! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !############################################################## !* $Id$ !***************************************************** !* Module: CONSTITUTIVE_PHENOPOWERLAW * !***************************************************** !* contains: * !* - constitutive equations * !* - parameters definition * !***************************************************** ![Alu] !constitution phenopowerlaw !(output) resistance_slip !(output) shearrate_slip !(output) resolvedstress_slip !(output) totalshear !(output) resistance_twin !(output) shearrate_twin !(output) resolvedstress_twin !(output) totalvolfrac !lattice_structure hex !covera_ratio 1.587 !Nslip 3 3 6 12 # per family !Ntwin 6 6 6 6 # per family ! !c11 162.2e9 !c12 91.8e9 !c13 68.8e9 !c33 180.5e9 !c44 46.7e9 ! !gdot0_slip 0.001 !n_slip 50 !tau0_slip 65e6 22e6 52e6 50e6 # per family !tausat_slip 80e6 180e6 140e6 140e6 # per family !w0_slip 1 !gdot0_twin 0.001 !n_twin 50 !tau0_twin 52e6 52e6 52e6 52e6 # per family !s_pr 50e6 # push-up stress for slip saturation due to twinning !twin_b 2 !twin_C 25 !twin_d 0.1 !twin_e 0.1 !h0_slipslip 10e6 !h0_sliptwin 0 !h0_twinslip 625e6 !h0_twintwin 400e6 !interaction_slipslip 5.5 5.5 1.0 52.0 5.5 5.5 1.0 52.0 27.5 0.2 72.8 1.0 72.8 72.8 27.5 1.1 1.4 5.5 7.7 7.7 !interaction_sliptwin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 !interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 !interaction_twintwin 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10 !relevantResistance 1 MODULE constitutive_phenopowerlaw !*** Include other modules *** use prec, only: pReal,pInt implicit none character (len=*), parameter :: constitutive_phenopowerlaw_label = 'phenopowerlaw' integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_sizeDotState, & constitutive_phenopowerlaw_sizeState, & constitutive_phenopowerlaw_sizePostResults ! cumulative size of post results integer(pInt), dimension(:,:), allocatable,target :: constitutive_phenopowerlaw_sizePostResult ! size of each post result output character(len=64), dimension(:,:), allocatable,target :: constitutive_phenopowerlaw_output ! name of each post result output character(len=32), dimension(:), allocatable :: constitutive_phenopowerlaw_structureName integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_structure integer(pInt), dimension(:,:), allocatable :: constitutive_phenopowerlaw_Nslip ! active number of slip systems per family integer(pInt), dimension(:,:), allocatable :: constitutive_phenopowerlaw_Ntwin ! active number of twin systems per family integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_totalNslip ! no. of slip system used in simulation integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_totalNtwin ! no. of twin system used in simulation real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_CoverA real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C11 real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C12 real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C13 real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C33 real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C44 real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_Cslip_66 !* Visco-plastic constitutive_phenomenological parameters real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_gdot0_slip real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_n_slip real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tau0_slip real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tausat_slip real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_gdot0_twin real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_n_twin real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tau0_twin real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_spr real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinB real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinC real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinD real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinE real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_slipslip real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_sliptwin real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_twinslip real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_twintwin real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_slipslip real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_sliptwin real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_twinslip real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_twintwin real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_slipslip real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_sliptwin real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_twinslip real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_twintwin real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_w0_slip real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_aTolResistance CONTAINS !