!-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incorporating kinematics resulting from thermal expansion !> @details to be done !-------------------------------------------------------------------------------------------------- submodule(phase:eigen) thermalexpansion integer, dimension(:), allocatable :: kinematics_thermal_expansion_instance type :: tParameters real(pReal) :: & T_ref real(pReal), dimension(3,3,3) :: & A = 0.0_pReal end type tParameters type(tParameters), dimension(:), allocatable :: param contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function thermalexpansion_init(kinematics_length) result(myKinematics) integer, intent(in) :: kinematics_length logical, dimension(:,:), allocatable :: myKinematics integer :: Ninstances,p,i,k class(tNode), pointer :: & phases, & phase, & mech, & kinematics, & kinematic_type print'(/,1x,a)', '<<<+- phase:mechanical:eigen:thermalexpansion init -+>>>' myKinematics = kinematics_active('thermalexpansion',kinematics_length) Ninstances = count(myKinematics) print'(/,a,i2)', ' # phases: ',Ninstances; flush(IO_STDOUT) if (Ninstances == 0) return phases => config_material%get('phase') allocate(param(Ninstances)) allocate(kinematics_thermal_expansion_instance(phases%length), source=0) do p = 1, phases%length if (any(myKinematics(:,p))) kinematics_thermal_expansion_instance(p) = count(myKinematics(:,1:p)) phase => phases%get(p) if (count(myKinematics(:,p)) == 0) cycle mech => phase%get('mechanical') kinematics => mech%get('eigen') do k = 1, kinematics%length if (myKinematics(k,p)) then associate(prm => param(kinematics_thermal_expansion_instance(p))) kinematic_type => kinematics%get(k) prm%T_ref = kinematic_type%get_asFloat('T_ref', defaultVal=T_ROOM) prm%A(1,1,1) = kinematic_type%get_asFloat('A_11') prm%A(1,1,2) = kinematic_type%get_asFloat('A_11,T', defaultVal=0.0_pReal) prm%A(1,1,3) = kinematic_type%get_asFloat('A_11,T^2',defaultVal=0.0_pReal) if (any(phase_lattice(p) == ['hP','tI'])) then prm%A(3,3,1) = kinematic_type%get_asFloat('A_33') prm%A(3,3,2) = kinematic_type%get_asFloat('A_33,T', defaultVal=0.0_pReal) prm%A(3,3,3) = kinematic_type%get_asFloat('A_33,T^2',defaultVal=0.0_pReal) end if do i=1, size(prm%A,3) prm%A(1:3,1:3,i) = lattice_symmetrize_33(prm%A(1:3,1:3,i),phase_lattice(p)) end do end associate end if end do end do end function thermalexpansion_init !-------------------------------------------------------------------------------------------------- !> @brief constitutive equation for calculating the velocity gradient !-------------------------------------------------------------------------------------------------- module subroutine thermalexpansion_LiAndItsTangent(Li, dLi_dTstar, ph,me) integer, intent(in) :: ph, me real(pReal), intent(out), dimension(3,3) :: & Li !< thermal velocity gradient real(pReal), intent(out), dimension(3,3,3,3) :: & dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero) real(pReal) :: T, dot_T T = thermal_T(ph,me) dot_T = thermal_dot_T(ph,me) associate(prm => param(kinematics_thermal_expansion_instance(ph))) Li = dot_T * ( & prm%A(1:3,1:3,1) & ! constant coefficient + prm%A(1:3,1:3,2)*(T - prm%T_ref)**1 & ! linear coefficient + prm%A(1:3,1:3,3)*(T - prm%T_ref)**2 & ! quadratic coefficient ) / & (1.0_pReal & + prm%A(1:3,1:3,1)*(T - prm%T_ref)**1 / 1.0_pReal & + prm%A(1:3,1:3,2)*(T - prm%T_ref)**2 / 2.0_pReal & + prm%A(1:3,1:3,3)*(T - prm%T_ref)**3 / 3.0_pReal & ) end associate dLi_dTstar = 0.0_pReal end subroutine thermalexpansion_LiAndItsTangent end submodule thermalexpansion