASK_EICMD/code/constitutive_phenopowerlaw.f90

1004 lines
54 KiB
Fortran

! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##############################################################
!* $Id$
!*****************************************************
!* Module: CONSTITUTIVE_PHENOPOWERLAW *
!*****************************************************
!* contains: *
!* - constitutive equations *
!* - parameters definition *
!*****************************************************
![Alu]
!constitution phenopowerlaw
!(output) resistance_slip
!(output) shearrate_slip
!(output) resolvedstress_slip
!(output) totalshear
!(output) resistance_twin
!(output) shearrate_twin
!(output) resolvedstress_twin
!(output) totalvolfrac
!lattice_structure hex
!covera_ratio 1.587
!Nslip 3 3 6 12 # per family
!Ntwin 6 6 6 6 # per family
!
!c11 162.2e9
!c12 91.8e9
!c13 68.8e9
!c33 180.5e9
!c44 46.7e9
!
!gdot0_slip 0.001
!n_slip 50
!tau0_slip 65e6 22e6 52e6 50e6 # per family
!tausat_slip 80e6 180e6 140e6 140e6 # per family
!w0_slip 1
!gdot0_twin 0.001
!n_twin 50
!tau0_twin 52e6 52e6 52e6 52e6 # per family
!s_pr 50e6 # push-up stress for slip saturation due to twinning
!twin_b 2
!twin_C 25
!twin_d 0.1
!twin_e 0.1
!h0_slipslip 10e6
!h0_sliptwin 0
!h0_twinslip 625e6
!h0_twintwin 400e6
!interaction_slipslip 5.5 5.5 1.0 52.0 5.5 5.5 1.0 52.0 27.5 0.2 72.8 1.0 72.8 72.8 27.5 1.1 1.4 5.5 7.7 7.7
!interaction_sliptwin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
!interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
!interaction_twintwin 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10
!relevantResistance 1
MODULE constitutive_phenopowerlaw
!*** Include other modules ***
use prec, only: pReal,pInt
implicit none
character (len=*), parameter :: constitutive_phenopowerlaw_label = 'phenopowerlaw'
integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_sizeDotState, &
constitutive_phenopowerlaw_sizeState, &
constitutive_phenopowerlaw_sizePostResults ! cumulative size of post results
integer(pInt), dimension(:,:), allocatable,target :: constitutive_phenopowerlaw_sizePostResult ! size of each post result output
character(len=64), dimension(:,:), allocatable,target :: constitutive_phenopowerlaw_output ! name of each post result output
character(len=32), dimension(:), allocatable :: constitutive_phenopowerlaw_structureName
integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_structure
integer(pInt), dimension(:,:), allocatable :: constitutive_phenopowerlaw_Nslip ! active number of slip systems per family
integer(pInt), dimension(:,:), allocatable :: constitutive_phenopowerlaw_Ntwin ! active number of twin systems per family
integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_totalNslip ! no. of slip system used in simulation
integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_totalNtwin ! no. of twin system used in simulation
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_CoverA
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C11
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C12
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C13
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C33
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C44
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_Cslip_66
!* Visco-plastic constitutive_phenomenological parameters
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_gdot0_slip
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_n_slip
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tau0_slip
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tausat_slip
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_gdot0_twin
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_n_twin
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tau0_twin
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_spr
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinB
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinC
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinD
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinE
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_slipslip
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_sliptwin
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_twinslip
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_twintwin
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_slipslip
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_sliptwin
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_twinslip