**************************************** !* - constitutive_init !* - constitutive_stateInit !* - constitutive_homogenizedC !* - constitutive_microstructure !* - constitutive_LpAndItsTangent !* - consistutive_dotState !* - consistutive_postResults !**************************************** subroutine constitutive_phenopowerlaw_init(file) !************************************** !* Module initialization * !************************************** use prec, only: pInt, pReal use math, only: math_Mandel3333to66, math_Voigt66to3333 use IO use material use debug, only: debug_verbosity use lattice, only: lattice_initializeStructure, lattice_symmetryType, & lattice_maxNslipFamily, lattice_maxNtwinFamily, & lattice_maxNinteraction, lattice_NslipSystem, lattice_NtwinSystem, & lattice_interactionSlipSlip, & lattice_interactionSlipTwin, & lattice_interactionTwinSlip, & lattice_interactionTwinTwin integer(pInt), intent(in) :: file integer(pInt), parameter :: maxNchunks = 21 integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) section, maxNinstance, i,j,k,l,m, f,o, output, & mySize, myStructure, index_myFamily, index_otherFamily character(len=64) tag,formatting character(len=1024) line !$OMP CRITICAL (write2out) write(6,*) write(6,'(a20,a20,a12)') '<<<+- constitutive_',constitutive_phenopowerlaw_label,' init -+>>>' write(6,*) '$Id$' write(6,*) !$OMP END CRITICAL (write2out) maxNinstance = count(phase_constitution == constitutive_phenopowerlaw_label) if (maxNinstance == 0) return if (debug_verbosity > 0) then !$OMP CRITICAL (write2out) write(6,'(a16,x,i5)') '# instances:',maxNinstance write(6,*) !$OMP END CRITICAL (write2out) endif allocate(constitutive_phenopowerlaw_sizeDotState(maxNinstance)) ; constitutive_phenopowerlaw_sizeDotState = 0_pInt allocate(constitutive_phenopowerlaw_sizeState(maxNinstance)) ; constitutive_phenopowerlaw_sizeState = 0_pInt allocate(constitutive_phenopowerlaw_sizePostResults(maxNinstance)); constitutive_phenopowerlaw_sizePostResults = 0_pInt allocate(constitutive_phenopowerlaw_sizePostResult(maxval(phase_Noutput), & maxNinstance)) ; constitutive_phenopowerlaw_sizePostResult = 0_pInt allocate(constitutive_phenopowerlaw_output(maxval(phase_Noutput), & maxNinstance)) ; constitutive_phenopowerlaw_output = '' allocate(constitutive_phenopowerlaw_structureName(maxNinstance)) ; constitutive_phenopowerlaw_structureName = '' allocate(constitutive_phenopowerlaw_structure(maxNinstance)) ; constitutive_phenopowerlaw_structure = 0_pInt allocate(constitutive_phenopowerlaw_Nslip(lattice_maxNslipFamily,& maxNinstance)) ; constitutive_phenopowerlaw_Nslip = 0_pInt allocate(constitutive_phenopowerlaw_Ntwin(lattice_maxNtwinFamily,& maxNinstance)) ; constitutive_phenopowerlaw_Ntwin = 0_pInt allocate(constitutive_phenopowerlaw_totalNslip(maxNinstance)) ; constitutive_phenopowerlaw_totalNslip = 0_pInt !no. of slip system used in simulation (YJ.RO) allocate(constitutive_phenopowerlaw_totalNtwin(maxNinstance)) ; constitutive_phenopowerlaw_totalNtwin = 0_pInt !no. of twin system used in simulation (YJ.RO) allocate(constitutive_phenopowerlaw_CoverA(maxNinstance)) ; constitutive_phenopowerlaw_CoverA = 0.0_pReal allocate(constitutive_phenopowerlaw_C11(maxNinstance)) ; constitutive_phenopowerlaw_C11 = 0.0_pReal allocate(constitutive_phenopowerlaw_C12(maxNinstance)) ; constitutive_phenopowerlaw_C12 = 0.0_pReal allocate(constitutive_phenopowerlaw_C13(maxNinstance)) ; constitutive_phenopowerlaw_C13 = 0.0_pReal allocate(constitutive_phenopowerlaw_C33(maxNinstance)) ; constitutive_phenopowerlaw_C33 = 0.0_pReal allocate(constitutive_phenopowerlaw_C44(maxNinstance)) ; constitutive_phenopowerlaw_C44 = 0.0_pReal allocate(constitutive_phenopowerlaw_Cslip_66(6,6,maxNinstance)) ; constitutive_phenopowerlaw_Cslip_66 = 0.0_pReal