122 lines
4.7 KiB
Python
Executable File
122 lines
4.7 KiB
Python
Executable File
#!/usr/bin/env python2.7
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,sys,math
|
|
import numpy as np
|
|
from optparse import OptionParser
|
|
import damask
|
|
|
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|
scriptID = ' '.join([scriptName,damask.version])
|
|
|
|
def derivative(coordinates,what):
|
|
|
|
result = np.empty_like(what)
|
|
|
|
# use differentiation by interpolation
|
|
# as described in http://www2.math.umd.edu/~dlevy/classes/amsc466/lecture-notes/differentiation-chap.pdf
|
|
|
|
result[1:-1,:] = + what[1:-1,:] * (2.*coordinates[1:-1]-coordinates[:-2]-coordinates[2:]) / \
|
|
((coordinates[1:-1]-coordinates[:-2])*(coordinates[1:-1]-coordinates[2:])) \
|
|
+ what[2:,:] * (coordinates[1:-1]-coordinates[:-2]) / \
|
|
((coordinates[2:]-coordinates[1:-1])*(coordinates[2:]-coordinates[:-2])) \
|
|
+ what[:-2,:] * (coordinates[1:-1]-coordinates[2:]) / \
|
|
((coordinates[:-2]-coordinates[1:-1])*(coordinates[:-2]-coordinates[2:])) \
|
|
|
|
result[0,:] = (what[0,:] - what[1,:]) / \
|
|
(coordinates[0] - coordinates[1])
|
|
result[-1,:] = (what[-1,:] - what[-2,:]) / \
|
|
(coordinates[-1] - coordinates[-2])
|
|
|
|
return result
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Add column(s) containing numerical derivative of requested column(s) with respect to given coordinates.
|
|
|
|
""", version = scriptID)
|
|
|
|
parser.add_option('-c','--coordinates',
|
|
dest = 'coordinates',
|
|
type = 'string', metavar='string',
|
|
help = 'heading of coordinate column')
|
|
parser.add_option('-l','--label',
|
|
dest = 'label',
|
|
action = 'extend', metavar = '<string LIST>',
|
|
help = 'heading of column(s) to differentiate')
|
|
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
if options.coordinates is None:
|
|
parser.error('no coordinate column specified.')
|
|
if options.label is None:
|
|
parser.error('no data column specified.')
|
|
|
|
# --- loop over input files -------------------------------------------------------------------------
|
|
|
|
if filenames == []: filenames = [None]
|
|
|
|
for name in filenames:
|
|
try: table = damask.ASCIItable(name = name,
|
|
buffered = False)
|
|
except: continue
|
|
damask.util.report(scriptName,name)
|
|
|
|
# ------------------------------------------ read header ------------------------------------------
|
|
|
|
table.head_read()
|
|
|
|
# ------------------------------------------ sanity checks ----------------------------------------
|
|
|
|
errors = []
|
|
remarks = []
|
|
columns = []
|
|
dims = []
|
|
|
|
if table.label_dimension(options.coordinates) != 1:
|
|
errors.append('coordinate column {} is not scalar.'.format(options.coordinates))
|
|
|
|
for what in options.label:
|
|
dim = table.label_dimension(what)
|
|
if dim < 0: remarks.append('column {} not found...'.format(what))
|
|
else:
|
|
dims.append(dim)
|
|
columns.append(table.label_index(what))
|
|
table.labels_append('d({})/d({})'.format(what,options.coordinates) if dim == 1 else
|
|
['{}_d({})/d({})'.format(i+1,what,options.coordinates) for i in range(dim)] ) # extend ASCII heade table.labels_append('norm{}({})'.format(options.norm.capitalize(),what)) # extend ASCII header with new labels
|
|
|
|
if remarks != []: damask.util.croak(remarks)
|
|
if errors != []:
|
|
damask.util.croak(errors)
|
|
table.close(dismiss = True)
|
|
continue
|
|
|
|
# ------------------------------------------ assemble header --------------------------------------
|
|
|
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
|
table.head_write()
|
|
|
|
# ------------------------------------------ process data ------------------------------------------
|
|
|
|
table.data_readArray()
|
|
|
|
mask = []
|
|
for col,dim in zip(columns,dims): mask += range(col,col+dim) # isolate data columns to differentiate
|
|
|
|
differentiated = derivative(table.data[:,table.label_index(options.coordinates)].reshape((len(table.data),1)),
|
|
table.data[:,mask]) # calculate numerical derivative
|
|
|
|
table.data = np.hstack((table.data,differentiated))
|
|
|
|
# ------------------------------------------ output result -----------------------------------------
|
|
|
|
table.data_writeArray()
|
|
|
|
# ------------------------------------------ output finalization -----------------------------------
|
|
|
|
table.close() # close ASCII tables
|