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_twintwin
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_slipslip
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_sliptwin
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_twinslip
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_twintwin
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_w0_slip
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_aTolResistance
CONTAINS
!****************************************
!* - constitutive_init
!* - constitutive_stateInit
!* - constitutive_homogenizedC
!* - constitutive_microstructure
!* - constitutive_LpAndItsTangent
!* - consistutive_dotState
!* - consistutive_postResults
!****************************************
subroutine constitutive_phenopowerlaw_init(file)
!**************************************
!* Module initialization *
!**************************************
use prec, only: pInt, pReal
use math, only: math_Mandel3333to66, math_Voigt66to3333
use IO
use material
use debug, only: debug_verbosity
use lattice, only: lattice_initializeStructure, lattice_symmetryType, &
lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_maxNinteraction, lattice_NslipSystem, lattice_NtwinSystem, &
lattice_interactionSlipSlip, &
lattice_interactionSlipTwin, &
lattice_interactionTwinSlip, &
lattice_interactionTwinTwin
integer(pInt), intent(in) :: file
integer(pInt), parameter :: maxNchunks = 21
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) section, maxNinstance, i,j,k,l,m, f,o, output, &
mySize, myStructure, index_myFamily, index_otherFamily
character(len=64) tag,formatting
character(len=1024) line
!$OMP CRITICAL (write2out)
write(6,*)
write(6,'(a20,a20,a12)') '<<<+- constitutive_',constitutive_phenopowerlaw_label,' init -+>>>'
write(6,*) '$Id$'
write(6,*)
!$OMP END CRITICAL (write2out)
maxNinstance = count(phase_constitution == constitutive_phenopowerlaw_label)
if (maxNinstance == 0) return
if (debug_verbosity > 0) then
!$OMP CRITICAL (write2out)
write(6,'(a16,x,i5)') '# instances:',maxNinstance
write(6,*)
!$OMP END CRITICAL (write2out)
endif
allocate(constitutive_phenopowerlaw_sizeDotState(maxNinstance)) ; constitutive_phenopowerlaw_sizeDotState = 0_pInt
allocate(constitutive_phenopowerlaw_sizeState(maxNinstance)) ; constitutive_phenopowerlaw_sizeState = 0_pInt
allocate(constitutive_phenopowerlaw_sizePostResults(maxNinstance)); constitutive_phenopowerlaw_sizePostResults = 0_pInt
allocate(constitutive_phenopowerlaw_sizePostResult(maxval(phase_Noutput), &
maxNinstance)) ; constitutive_phenopowerlaw_sizePostResult = 0_pInt
allocate(constitutive_phenopowerlaw_output(maxval(phase_Noutput), &
maxNinstance)) ; constitutive_phenopowerlaw_output = ''
allocate(constitutive_phenopowerlaw_structureName(maxNinstance)) ; constitutive_phenopowerlaw_structureName = ''
allocate(constitutive_phenopowerlaw_structure(maxNinstance)) ; constitutive_phenopowerlaw_structure = 0_pInt
allocate(constitutive_phenopowerlaw_Nslip(lattice_maxNslipFamily,&
maxNinstance)) ; constitutive_phenopowerlaw_Nslip = 0_pInt
allocate(constitutive_phenopowerlaw_Ntwin(lattice_maxNtwinFamily,&
maxNinstance)) ; constitutive_phenopowerlaw_Ntwin = 0_pInt
allocate(constitutive_phenopowerlaw_totalNslip(maxNinstance)) ; constitutive_phenopowerlaw_totalNslip = 0_pInt !no. of slip system used in simulation (YJ.RO)
allocate(constitutive_phenopowerlaw_totalNtwin(maxNinstance)) ; constitutive_phenopowerlaw_totalNtwin = 0_pInt !no. of twin system used in simulation (YJ.RO)
allocate(constitutive_phenopowerlaw_CoverA(maxNinstance)) ; constitutive_phenopowerlaw_CoverA = 0.0_pReal
allocate(constitutive_phenopowerlaw_C11(maxNinstance)) ; constitutive_phenopowerlaw_C11 = 0.0_pReal
allocate(constitutive_phenopowerlaw_C12(maxNinstance)) ; constitutive_phenopowerlaw_C12 = 0.0_pReal
allocate(constitutive_phenopowerlaw_C13(maxNinstance)) ; constitutive_phenopowerlaw_C13 = 0.0_pReal
allocate(constitutive_phenopowerlaw_C33(maxNinstance)) ; constitutive_phenopowerlaw_C33 = 0.0_pReal
allocate(constitutive_phenopowerlaw_C44(maxNinstance)) ; constitutive_phenopowerlaw_C44 = 0.0_pReal
allocate(constitutive_phenopowerlaw_Cslip_66(6,6,maxNinstance)) ; constitutive_phenopowerlaw_Cslip_66 = 0.0_pReal
allocate(constitutive_phenopowerlaw_gdot0_slip(maxNinstance)) ; constitutive_phenopowerlaw_gdot0_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_n_slip(maxNinstance)) ; constitutive_phenopowerlaw_n_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_tau0_slip(lattice_maxNslipFamily,&