allocate(constitutive_phenopowerlaw_gdot0_slip(maxNinstance)) ; constitutive_phenopowerlaw_gdot0_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_n_slip(maxNinstance)) ; constitutive_phenopowerlaw_n_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_tau0_slip(lattice_maxNslipFamily,& maxNinstance)) ; constitutive_phenopowerlaw_tau0_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_tausat_slip(lattice_maxNslipFamily,& maxNinstance)) ; constitutive_phenopowerlaw_tausat_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_gdot0_twin(maxNinstance)) ; constitutive_phenopowerlaw_gdot0_twin = 0.0_pReal allocate(constitutive_phenopowerlaw_n_twin(maxNinstance)) ; constitutive_phenopowerlaw_n_twin = 0.0_pReal allocate(constitutive_phenopowerlaw_tau0_twin(lattice_maxNtwinFamily,& maxNinstance)) ; constitutive_phenopowerlaw_tau0_twin = 0.0_pReal allocate(constitutive_phenopowerlaw_spr(maxNinstance)) ; constitutive_phenopowerlaw_spr = 0.0_pReal allocate(constitutive_phenopowerlaw_twinB(maxNinstance)) ; constitutive_phenopowerlaw_twinB = 0.0_pReal allocate(constitutive_phenopowerlaw_twinC(maxNinstance)) ; constitutive_phenopowerlaw_twinC = 0.0_pReal allocate(constitutive_phenopowerlaw_twinD(maxNinstance)) ; constitutive_phenopowerlaw_twinD = 0.0_pReal allocate(constitutive_phenopowerlaw_twinE(maxNinstance)) ; constitutive_phenopowerlaw_twinE = 0.0_pReal allocate(constitutive_phenopowerlaw_h0_slipslip(maxNinstance)) ; constitutive_phenopowerlaw_h0_slipslip = 0.0_pReal allocate(constitutive_phenopowerlaw_h0_sliptwin(maxNinstance)) ; constitutive_phenopowerlaw_h0_sliptwin = 0.0_pReal allocate(constitutive_phenopowerlaw_h0_twinslip(maxNinstance)) ; constitutive_phenopowerlaw_h0_twinslip = 0.0_pReal allocate(constitutive_phenopowerlaw_h0_twintwin(maxNinstance)) ; constitutive_phenopowerlaw_h0_twintwin = 0.0_pReal allocate(constitutive_phenopowerlaw_interaction_slipslip(lattice_maxNinteraction,maxNinstance)) allocate(constitutive_phenopowerlaw_interaction_sliptwin(lattice_maxNinteraction,maxNinstance)) allocate(constitutive_phenopowerlaw_interaction_twinslip(lattice_maxNinteraction,maxNinstance)) allocate(constitutive_phenopowerlaw_interaction_twintwin(lattice_maxNinteraction,maxNinstance)) constitutive_phenopowerlaw_interaction_slipslip = 0.0_pReal constitutive_phenopowerlaw_interaction_sliptwin = 0.0_pReal constitutive_phenopowerlaw_interaction_twinslip = 0.0_pReal constitutive_phenopowerlaw_interaction_twintwin = 0.0_pReal allocate(constitutive_phenopowerlaw_w0_slip(maxNinstance)) constitutive_phenopowerlaw_w0_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_aTolResistance(maxNinstance)) constitutive_phenopowerlaw_aTolResistance = 0.0_pReal rewind(file) line = '' section = 0 do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to read(file,'(a1024)',END=100) line enddo do ! read thru sections of phase part read(file,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1 output = 0 ! reset output counter endif if (section > 0 .and. phase_constitution(section) == constitutive_phenopowerlaw_label) then ! one of my sections i = phase_constitutionInstance(section) ! which instance of my constitution is present phase positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key select case(tag) case ('(output)') output = output + 1 constitutive_phenopowerlaw_output(output,i) = IO_lc(IO_stringValue(line,positions,2)) case ('lattice_structure') constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2)) case ('covera_ratio') constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2) case ('c11') constitutive_phenopowerlaw_C11(i) = IO_floatValue(line,positions,2) case ('c12') constitutive_phenopowerlaw_C12(i) = IO_floatValue(line,positions,2) case ('c13') constitutive_phenopowerlaw_C13(i) = IO_floatValue(line,positions,2) case ('c33') constitutive_phenopowerlaw_C33(i) = IO_floatValue(line,positions,2) case ('c44') constitutive_phenopowerlaw_C44(i) = IO_floatValue(line,positions,2) case ('nslip') forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1+j) case ('gdot0_slip') constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2) case ('n_slip') constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2) case ('tau0_slip') forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1+j) case ('tausat_slip') forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1+j) case ('w0_slip') constitutive_phenopowerlaw_w0_slip(i) = IO_floatValue(line,positions,2) case ('ntwin') forall (j = 1:lattice_maxNtwinFamily) constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1+j) case ('gdot0_twin') constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2) case ('n_twin') constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2) case ('tau0_twin') forall (j = 1:lattice_maxNtwinFamily) constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1+j) case ('s_pr') constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2) case ('twin_b') constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2) case ('twin_c') constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2) case ('twin_d') constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2) case ('twin_e') constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2) case ('h0_slipslip') constitutive_phenopowerlaw_h0_slipslip(i) = IO_floatValue(line,positions,2) case ('h0_sliptwin') constitutive_phenopowerlaw_h0_sliptwin(i) = IO_floatValue(line,positions,2) case ('h0_twinslip') constitutive_phenopowerlaw_h0_twinslip(i) = IO_floatValue(line,positions,2) case ('h0_twintwin') constitutive_phenopowerlaw_h0_twintwin(i) = IO_floatValue(line,positions,2) case ('atol_resistance') constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2) case ('interaction_slipslip') forall (j = 1:lattice_maxNinteraction) & constitutive_phenopowerlaw_interaction_slipslip(j,i) = IO_floatValue(line,positions,1+j) case ('interaction_sliptwin') forall (j = 1:lattice_maxNinteraction) & constitutive_phenopowerlaw_interaction_sliptwin(j,i) = IO_floatValue(line,positions,1+j) case ('interaction_twinslip') forall (j = 1:lattice_maxNinteraction) & constitutive_phenopowerlaw_interaction_twinslip(j,i) = IO_floatValue(line,positions,1+j) case ('interaction_twintwin') forall (j = 1:lattice_maxNinteraction) & constitutive_phenopowerlaw_interaction_twintwin(j,i) = IO_floatValue(line,positions,1+j) end select endif enddo 100 do i = 1,maxNinstance constitutive_phenopowerlaw_structure(i) = lattice_initializeStructure(constitutive_phenopowerlaw_structureName(i), & ! get structure constitutive_phenopowerlaw_CoverA(i)) constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i) = & min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i)) constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,i) = & min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested constitutive_phenopowerlaw_Ntwin(:,i)) constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether if (constitutive_phenopowerlaw_structure(i) < 1 ) call IO_error(205,i) if (any(constitutive_phenopowerlaw_tau0_slip(:,i) < 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(210,i) if (constitutive_phenopowerlaw_gdot0_slip(i) <= 0.0_pReal) call IO_error(211,i) if (constitutive_phenopowerlaw_n_slip(i) <= 0.0_pReal) call IO_error(212,i) if (any(constitutive_phenopowerlaw_tausat_slip(:,i) <= 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(213,i) if (any(constitutive_phenopowerlaw_w0_slip(i) == 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(214,i) if (any(constitutive_phenopowerlaw_tau0_twin(:,i) < 0.0_pReal .and. & constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(210,i) if ( constitutive_phenopowerlaw_gdot0_twin(i) <= 0.0_pReal .and. & any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211,i) if ( constitutive_phenopowerlaw_n_twin(i) <= 0.0_pReal .and. & any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(212,i) if (constitutive_phenopowerlaw_aTolResistance(i) <= 0.0_pReal) & constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa enddo allocate(constitutive_phenopowerlaw_hardeningMatrix_slipslip(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from slip activity maxval(constitutive_phenopowerlaw_totalNslip),& maxNinstance)) allocate(constitutive_phenopowerlaw_hardeningMatrix_sliptwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! slip resistance from twin activity maxval(constitutive_phenopowerlaw_totalNslip),& maxNinstance)) allocate(constitutive_phenopowerlaw_hardeningMatrix_twinslip(maxval(constitutive_phenopowerlaw_totalNslip),& ! twin resistance from slip activity maxval(constitutive_phenopowerlaw_totalNtwin),& maxNinstance)) allocate(constitutive_phenopowerlaw_hardeningMatrix_twintwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from twin activity maxval(constitutive_phenopowerlaw_totalNtwin),& maxNinstance)) constitutive_phenopowerlaw_hardeningMatrix_slipslip = 0.0_pReal constitutive_phenopowerlaw_hardeningMatrix_sliptwin = 0.0_pReal constitutive_phenopowerlaw_hardeningMatrix_twinslip = 0.0_pReal constitutive_phenopowerlaw_hardeningMatrix_twintwin = 0.0_pReal do i = 1,maxNinstance do j = 1,maxval(phase_Noutput) select case(constitutive_phenopowerlaw_output(j,i)) case('resistance_slip', & 'shearrate_slip', & 