#!/usr/bin/env python2.7 # -*- coding: UTF-8 no BOM -*- import os,sys,math import numpy as np from optparse import OptionParser import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) def derivative(coordinates,what): result = np.empty_like(what) # use differentiation by interpolation # as described in http://www2.math.umd.edu/~dlevy/classes/amsc466/lecture-notes/differentiation-chap.pdf result[1:-1,:] = + what[1:-1,:] * (2.*coordinates[1:-1]-coordinates[:-2]-coordinates[2:]) / \ ((coordinates[1:-1]-coordinates[:-2])*(coordinates[1:-1]-coordinates[2:])) \ + what[2:,:] * (coordinates[1:-1]-coordinates[:-2]) / \ ((coordinates[2:]-coordinates[1:-1])*(coordinates[2:]-coordinates[:-2])) \ + what[:-2,:] * (coordinates[1:-1]-coordinates[2:]) / \ ((coordinates[:-2]-coordinates[1:-1])*(coordinates[:-2]-coordinates[2:])) \ result[0,:] = (what[0,:] - what[1,:]) / \ (coordinates[0] - coordinates[1]) result[-1,:] = (what[-1,:] - what[-2,:]) / \ (coordinates[-1] - coordinates[-2]) return result # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Add column(s) containing numerical derivative of requested column(s) with respect to given coordinates. """, version = scriptID) parser.add_option('-c','--coordinates', dest = 'coordinates', type = 'string', metavar='string', help = 'heading of coordinate column') parser.add_option('-l','--label', dest = 'label', action = 'extend', metavar = '', help = 'heading of column(s) to differentiate') (options,filenames) = parser.parse_args() if options.coordinates is None: parser.error('no coordinate column specified.') if options.label is None: parser.error('no data column specified.') # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name, buffered = False) except: continue damask.util.report(scriptName,name) # ------------------------------------------ read header ------------------------------------------ table.head_read() # ------------------------------------------ sanity checks ---------------------------------------- errors = [] remarks = [] columns = [] dims = [] if table.label_dimension(options.coordinates) != 1: errors.append('coordinate column {} is not scalar.'.format(options.coordinates)) for what in options.label: dim = table.label_dimension(what) if dim < 0: remarks.append('column {} not found...'.format(what)) else: dims.append(dim) columns.append(table.label_index(what)) table.labels_append('d({})/d({})'.format(what,options.coordinates) if dim == 1 else ['{}_d({})/d({})'.format(i+1,what,options.coordinates) for i in range(dim)] ) # extend ASCII heade table.labels_append('norm{}({})'.format(options.norm.capitalize(),what)) # extend ASCII header with new labels if remarks != []: damask.util.croak(remarks) if errors != []: damask.util.croak(errors) table.close(dismiss = True) continue # ------------------------------------------ assemble header -------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.head_write() # ------------------------------------------ process data ------------------------------------------ table.data_readArray() mask = [] for col,dim in zip(columns,dims): mask += range(col,col+dim) # isolate data columns to differentiate differentiated = derivative(table.data[:,table.label_index(options.coordinates)].reshape((len(table.data),1)), table.data[:,mask]) # calculate numerical derivative table.data = np.hstack((table.data,differentiated)) # ------------------------------------------ output result ----------------------------------------- table.data_writeArray() # ------------------------------------------ output finalization ----------------------------------- table.close() # close ASCII tables