maxNinstance)) ; constitutive_phenopowerlaw_tau0_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_tausat_slip(lattice_maxNslipFamily,&
maxNinstance)) ; constitutive_phenopowerlaw_tausat_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_gdot0_twin(maxNinstance)) ; constitutive_phenopowerlaw_gdot0_twin = 0.0_pReal
allocate(constitutive_phenopowerlaw_n_twin(maxNinstance)) ; constitutive_phenopowerlaw_n_twin = 0.0_pReal
allocate(constitutive_phenopowerlaw_tau0_twin(lattice_maxNtwinFamily,&
maxNinstance)) ; constitutive_phenopowerlaw_tau0_twin = 0.0_pReal
allocate(constitutive_phenopowerlaw_spr(maxNinstance)) ; constitutive_phenopowerlaw_spr = 0.0_pReal
allocate(constitutive_phenopowerlaw_twinB(maxNinstance)) ; constitutive_phenopowerlaw_twinB = 0.0_pReal
allocate(constitutive_phenopowerlaw_twinC(maxNinstance)) ; constitutive_phenopowerlaw_twinC = 0.0_pReal
allocate(constitutive_phenopowerlaw_twinD(maxNinstance)) ; constitutive_phenopowerlaw_twinD = 0.0_pReal
allocate(constitutive_phenopowerlaw_twinE(maxNinstance)) ; constitutive_phenopowerlaw_twinE = 0.0_pReal
allocate(constitutive_phenopowerlaw_h0_slipslip(maxNinstance)) ; constitutive_phenopowerlaw_h0_slipslip = 0.0_pReal
allocate(constitutive_phenopowerlaw_h0_sliptwin(maxNinstance)) ; constitutive_phenopowerlaw_h0_sliptwin = 0.0_pReal
allocate(constitutive_phenopowerlaw_h0_twinslip(maxNinstance)) ; constitutive_phenopowerlaw_h0_twinslip = 0.0_pReal
allocate(constitutive_phenopowerlaw_h0_twintwin(maxNinstance)) ; constitutive_phenopowerlaw_h0_twintwin = 0.0_pReal
allocate(constitutive_phenopowerlaw_interaction_slipslip(lattice_maxNinteraction,maxNinstance))
allocate(constitutive_phenopowerlaw_interaction_sliptwin(lattice_maxNinteraction,maxNinstance))
allocate(constitutive_phenopowerlaw_interaction_twinslip(lattice_maxNinteraction,maxNinstance))
allocate(constitutive_phenopowerlaw_interaction_twintwin(lattice_maxNinteraction,maxNinstance))
constitutive_phenopowerlaw_interaction_slipslip = 0.0_pReal
constitutive_phenopowerlaw_interaction_sliptwin = 0.0_pReal
constitutive_phenopowerlaw_interaction_twinslip = 0.0_pReal
constitutive_phenopowerlaw_interaction_twintwin = 0.0_pReal
allocate(constitutive_phenopowerlaw_w0_slip(maxNinstance))
constitutive_phenopowerlaw_w0_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_aTolResistance(maxNinstance))
constitutive_phenopowerlaw_aTolResistance = 0.0_pReal
rewind(file)
line = ''
section = 0
do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
read(file,'(a1024)',END=100) line
enddo
do ! read thru sections of phase part
read(file,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1
output = 0 ! reset output counter
endif
if (section > 0 .and. phase_constitution(section) == constitutive_phenopowerlaw_label) then ! one of my sections
i = phase_constitutionInstance(section) ! which instance of my constitution is present phase
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
select case(tag)
case ('(output)')
output = output + 1
constitutive_phenopowerlaw_output(output,i) = IO_lc(IO_stringValue(line,positions,2))
case ('lattice_structure')
constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2))
case ('covera_ratio')
constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2)
case ('c11')
constitutive_phenopowerlaw_C11(i) = IO_floatValue(line,positions,2)
case ('c12')
constitutive_phenopowerlaw_C12(i) = IO_floatValue(line,positions,2)
case ('c13')
constitutive_phenopowerlaw_C13(i) = IO_floatValue(line,positions,2)
case ('c33')
constitutive_phenopowerlaw_C33(i) = IO_floatValue(line,positions,2)
case ('c44')
constitutive_phenopowerlaw_C44(i) = IO_floatValue(line,positions,2)
case ('nslip')
forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1+j)
case ('gdot0_slip')
constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2)
case ('n_slip')
constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2)
case ('tau0_slip')
forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1+j)
case ('tausat_slip')
forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1+j)
case ('w0_slip')
constitutive_phenopowerlaw_w0_slip(i) = IO_floatValue(line,positions,2)
case ('ntwin')
forall (j = 1:lattice_maxNtwinFamily) constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1+j)
case ('gdot0_twin')
constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2)
case ('n_twin')
constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2)
case ('tau0_twin')
forall (j = 1:lattice_maxNtwinFamily) constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1+j)
case ('s_pr')
constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2)