'resolvedstress_slip' & ) mySize = constitutive_phenopowerlaw_totalNslip(i) case('resistance_twin', & 'shearrate_twin', & 'resolvedstress_twin' & ) mySize = constitutive_phenopowerlaw_totalNtwin(i) case('totalshear', & 'totalvolfrac' & ) mySize = 1_pInt case default mySize = 0_pInt end select if (mySize > 0_pInt) then ! any meaningful output found constitutive_phenopowerlaw_sizePostResult(j,i) = mySize constitutive_phenopowerlaw_sizePostResults(i) = & constitutive_phenopowerlaw_sizePostResults(i) + mySize endif enddo constitutive_phenopowerlaw_sizeDotState(i) = constitutive_phenopowerlaw_totalNslip(i)+ & constitutive_phenopowerlaw_totalNtwin(i)+ 2 ! s_slip, s_twin, sum(gamma), sum(f) constitutive_phenopowerlaw_sizeState(i) = constitutive_phenopowerlaw_totalNslip(i)+ & constitutive_phenopowerlaw_totalNtwin(i)+ 2 ! s_slip, s_twin, sum(gamma), sum(f) myStructure = constitutive_phenopowerlaw_structure(i) select case (lattice_symmetryType(myStructure)) ! assign elasticity tensor case(1) ! cubic(s) forall(k=1:3) forall(j=1:3) & constitutive_phenopowerlaw_Cslip_66(k,j,i) = constitutive_phenopowerlaw_C12(i) constitutive_phenopowerlaw_Cslip_66(k,k,i) = constitutive_phenopowerlaw_C11(i) constitutive_phenopowerlaw_Cslip_66(k+3,k+3,i) = constitutive_phenopowerlaw_C44(i) end forall case(2) ! hex constitutive_phenopowerlaw_Cslip_66(1,1,i) = constitutive_phenopowerlaw_C11(i) constitutive_phenopowerlaw_Cslip_66(2,2,i) = constitutive_phenopowerlaw_C11(i) constitutive_phenopowerlaw_Cslip_66(3,3,i) = constitutive_phenopowerlaw_C33(i) constitutive_phenopowerlaw_Cslip_66(1,2,i) = constitutive_phenopowerlaw_C12(i) constitutive_phenopowerlaw_Cslip_66(2,1,i) = constitutive_phenopowerlaw_C12(i) constitutive_phenopowerlaw_Cslip_66(1,3,i) = constitutive_phenopowerlaw_C13(i) constitutive_phenopowerlaw_Cslip_66(3,1,i) = constitutive_phenopowerlaw_C13(i) constitutive_phenopowerlaw_Cslip_66(2,3,i) = constitutive_phenopowerlaw_C13(i) constitutive_phenopowerlaw_Cslip_66(3,2,i) = constitutive_phenopowerlaw_C13(i) constitutive_phenopowerlaw_Cslip_66(4,4,i) = constitutive_phenopowerlaw_C44(i) constitutive_phenopowerlaw_Cslip_66(5,5,i) = constitutive_phenopowerlaw_C44(i) constitutive_phenopowerlaw_Cslip_66(6,6,i) = 0.5_pReal*(constitutive_phenopowerlaw_C11(i)- & constitutive_phenopowerlaw_C12(i)) end select constitutive_phenopowerlaw_Cslip_66(:,:,i) = & math_Mandel3333to66(math_Voigt66to3333(constitutive_phenopowerlaw_Cslip_66(:,:,i))) do f = 1,lattice_maxNslipFamily ! >>> interaction slip -- X index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1,i)) do j = 1,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip) do o = 1,lattice_maxNslipFamily index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1,i)) do k = 1,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_phenopowerlaw_hardeningMatrix_slipslip(index_otherFamily+k,index_myFamily+j,i) = & constitutive_phenopowerlaw_interaction_slipslip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:o-1,myStructure))+k, & sum(lattice_NslipSystem(1:f-1,myStructure))+j, & myStructure), i ) enddo; enddo do o = 1,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1,i)) do k = 1,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_phenopowerlaw_hardeningMatrix_sliptwin(index_otherFamily+k,index_myFamily+j,i) = & constitutive_phenopowerlaw_interaction_sliptwin(lattice_interactionSlipTwin( & sum(lattice_NtwinSystem(1:o-1,myStructure))+k, & sum(lattice_NslipSystem(1:f-1,myStructure))+j, & myStructure), i ) enddo; enddo enddo; enddo do f = 1,lattice_maxNtwinFamily ! >>> interaction twin -- X index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1,i)) do j = 1,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin) do o = 1,lattice_maxNslipFamily index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1,i)) do k = 1,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_phenopowerlaw_hardeningMatrix_twinslip(index_otherFamily+k,index_myFamily+j,i) = & constitutive_phenopowerlaw_interaction_twinslip(lattice_interactionTwinSlip( & sum(lattice_NslipSystem(1:o-1,myStructure))+k, & sum(lattice_NtwinSystem(1:f-1,myStructure))+j, & myStructure), i ) enddo; enddo do o = 1,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1,i)) do k = 1,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_phenopowerlaw_hardeningMatrix_twintwin(index_otherFamily+k,index_myFamily+j,i) = & constitutive_phenopowerlaw_interaction_twintwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:o-1,myStructure))+k, & sum(lattice_NtwinSystem(1:f-1,myStructure))+j, & myStructure), i ) enddo; enddo enddo; enddo ! report to out file... enddo return endsubroutine function constitutive_phenopowerlaw_stateInit(myInstance) !