!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, KU Leuven !> @brief Polynomial representation for variable data !-------------------------------------------------------------------------------------------------- module polynomials use prec use IO use YAML_parse use YAML_types implicit none private type, public :: tPolynomial real(pReal), dimension(:), allocatable :: coef real(pReal) :: x_ref contains procedure, public :: at => eval procedure, public :: der1_at => eval_der1 end type tPolynomial interface polynomial module procedure polynomial_from_dict module procedure polynomial_from_coef end interface polynomial public :: & polynomial, & polynomials_init contains !-------------------------------------------------------------------------------------------------- !> @brief Run self-test. !-------------------------------------------------------------------------------------------------- subroutine polynomials_init() print'(/,1x,a)', '<<<+- polynomials init -+>>>'; flush(IO_STDOUT) call selfTest() end subroutine polynomials_init !-------------------------------------------------------------------------------------------------- !> @brief Initialize a Polynomial from Coefficients. !-------------------------------------------------------------------------------------------------- function polynomial_from_coef(coef,x_ref) result(p) real(pReal), dimension(:), intent(in) :: coef real(pReal), intent(in) :: x_ref type(tPolynomial) :: p allocate(p%coef(0:size(coef)-1),source=coef) ! should be zero based p%x_ref = x_ref end function polynomial_from_coef !-------------------------------------------------------------------------------------------------- !> @brief Initialize a Polynomial from a Dictionary with Coefficients. !-------------------------------------------------------------------------------------------------- function polynomial_from_dict(dict,y,x) result(p) type(tDict), intent(in) :: dict character(len=*), intent(in) :: y, x type(tPolynomial) :: p real(pReal), dimension(:), allocatable :: coef real(pReal) :: x_ref allocate(coef(1),source=dict%get_asFloat(y)) if (dict%contains(y//','//x)) then x_ref = dict%get_asFloat(x//'_ref') coef = [coef,dict%get_asFloat(y//','//x)] if (dict%contains(y//','//x//'^2')) then coef = [coef,dict%get_asFloat(y//','//x//'^2')] end if else x_ref = huge(0.0_pReal) ! Simplify debugging end if p = Polynomial(coef,x_ref) end function polynomial_from_dict !-------------------------------------------------------------------------------------------------- !> @brief Evaluate a Polynomial. !-------------------------------------------------------------------------------------------------- pure function eval(self,x) result(y) class(tPolynomial), intent(in) :: self real(pReal), intent(in) :: x real(pReal) :: y integer :: i y = self%coef(0) do i = 1, ubound(self%coef,1) y = y + self%coef(i) * (x-self%x_ref)**i enddo end function eval !-------------------------------------------------------------------------------------------------- !> @brief Evaluate a first derivative of Polynomial. !-------------------------------------------------------------------------------------------------- pure function eval_der1(self,x) result(y) class(tPolynomial), intent(in) :: self real(pReal), intent(in) :: x real(pReal) :: y integer :: i y = 0.0_pReal do i = 1, ubound(self%coef,1) y = y + real(i,pReal)*self%coef(i) * (x-self%x_ref)**(i-1) enddo end function eval_der1 !-------------------------------------------------------------------------------------------------- !> @brief Check correctness of polynomical functionality. !-------------------------------------------------------------------------------------------------- subroutine selfTest type(tPolynomial) :: p1, p2 real(pReal), dimension(3) :: coef real(pReal) :: x_ref, x class(tNode), pointer :: dict character(len=pStringLen), dimension(3) :: coef_s character(len=pStringLen) :: x_ref_s, x_s, YAML_s call random_number(coef) call random_number(x_ref) call random_number(x) coef = coef*10_pReal -0.5_pReal x_ref = x_ref*10_pReal -0.5_pReal x = x*10_pReal -0.5_pReal p1 = polynomial(coef,x_ref) if (dNeq(p1%at(x_ref),coef(1))) error stop 'polynomial: @ref' write(coef_s(1),*) coef(1) write(coef_s(2),*) coef(2) write(coef_s(3),*) coef(3) write(x_ref_s,*) x_ref write(x_s,*) x YAML_s = 'C: '//trim(adjustl(coef_s(1)))//IO_EOL//& 'C,T: '//trim(adjustl(coef_s(2)))//IO_EOL//& 'C,T^2: '//trim(adjustl(coef_s(3)))//IO_EOL//& 'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL Dict => YAML_parse_str(trim(YAML_s)) p2 = polynomial(dict%asDict(),'C','T') if (dNeq(p1%at(x),p2%at(x),1.0e-10_pReal)) error stop 'polynomials: init' p1 = polynomial(coef*[0.0_pReal,1.0_pReal,0.0_pReal],x_ref) if (dNeq(p1%at(x_ref+x),-p1%at(x_ref-x),1.0e-10_pReal)) error stop 'polynomials: eval(odd)' if (dNeq(p1%der1_at(x),p1%der1_at(5.0_pReal*x),1.0e-10_pReal)) error stop 'polynomials: eval_der(odd)' p1 = polynomial(coef*[0.0_pReal,0.0_pReal,1.0_pReal],x_ref) if (dNeq(p1%at(x_ref+x),p1%at(x_ref-x),1e-10_pReal)) error stop 'polynomials: eval(even)' if (dNeq(p1%der1_at(x_ref+x),-p1%der1_at(x_ref-x),1e-10_pReal)) error stop 'polynomials: eval_der(even)' end subroutine selfTest end module polynomials