case ('twin_b')
constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2)
case ('twin_c')
constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2)
case ('twin_d')
constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2)
case ('twin_e')
constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2)
case ('h0_slipslip')
constitutive_phenopowerlaw_h0_slipslip(i) = IO_floatValue(line,positions,2)
case ('h0_sliptwin')
constitutive_phenopowerlaw_h0_sliptwin(i) = IO_floatValue(line,positions,2)
case ('h0_twinslip')
constitutive_phenopowerlaw_h0_twinslip(i) = IO_floatValue(line,positions,2)
case ('h0_twintwin')
constitutive_phenopowerlaw_h0_twintwin(i) = IO_floatValue(line,positions,2)
case ('atol_resistance')
constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2)
case ('interaction_slipslip')
forall (j = 1:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_slipslip(j,i) = IO_floatValue(line,positions,1+j)
case ('interaction_sliptwin')
forall (j = 1:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_sliptwin(j,i) = IO_floatValue(line,positions,1+j)
case ('interaction_twinslip')
forall (j = 1:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_twinslip(j,i) = IO_floatValue(line,positions,1+j)
case ('interaction_twintwin')
forall (j = 1:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_twintwin(j,i) = IO_floatValue(line,positions,1+j)
end select
endif
enddo
100 do i = 1,maxNinstance
constitutive_phenopowerlaw_structure(i) = lattice_initializeStructure(constitutive_phenopowerlaw_structureName(i), & ! get structure
constitutive_phenopowerlaw_CoverA(i))
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i) = &
min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i))
constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,i) = &
min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested
constitutive_phenopowerlaw_Ntwin(:,i))
constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether
constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether
if (constitutive_phenopowerlaw_structure(i) < 1 ) call IO_error(205,i)
if (any(constitutive_phenopowerlaw_tau0_slip(:,i) < 0.0_pReal .and. &
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(210,i)
if (constitutive_phenopowerlaw_gdot0_slip(i) <= 0.0_pReal) call IO_error(211,i)
if (constitutive_phenopowerlaw_n_slip(i) <= 0.0_pReal) call IO_error(212,i)
if (any(constitutive_phenopowerlaw_tausat_slip(:,i) <= 0.0_pReal .and. &
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(213,i)
if (any(constitutive_phenopowerlaw_w0_slip(i) == 0.0_pReal .and. &
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(214,i)
if (any(constitutive_phenopowerlaw_tau0_twin(:,i) < 0.0_pReal .and. &
constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(210,i)
if ( constitutive_phenopowerlaw_gdot0_twin(i) <= 0.0_pReal .and. &
any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211,i)
if ( constitutive_phenopowerlaw_n_twin(i) <= 0.0_pReal .and. &
any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(212,i)
if (constitutive_phenopowerlaw_aTolResistance(i) <= 0.0_pReal) &
constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa
enddo
allocate(constitutive_phenopowerlaw_hardeningMatrix_slipslip(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from slip activity
maxval(constitutive_phenopowerlaw_totalNslip),&
maxNinstance))
allocate(constitutive_phenopowerlaw_hardeningMatrix_sliptwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! slip resistance from twin activity
maxval(constitutive_phenopowerlaw_totalNslip),&
maxNinstance))
allocate(constitutive_phenopowerlaw_hardeningMatrix_twinslip(maxval(constitutive_phenopowerlaw_totalNslip),& ! twin resistance from slip activity
maxval(constitutive_phenopowerlaw_totalNtwin),&
maxNinstance))
allocate(constitutive_phenopowerlaw_hardeningMatrix_twintwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from twin activity
maxval(constitutive_phenopowerlaw_totalNtwin),&
maxNinstance))
constitutive_phenopowerlaw_hardeningMatrix_slipslip = 0.0_pReal
constitutive_phenopowerlaw_hardeningMatrix_sliptwin = 0.0_pReal
constitutive_phenopowerlaw_hardeningMatrix_twinslip = 0.0_pReal
constitutive_phenopowerlaw_hardeningMatrix_twintwin = 0.0_pReal
do i = 1,maxNinstance
do j = 1,maxval(phase_Noutput)
select case(constitutive_phenopowerlaw_output(j,i))
case('resistance_slip', &
'shearrate_slip', &
'resolvedstress_slip' &
)
mySize = constitutive_phenopowerlaw_totalNslip(i)
case('resistance_twin', &
'shearrate_twin', &