********************************************************************* !* initial microstructural state * !********************************************************************* use prec, only: pReal,pInt use lattice, only: lattice_maxNslipFamily, lattice_maxNtwinFamily implicit none !* Definition of variables integer(pInt), intent(in) :: myInstance integer(pInt) i real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(myInstance)) :: constitutive_phenopowerlaw_stateInit constitutive_phenopowerlaw_stateInit = 0.0_pReal do i = 1,lattice_maxNslipFamily constitutive_phenopowerlaw_stateInit(1+& sum(constitutive_phenopowerlaw_Nslip(1:i-1,myInstance)) : & sum(constitutive_phenopowerlaw_Nslip(1:i ,myInstance))) = & constitutive_phenopowerlaw_tau0_slip(i,myInstance) enddo do i = 1,lattice_maxNtwinFamily constitutive_phenopowerlaw_stateInit(1+sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+& sum(constitutive_phenopowerlaw_Ntwin(1:i-1,myInstance)) : & sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+& sum(constitutive_phenopowerlaw_Ntwin(1:i ,myInstance))) = & constitutive_phenopowerlaw_tau0_twin(i,myInstance) enddo return endfunction !********************************************************************* !* absolute state tolerance * !********************************************************************* pure function constitutive_phenopowerlaw_aTolState(myInstance) use prec, only: pReal, & pInt implicit none !*** input variables integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the constitution !*** output variables real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: & constitutive_phenopowerlaw_aTolState ! relevant state values for the current instance of this constitution !*** local variables constitutive_phenopowerlaw_aTolState = constitutive_phenopowerlaw_aTolResistance(myInstance) endfunction function constitutive_phenopowerlaw_homogenizedC(state,ipc,ip,el) !********************************************************************* !* homogenized elacticity matrix * !* INPUT: * !* - state : state variables * !* - ipc : component-ID of current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance implicit none !* Definition of variables integer(pInt), intent(in) :: ipc,ip,el integer(pInt) matID real(pReal), dimension(6,6) :: constitutive_phenopowerlaw_homogenizedC type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state matID = phase_constitutionInstance(material_phase(ipc,ip,el)) constitutive_phenopowerlaw_homogenizedC = constitutive_phenopowerlaw_Cslip_66(:,:,matID) return endfunction subroutine constitutive_phenopowerlaw_microstructure(Temperature,state,ipc,ip,el) !********************************************************************* !* calculate derived quantities from state (not used here) * !* INPUT: * !* - Tp : temperature * !* - ipc : component-ID of current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance implicit none !* Definition of variables integer(pInt) ipc,ip,el, matID real(pReal) Temperature type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state matID = phase_constitutionInstance(material_phase(ipc,ip,el)) endsubroutine subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,ipc,ip,el) !********************************************************************* !* plastic velocity gradient and its tangent * !* INPUT: * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !* OUTPUT: * !* - Lp : plastic velocity gradient * !* - dLp_dTstar : derivative of Lp (4th-rank tensor) * !********************************************************************* use prec, only: pReal,pInt,p_vec use math, only: math_Plain3333to99 use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance implicit none !* Definition of variables integer(pInt) ipc,ip,el integer(pInt) matID,nSlip,nTwin,f,i,j,k,l,m,n, structID,index_Gamma,index_F,index_myFamily real(pReal) Temperature type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state real(pReal), dimension(6) :: Tstar_v real(pReal), dimension(3,3) :: Lp real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 real(pReal), dimension(9,9) :: dLp_dTstar real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: & gdot_slip,dgdot_dtauslip,tau_slip real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,dgdot_dtautwin,tau_twin matID = phase_constitutionInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1 index_F = nSlip + nTwin + 2 Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal dLp_dTstar = 0.0_pReal j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt !* Calculation of Lp tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID)) gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**& constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j)) Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F gdot_slip(j)*lattice_Sslip(1:3,1:3,index_myFamily+i,structID) !* Calculation of the tangent of Lp if (gdot_slip(j) /= 0.0_pReal) then dgdot_dtauslip(j) = gdot_slip(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip(j) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip(j)*lattice_Sslip(k,l,index_myFamily+i,structID)* & lattice_Sslip(m,n,index_myFamily+i,structID) endif enddo enddo j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt !* Calculation of Lp tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j))) Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,structID) !* Calculation of the tangent of Lp if (gdot_twin(j) /= 0.0_pReal) then dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(matID)/tau_twin(j) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtautwin(j)*lattice_Stwin(k,l,index_myFamily+i,structID)* & lattice_Stwin(m,n,index_myFamily+i,structID) endif enddo enddo dLp_dTstar = math_Plain3333to99(dLp_dTstar3333) return endsubroutine function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el) !********************************************************************* !* rate of change of microstructure * !* INPUT: * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !* OUTPUT: * !* - constitutive_dotState : evolution of state variable * !********************************************************************* use prec, only: pReal,pInt,p_vec use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance implicit none !* Definition of variables integer(pInt) ipc,ip,el integer(pInt) matID,nSlip,nTwin,f,i,j,k, structID,index_Gamma,index_F,index_myFamily real(pReal) Temperature,c_slipslip,c_sliptwin,c_twinslip,c_twintwin, ssat_offset type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state real(pReal), dimension(6) :: Tstar_v real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: & gdot_slip,tau_slip,h_slipslip,h_sliptwin real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,tau_twin,h_twinslip,h_twintwin real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: & constitutive_phenopowerlaw_dotState matID = phase_constitutionInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1 index_F = nSlip + nTwin + 2 constitutive_phenopowerlaw_dotState = 0.0_pReal !-- system-independent (nonlinear) prefactors to M_xx matrices c_slipslip = constitutive_phenopowerlaw_h0_slipslip(matID)*& (1.0_pReal + & constitutive_phenopowerlaw_twinC(matID)*state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinB(matID)) c_sliptwin = 0.0_pReal c_twinslip = constitutive_phenopowerlaw_h0_twinslip(matID)*& state(ipc,ip,el)%p(index_Gamma)**constitutive_phenopowerlaw_twinE(matID) c_twintwin = constitutive_phenopowerlaw_h0_twintwin(matID)*& state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinD(matID) !-- add system-dependent part and calculate dot gammas ssat_offset = constitutive_phenopowerlaw_spr(matID)*sqrt(state(ipc,ip,el)%p(index_F)) j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt h_slipslip(j) = c_slipslip*(1.0_pReal-state(ipc,ip,el)%p(j) / & ! system-dependent prefactor for slip--slip interaction (constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset))** & constitutive_phenopowerlaw_w0_slip(matID) h_sliptwin(j) = c_sliptwin ! no system-dependent part !* Calculation of dot gamma tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID)) gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**& constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j)) enddo enddo j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt h_twinslip(j) = c_twinslip ! no system-dependent parts h_twintwin(j) = c_twintwin !* Calculation of dot vol frac tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j))) enddo enddo !