180 lines
5.6 KiB
Fortran
180 lines
5.6 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
!> @author Martin Diehl, KU Leuven
|
|
!> @brief Polynomial representation for variable data
|
|
!--------------------------------------------------------------------------------------------------
|
|
module polynomials
|
|
use prec
|
|
use IO
|
|
use YAML_parse
|
|
use YAML_types
|
|
|
|
implicit none
|
|
private
|
|
|
|
type, public :: tPolynomial
|
|
real(pReal), dimension(:), allocatable :: coef
|
|
real(pReal) :: x_ref
|
|
contains
|
|
procedure, public :: at => eval
|
|
procedure, public :: der1_at => eval_der1
|
|
end type tPolynomial
|
|
|
|
interface polynomial
|
|
module procedure polynomial_from_dict
|
|
module procedure polynomial_from_coef
|
|
end interface polynomial
|
|
|
|
public :: &
|
|
polynomial, &
|
|
polynomials_init
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Run self-test.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine polynomials_init()
|
|
|
|
print'(/,1x,a)', '<<<+- polynomials init -+>>>'; flush(IO_STDOUT)
|
|
|
|
call selfTest()
|
|
|
|
end subroutine polynomials_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Initialize a Polynomial from Coefficients.
|
|
!--------------------------------------------------------------------------------------------------
|
|
function polynomial_from_coef(coef,x_ref) result(p)
|
|
|
|
real(pReal), dimension(:), intent(in) :: coef
|
|
real(pReal), intent(in) :: x_ref
|
|
type(tPolynomial) :: p
|
|
|
|
|
|
allocate(p%coef(0:size(coef)-1),source=coef) ! should be zero based
|
|
p%x_ref = x_ref
|
|
|
|
end function polynomial_from_coef
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Initialize a Polynomial from a Dictionary with Coefficients.
|
|
!--------------------------------------------------------------------------------------------------
|
|
function polynomial_from_dict(dict,y,x) result(p)
|
|
|
|
type(tDict), intent(in) :: dict
|
|
character(len=*), intent(in) :: y, x
|
|
type(tPolynomial) :: p
|
|
|
|
real(pReal), dimension(:), allocatable :: coef
|
|
real(pReal) :: x_ref
|
|
|
|
|
|
allocate(coef(1),source=dict%get_asFloat(y))
|
|
|
|
if (dict%contains(y//','//x)) then
|
|
x_ref = dict%get_asFloat(x//'_ref')
|
|
coef = [coef,dict%get_asFloat(y//','//x)]
|
|
if (dict%contains(y//','//x//'^2')) then
|
|
coef = [coef,dict%get_asFloat(y//','//x//'^2')]
|
|
end if
|
|
else
|
|
x_ref = huge(0.0_pReal) ! Simplify debugging
|
|
end if
|
|
|
|
p = Polynomial(coef,x_ref)
|
|
|
|
end function polynomial_from_dict
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Evaluate a Polynomial.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function eval(self,x) result(y)
|
|
|
|
class(tPolynomial), intent(in) :: self
|
|
real(pReal), intent(in) :: x
|
|
real(pReal) :: y
|
|
|
|
integer :: i
|
|
|
|
|
|
y = self%coef(0)
|
|
do i = 1, ubound(self%coef,1)
|
|
y = y + self%coef(i) * (x-self%x_ref)**i
|
|
enddo
|
|
|
|
end function eval
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Evaluate a first derivative of Polynomial.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function eval_der1(self,x) result(y)
|
|
|
|
class(tPolynomial), intent(in) :: self
|
|
real(pReal), intent(in) :: x
|
|
real(pReal) :: y
|
|
|
|
integer :: i
|
|
|
|
|
|
y = 0.0_pReal
|
|
do i = 1, ubound(self%coef,1)
|
|
y = y + real(i,pReal)*self%coef(i) * (x-self%x_ref)**(i-1)
|
|
enddo
|
|
|
|
end function eval_der1
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Check correctness of polynomical functionality.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine selfTest
|
|
|
|
type(tPolynomial) :: p1, p2
|
|
real(pReal), dimension(3) :: coef
|
|
real(pReal) :: x_ref, x
|
|
class(tNode), pointer :: dict
|
|
character(len=pStringLen), dimension(3) :: coef_s
|
|
character(len=pStringLen) :: x_ref_s, x_s, YAML_s
|
|
|
|
call random_number(coef)
|
|
call random_number(x_ref)
|
|
call random_number(x)
|
|
|
|
coef = coef*10_pReal -0.5_pReal
|
|
x_ref = x_ref*10_pReal -0.5_pReal
|
|
x = x*10_pReal -0.5_pReal
|
|
|
|
p1 = polynomial(coef,x_ref)
|
|
if (dNeq(p1%at(x_ref),coef(1))) error stop 'polynomial: @ref'
|
|
|
|
write(coef_s(1),*) coef(1)
|
|
write(coef_s(2),*) coef(2)
|
|
write(coef_s(3),*) coef(3)
|
|
write(x_ref_s,*) x_ref
|
|
write(x_s,*) x
|
|
YAML_s = 'C: '//trim(adjustl(coef_s(1)))//IO_EOL//&
|
|
'C,T: '//trim(adjustl(coef_s(2)))//IO_EOL//&
|
|
'C,T^2: '//trim(adjustl(coef_s(3)))//IO_EOL//&
|
|
'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL
|
|
Dict => YAML_parse_str(trim(YAML_s))
|
|
p2 = polynomial(dict%asDict(),'C','T')
|
|
if (dNeq(p1%at(x),p2%at(x),1.0e-10_pReal)) error stop 'polynomials: init'
|
|
|
|
p1 = polynomial(coef*[0.0_pReal,1.0_pReal,0.0_pReal],x_ref)
|
|
if (dNeq(p1%at(x_ref+x),-p1%at(x_ref-x),1.0e-10_pReal)) error stop 'polynomials: eval(odd)'
|
|
if (dNeq(p1%der1_at(x),p1%der1_at(5.0_pReal*x),1.0e-10_pReal)) error stop 'polynomials: eval_der(odd)'
|
|
|
|
p1 = polynomial(coef*[0.0_pReal,0.0_pReal,1.0_pReal],x_ref)
|
|
if (dNeq(p1%at(x_ref+x),p1%at(x_ref-x),1e-10_pReal)) error stop 'polynomials: eval(even)'
|
|
if (dNeq(p1%der1_at(x_ref+x),-p1%der1_at(x_ref-x),1e-10_pReal)) error stop 'polynomials: eval_der(even)'
|
|
|
|
|
|
end subroutine selfTest
|
|
|
|
end module polynomials
|