'resolvedstress_twin' &
)
mySize = constitutive_phenopowerlaw_totalNtwin(i)
case('totalshear', &
'totalvolfrac' &
)
mySize = 1_pInt
case default
mySize = 0_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
constitutive_phenopowerlaw_sizePostResult(j,i) = mySize
constitutive_phenopowerlaw_sizePostResults(i) = &
constitutive_phenopowerlaw_sizePostResults(i) + mySize
endif
enddo
constitutive_phenopowerlaw_sizeDotState(i) = constitutive_phenopowerlaw_totalNslip(i)+ &
constitutive_phenopowerlaw_totalNtwin(i)+ 2 ! s_slip, s_twin, sum(gamma), sum(f)
constitutive_phenopowerlaw_sizeState(i) = constitutive_phenopowerlaw_totalNslip(i)+ &
constitutive_phenopowerlaw_totalNtwin(i)+ 2 ! s_slip, s_twin, sum(gamma), sum(f)
myStructure = constitutive_phenopowerlaw_structure(i)
select case (lattice_symmetryType(myStructure)) ! assign elasticity tensor
case(1) ! cubic(s)
forall(k=1:3)
forall(j=1:3) &
constitutive_phenopowerlaw_Cslip_66(k,j,i) = constitutive_phenopowerlaw_C12(i)
constitutive_phenopowerlaw_Cslip_66(k,k,i) = constitutive_phenopowerlaw_C11(i)
constitutive_phenopowerlaw_Cslip_66(k+3,k+3,i) = constitutive_phenopowerlaw_C44(i)
end forall
case(2) ! hex
constitutive_phenopowerlaw_Cslip_66(1,1,i) = constitutive_phenopowerlaw_C11(i)
constitutive_phenopowerlaw_Cslip_66(2,2,i) = constitutive_phenopowerlaw_C11(i)
constitutive_phenopowerlaw_Cslip_66(3,3,i) = constitutive_phenopowerlaw_C33(i)
constitutive_phenopowerlaw_Cslip_66(1,2,i) = constitutive_phenopowerlaw_C12(i)
constitutive_phenopowerlaw_Cslip_66(2,1,i) = constitutive_phenopowerlaw_C12(i)
constitutive_phenopowerlaw_Cslip_66(1,3,i) = constitutive_phenopowerlaw_C13(i)
constitutive_phenopowerlaw_Cslip_66(3,1,i) = constitutive_phenopowerlaw_C13(i)
constitutive_phenopowerlaw_Cslip_66(2,3,i) = constitutive_phenopowerlaw_C13(i)
constitutive_phenopowerlaw_Cslip_66(3,2,i) = constitutive_phenopowerlaw_C13(i)
constitutive_phenopowerlaw_Cslip_66(4,4,i) = constitutive_phenopowerlaw_C44(i)
constitutive_phenopowerlaw_Cslip_66(5,5,i) = constitutive_phenopowerlaw_C44(i)
constitutive_phenopowerlaw_Cslip_66(6,6,i) = 0.5_pReal*(constitutive_phenopowerlaw_C11(i)- &
constitutive_phenopowerlaw_C12(i))
end select
constitutive_phenopowerlaw_Cslip_66(:,:,i) = &
math_Mandel3333to66(math_Voigt66to3333(constitutive_phenopowerlaw_Cslip_66(:,:,i)))
do f = 1,lattice_maxNslipFamily ! >>> interaction slip -- X
index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1,i))
do j = 1,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip)
do o = 1,lattice_maxNslipFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1,i))
do k = 1,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
constitutive_phenopowerlaw_hardeningMatrix_slipslip(index_otherFamily+k,index_myFamily+j,i) = &
constitutive_phenopowerlaw_interaction_slipslip(lattice_interactionSlipSlip( &
sum(lattice_NslipSystem(1:o-1,myStructure))+k, &
sum(lattice_NslipSystem(1:f-1,myStructure))+j, &
myStructure), i )
enddo; enddo
do o = 1,lattice_maxNtwinFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1,i))
do k = 1,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
constitutive_phenopowerlaw_hardeningMatrix_sliptwin(index_otherFamily+k,index_myFamily+j,i) = &
constitutive_phenopowerlaw_interaction_sliptwin(lattice_interactionSlipTwin( &
sum(lattice_NtwinSystem(1:o-1,myStructure))+k, &
sum(lattice_NslipSystem(1:f-1,myStructure))+j, &
myStructure), i )
enddo; enddo
enddo; enddo
do f = 1,lattice_maxNtwinFamily ! >>> interaction twin -- X
index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1,i))
do j = 1,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin)
do o = 1,lattice_maxNslipFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1,i))
do k = 1,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
constitutive_phenopowerlaw_hardeningMatrix_twinslip(index_otherFamily+k,index_myFamily+j,i) = &
constitutive_phenopowerlaw_interaction_twinslip(lattice_interactionTwinSlip( &
sum(lattice_NslipSystem(1:o-1,myStructure))+k, &
sum(lattice_NtwinSystem(1:f-1,myStructure))+j, &
myStructure), i )
enddo; enddo
do o = 1,lattice_maxNtwinFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1,i))
do k = 1,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
constitutive_phenopowerlaw_hardeningMatrix_twintwin(index_otherFamily+k,index_myFamily+j,i) = &
constitutive_phenopowerlaw_interaction_twintwin(lattice_interactionTwinTwin( &
sum(lattice_NtwinSystem(1:o-1,myStructure))+k, &
sum(lattice_NtwinSystem(1:f-1,myStructure))+j, &
myStructure), i )
enddo; enddo
enddo; enddo
! report to out file...