-- calculate the overall hardening based on above j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j h_slipslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_slipslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip h_sliptwin(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_sliptwin(1:nTwin,j,matID),gdot_twin) ! dot gamma_twin constitutive_phenopowerlaw_dotState(index_Gamma) = constitutive_phenopowerlaw_dotState(index_Gamma) + & abs(gdot_slip(j)) enddo enddo j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j h_twinslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_twinslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip h_twintwin(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_twintwin(1:nTwin,j,matID),gdot_twin) ! dot gamma_twin constitutive_phenopowerlaw_dotState(index_F) = constitutive_phenopowerlaw_dotState(index_F) + & gdot_twin(j)/lattice_shearTwin(index_myFamily+i,structID) enddo enddo return endfunction !**************************************************************** !* calculates the rate of change of temperature * !**************************************************************** pure function constitutive_phenopowerlaw_dotTemperature(Tstar_v,Temperature,state,ipc,ip,el) !*** variables and functions from other modules ***! use prec, only: pReal,pInt,p_vec use lattice, only: lattice_Sslip_v use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance implicit none !*** input variables ***! real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: Temperature integer(pInt), intent(in):: ipc, & ! grain number ip, & ! integration point number el ! element number type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state ! state of the current microstructure !*** output variables ***! real(pReal) constitutive_phenopowerlaw_dotTemperature ! rate of change of temparature ! calculate dotTemperature constitutive_phenopowerlaw_dotTemperature = 0.0_pReal return endfunction pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,state,ipc,ip,el) !********************************************************************* !* return array of constitutive results * !* INPUT: * !* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) * !* - dt : current time increment * !* - ipc : component-ID at current integration point * !* - ip : current integration point * !* - el : current element * !********************************************************************* use prec, only: pReal,pInt,p_vec use lattice, only: lattice_Sslip_v,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, & lattice_NslipSystem,lattice_NtwinSystem use mesh, only: mesh_NcpElems,mesh_maxNips use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance,phase_Noutput implicit none !* Definition of variables integer(pInt), intent(in) :: ipc,ip,el real(pReal), intent(in) :: dt,Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state integer(pInt) matID,o,f,i,c,nSlip,nTwin,j, structID,index_Gamma,index_F,index_myFamily real(pReal) tau real(pReal), dimension(constitutive_phenopowerlaw_sizePostResults(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: & constitutive_phenopowerlaw_postResults matID = phase_constitutionInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1 index_F = nSlip + nTwin + 2 constitutive_phenopowerlaw_postResults = 0.0_pReal c = 0_pInt do o = 1,phase_Noutput(material_phase(ipc,ip,el)) select case(constitutive_phenopowerlaw_output(o,matID)) case ('resistance_slip') constitutive_phenopowerlaw_postResults(c+1:c+nSlip) = state(ipc,ip,el)%p(1:nSlip) c = c + nSlip case ('shearrate_slip') j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,structID)) constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(matID)*& (abs(tau)/state(ipc,ip,el)%p(j))**& constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau) enddo; enddo c = c + nSlip case ('resolvedstress_slip') j = 0_pInt do f = 1,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID)) enddo; enddo c = c + nSlip case ('totalshear') constitutive_phenopowerlaw_postResults(c+1) = state(ipc,ip,el)%p(index_Gamma) c = c + 1 case ('resistance_twin') constitutive_phenopowerlaw_postResults(c+1:c+nTwin) = state(ipc,ip,el)%p(1+nSlip:nTwin+nSlip) c = c + nTwin case ('shearrate_twin') j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j + 1_pInt tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau)/state(ipc,ip,el)%p(j+nSlip))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau)) enddo; enddo c = c + nTwin case ('resolvedstress_twin') j = 0_pInt do f = 1,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j + 1_pInt constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) enddo; enddo c = c + nTwin case ('totalvolfrac') constitutive_phenopowerlaw_postResults(c+1) = state(ipc,ip,el)%p(index_F) c = c + 1 end select enddo return endfunction END MODULE