DAMASK_EICMD/src/phase_mechanical_eigen_ther...

116 lines
4.7 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from thermal expansion
!> @details to be done
!--------------------------------------------------------------------------------------------------
submodule(phase:eigen) thermalexpansion
integer, dimension(:), allocatable :: kinematics_thermal_expansion_instance
type :: tParameters
real(pReal) :: &
T_ref
real(pReal), dimension(3,3,3) :: &
A = 0.0_pReal
end type tParameters
type(tParameters), dimension(:), allocatable :: param
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
module function thermalexpansion_init(kinematics_length) result(myKinematics)
integer, intent(in) :: kinematics_length
logical, dimension(:,:), allocatable :: myKinematics
integer :: Ninstances,p,i,k
class(tNode), pointer :: &
phases, &
phase, &
mech, &
kinematics, &
kinematic_type
print'(/,1x,a)', '<<<+- phase:mechanical:eigen:thermalexpansion init -+>>>'
myKinematics = kinematics_active('thermalexpansion',kinematics_length)
Ninstances = count(myKinematics)
print'(/,a,i2)', ' # phases: ',Ninstances; flush(IO_STDOUT)
if (Ninstances == 0) return
phases => config_material%get('phase')
allocate(param(Ninstances))
allocate(kinematics_thermal_expansion_instance(phases%length), source=0)
do p = 1, phases%length
if (any(myKinematics(:,p))) kinematics_thermal_expansion_instance(p) = count(myKinematics(:,1:p))
phase => phases%get(p)
if (count(myKinematics(:,p)) == 0) cycle
mech => phase%get('mechanical')
kinematics => mech%get('eigen')
do k = 1, kinematics%length
if (myKinematics(k,p)) then
associate(prm => param(kinematics_thermal_expansion_instance(p)))
kinematic_type => kinematics%get(k)
prm%T_ref = kinematic_type%get_asFloat('T_ref', defaultVal=T_ROOM)
prm%A(1,1,1) = kinematic_type%get_asFloat('A_11')
prm%A(1,1,2) = kinematic_type%get_asFloat('A_11,T', defaultVal=0.0_pReal)
prm%A(1,1,3) = kinematic_type%get_asFloat('A_11,T^2',defaultVal=0.0_pReal)
if (any(phase_lattice(p) == ['hP','tI'])) then
prm%A(3,3,1) = kinematic_type%get_asFloat('A_33')
prm%A(3,3,2) = kinematic_type%get_asFloat('A_33,T', defaultVal=0.0_pReal)
prm%A(3,3,3) = kinematic_type%get_asFloat('A_33,T^2',defaultVal=0.0_pReal)
end if
do i=1, size(prm%A,3)
prm%A(1:3,1:3,i) = lattice_symmetrize_33(prm%A(1:3,1:3,i),phase_lattice(p))
end do
end associate
end if
end do
end do
end function thermalexpansion_init
!--------------------------------------------------------------------------------------------------
!> @brief constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
module subroutine thermalexpansion_LiAndItsTangent(Li, dLi_dTstar, ph,me)
integer, intent(in) :: ph, me
real(pReal), intent(out), dimension(3,3) :: &
Li !< thermal velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero)
real(pReal) :: T, dot_T
T = thermal_T(ph,me)
dot_T = thermal_dot_T(ph,me)
associate(prm => param(kinematics_thermal_expansion_instance(ph)))
Li = dot_T * ( &
prm%A(1:3,1:3,1) & ! constant coefficient
+ prm%A(1:3,1:3,2)*(T - prm%T_ref)**1 & ! linear coefficient
+ prm%A(1:3,1:3,3)*(T - prm%T_ref)**2 & ! quadratic coefficient
) / &
(1.0_pReal &
+ prm%A(1:3,1:3,1)*(T - prm%T_ref)**1 / 1.0_pReal &
+ prm%A(1:3,1:3,2)*(T - prm%T_ref)**2 / 2.0_pReal &
+ prm%A(1:3,1:3,3)*(T - prm%T_ref)**3 / 3.0_pReal &
)
end associate
dLi_dTstar = 0.0_pReal
end subroutine thermalexpansion_LiAndItsTangent
end submodule thermalexpansion