enddo
return
endsubroutine
function constitutive_phenopowerlaw_stateInit(myInstance)
!*********************************************************************
!* initial microstructural state *
!*********************************************************************
use prec, only: pReal,pInt
use lattice, only: lattice_maxNslipFamily, lattice_maxNtwinFamily
implicit none
!* Definition of variables
integer(pInt), intent(in) :: myInstance
integer(pInt) i
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(myInstance)) :: constitutive_phenopowerlaw_stateInit
constitutive_phenopowerlaw_stateInit = 0.0_pReal
do i = 1,lattice_maxNslipFamily
constitutive_phenopowerlaw_stateInit(1+&
sum(constitutive_phenopowerlaw_Nslip(1:i-1,myInstance)) : &
sum(constitutive_phenopowerlaw_Nslip(1:i ,myInstance))) = &
constitutive_phenopowerlaw_tau0_slip(i,myInstance)
enddo
do i = 1,lattice_maxNtwinFamily
constitutive_phenopowerlaw_stateInit(1+sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+&
sum(constitutive_phenopowerlaw_Ntwin(1:i-1,myInstance)) : &
sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+&
sum(constitutive_phenopowerlaw_Ntwin(1:i ,myInstance))) = &
constitutive_phenopowerlaw_tau0_twin(i,myInstance)
enddo
return
endfunction
!*********************************************************************
!* absolute state tolerance *
!*********************************************************************
pure function constitutive_phenopowerlaw_aTolState(myInstance)
use prec, only: pReal, &
pInt
implicit none
!*** input variables
integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the constitution
!*** output variables
real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: &
constitutive_phenopowerlaw_aTolState ! relevant state values for the current instance of this constitution
!*** local variables
constitutive_phenopowerlaw_aTolState = constitutive_phenopowerlaw_aTolResistance(myInstance)
endfunction
function constitutive_phenopowerlaw_homogenizedC(state,ipc,ip,el)
!*********************************************************************
!* homogenized elacticity matrix *
!* INPUT: *
!* - state : state variables *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
use prec, only: pReal,pInt,p_vec
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
implicit none
!* Definition of variables
integer(pInt), intent(in) :: ipc,ip,el
integer(pInt) matID
real(pReal), dimension(6,6) :: constitutive_phenopowerlaw_homogenizedC
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
constitutive_phenopowerlaw_homogenizedC = constitutive_phenopowerlaw_Cslip_66(:,:,matID)
return
endfunction
subroutine constitutive_phenopowerlaw_microstructure(Temperature,state,ipc,ip,el)
!*********************************************************************
!* calculate derived quantities from state (not used here) *
!* INPUT: *
!* - Tp : temperature *
!* - ipc : component-ID of current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
use prec, only: pReal,pInt,p_vec
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
implicit none
!* Definition of variables
integer(pInt) ipc,ip,el, matID
real(pReal) Temperature
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
endsubroutine
subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,ipc,ip,el)
!*********************************************************************
!* plastic velocity gradient and its tangent *
!* INPUT: *
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
!* - ipc : component-ID at current integration point *
!* - ip : current integration point *
!* - el : current element *
!* OUTPUT: *
!* - Lp : plastic velocity gradient *
!* - dLp_dTstar : derivative of Lp (4th-rank tensor) *
!*********************************************************************
use prec, only: pReal,pInt,p_vec
use math, only: math_Plain3333to99
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_NslipSystem,lattice_NtwinSystem
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
implicit none
!* Definition of variables
integer(pInt) ipc,ip,el
integer(pInt) matID,nSlip,nTwin,f,i,j,k,l,m,n, structID,index_Gamma,index_F,index_myFamily
real(pReal) Temperature
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
real(pReal), dimension(6) :: Tstar_v
real(pReal), dimension(3,3) :: Lp
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333
real(pReal), dimension(9,9) :: dLp_dTstar
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
gdot_slip,dgdot_dtauslip,tau_slip
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
gdot_twin,dgdot_dtautwin,tau_twin
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
structID = constitutive_phenopowerlaw_structure(matID)
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
index_Gamma = nSlip + nTwin + 1
index_F = nSlip + nTwin + 2
Lp = 0.0_pReal
dLp_dTstar3333 = 0.0_pReal
dLp_dTstar = 0.0_pReal
j = 0_pInt
do f = 1,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
!* Calculation of Lp
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**&
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j))
Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
gdot_slip(j)*lattice_Sslip(1:3,1:3,index_myFamily+i,structID)
!* Calculation of the tangent of Lp
if (gdot_slip(j) /= 0.0_pReal) then
dgdot_dtauslip(j) = gdot_slip(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip(j)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtauslip(j)*lattice_Sslip(k,l,index_myFamily+i,structID)* &
lattice_Sslip(m,n,index_myFamily+i,structID)
endif
enddo
enddo
j = 0_pInt
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
!* Calculation of Lp
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
constitutive_phenopowerlaw_gdot0_twin(matID)*&
(abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**&
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,structID)
!* Calculation of the tangent of Lp
if (gdot_twin(j) /= 0.0_pReal) then
dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(matID)/tau_twin(j)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtautwin(j)*lattice_Stwin(k,l,index_myFamily+i,structID)* &
lattice_Stwin(m,n,index_myFamily+i,structID)
endif
enddo
enddo
dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
return
endsubroutine
function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el)
!*********************************************************************
!* rate of change of microstructure *
!* INPUT: *
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
!* - ipc : component-ID at current integration point *
!* - ip : current integration point *
!* - el : current element *
!* OUTPUT: *
!* - constitutive_dotState : evolution of state variable *
!*********************************************************************
use prec, only: pReal,pInt,p_vec
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
implicit none
!* Definition of variables
integer(pInt) ipc,ip,el
integer(pInt) matID,nSlip,nTwin,f,i,j,k, structID,index_Gamma,index_F,index_myFamily
real(pReal) Temperature,c_slipslip,c_sliptwin,c_twinslip,c_twintwin, ssat_offset
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
real(pReal), dimension(6) :: Tstar_v
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
gdot_slip,tau_slip,h_slipslip,h_sliptwin
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
gdot_twin,tau_twin,h_twinslip,h_twintwin
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
constitutive_phenopowerlaw_dotState
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
structID = constitutive_phenopowerlaw_structure(matID)
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
index_Gamma = nSlip + nTwin + 1
index_F = nSlip + nTwin + 2
constitutive_phenopowerlaw_dotState = 0.0_pReal
!-- system-independent (nonlinear) prefactors to M_xx matrices
c_slipslip = constitutive_phenopowerlaw_h0_slipslip(matID)*&
(1.0_pReal + &
constitutive_phenopowerlaw_twinC(matID)*state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinB(matID))
c_sliptwin = 0.0_pReal
c_twinslip = constitutive_phenopowerlaw_h0_twinslip(matID)*&
state(ipc,ip,el)%p(index_Gamma)**constitutive_phenopowerlaw_twinE(matID)
c_twintwin = constitutive_phenopowerlaw_h0_twintwin(matID)*&
state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinD(matID)
!-- add system-dependent part and calculate dot gammas
ssat_offset = constitutive_phenopowerlaw_spr(matID)*sqrt(state(ipc,ip,el)%p(index_F))
j = 0_pInt
do f = 1,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
h_slipslip(j) = c_slipslip*(1.0_pReal-state(ipc,ip,el)%p(j) / & ! system-dependent prefactor for slip--slip interaction
(constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset))** &
constitutive_phenopowerlaw_w0_slip(matID)
h_sliptwin(j) = c_sliptwin ! no system-dependent part
!* Calculation of dot gamma
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**&
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j))
enddo
enddo
j = 0_pInt
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
h_twinslip(j) = c_twinslip ! no system-dependent parts
h_twintwin(j) = c_twintwin
!* Calculation of dot vol frac
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
constitutive_phenopowerlaw_gdot0_twin(matID)*&
(abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**&
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
enddo
enddo
!-- calculate the overall hardening based on above
j = 0_pInt
do f = 1,lattice_maxNslipFamily ! loop over all slip families
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j
h_slipslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_slipslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip
h_sliptwin(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_sliptwin(1:nTwin,j,matID),gdot_twin) ! dot gamma_twin
constitutive_phenopowerlaw_dotState(index_Gamma) = constitutive_phenopowerlaw_dotState(index_Gamma) + &
abs(gdot_slip(j))
enddo
enddo
j = 0_pInt
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j
h_twinslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_twinslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip
h_twintwin(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_twintwin(1:nTwin,j,matID),gdot_twin) ! dot gamma_twin
constitutive_phenopowerlaw_dotState(index_F) = constitutive_phenopowerlaw_dotState(index_F) + &
gdot_twin(j)/lattice_shearTwin(index_myFamily+i,structID)
enddo
enddo
return
endfunction
!****************************************************************
!* calculates the rate of change of temperature *
!****************************************************************
pure function constitutive_phenopowerlaw_dotTemperature(Tstar_v,Temperature,state,ipc,ip,el)
!*** variables and functions from other modules ***!
use prec, only: pReal,pInt,p_vec
use lattice, only: lattice_Sslip_v
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance
implicit none
!*** input variables ***!
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: Temperature
integer(pInt), intent(in):: ipc, & ! grain number
ip, & ! integration point number
el ! element number
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state ! state of the current microstructure
!*** output variables ***!
real(pReal) constitutive_phenopowerlaw_dotTemperature ! rate of change of temparature
! calculate dotTemperature
constitutive_phenopowerlaw_dotTemperature = 0.0_pReal
return
endfunction
pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,state,ipc,ip,el)
!*********************************************************************
!* return array of constitutive results *
!* INPUT: *
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
!* - dt : current time increment *
!* - ipc : component-ID at current integration point *
!* - ip : current integration point *
!* - el : current element *
!*********************************************************************
use prec, only: pReal,pInt,p_vec
use lattice, only: lattice_Sslip_v,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_NslipSystem,lattice_NtwinSystem
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance,phase_Noutput
implicit none
!* Definition of variables
integer(pInt), intent(in) :: ipc,ip,el
real(pReal), intent(in) :: dt,Temperature
real(pReal), dimension(6), intent(in) :: Tstar_v
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
integer(pInt) matID,o,f,i,c,nSlip,nTwin,j, structID,index_Gamma,index_F,index_myFamily
real(pReal) tau
real(pReal), dimension(constitutive_phenopowerlaw_sizePostResults(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
constitutive_phenopowerlaw_postResults
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
structID = constitutive_phenopowerlaw_structure(matID)
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
index_Gamma = nSlip + nTwin + 1
index_F = nSlip + nTwin + 2
constitutive_phenopowerlaw_postResults = 0.0_pReal
c = 0_pInt
do o = 1,phase_Noutput(material_phase(ipc,ip,el))
select case(constitutive_phenopowerlaw_output(o,matID))
case ('resistance_slip')
constitutive_phenopowerlaw_postResults(c+1:c+nSlip) = state(ipc,ip,el)%p(1:nSlip)
c = c + nSlip
case ('shearrate_slip')
j = 0_pInt
do f = 1,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j + 1_pInt
tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,structID))
constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(matID)*&
(abs(tau)/state(ipc,ip,el)%p(j))**&
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau)
enddo; enddo
c = c + nSlip
case ('resolvedstress_slip')
j = 0_pInt
do f = 1,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j + 1_pInt
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
enddo; enddo
c = c + nSlip
case ('totalshear')
constitutive_phenopowerlaw_postResults(c+1) = state(ipc,ip,el)%p(index_Gamma)
c = c + 1
case ('resistance_twin')
constitutive_phenopowerlaw_postResults(c+1:c+nTwin) = state(ipc,ip,el)%p(1+nSlip:nTwin+nSlip)
c = c + nTwin
case ('shearrate_twin')
j = 0_pInt
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j + 1_pInt
tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
constitutive_phenopowerlaw_gdot0_twin(matID)*&
(abs(tau)/state(ipc,ip,el)%p(j+nSlip))**&
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau))
enddo; enddo
c = c + nTwin
case ('resolvedstress_twin')
j = 0_pInt
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j + 1_pInt
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
enddo; enddo
c = c + nTwin
case ('totalvolfrac')
constitutive_phenopowerlaw_postResults(c+1) = state(ipc,ip,el)%p(index_F)
c = c + 1
end select
enddo
return
endfunction
END MODULE