344 lines
15 KiB
Python
Executable File
344 lines
15 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,re,sys,math,string
|
|
import numpy as np
|
|
import multiprocessing
|
|
from optparse import OptionParser
|
|
import damask
|
|
|
|
scriptID = string.replace('$Id$','\n','\\n')
|
|
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
|
|
|
|
|
def meshgrid2(*arrs):
|
|
'''
|
|
code inspired by http://stackoverflow.com/questions/1827489/numpy-meshgrid-in-3d
|
|
'''
|
|
arrs = tuple(reversed(arrs))
|
|
arrs = tuple(arrs)
|
|
lens = np.array(map(len, arrs))
|
|
dim = len(arrs)
|
|
ans = []
|
|
for i, arr in enumerate(arrs):
|
|
slc = np.ones(dim,'i')
|
|
slc[i] = lens[i]
|
|
arr2 = np.asarray(arr).reshape(slc)
|
|
for j, sz in enumerate(lens):
|
|
if j != i:
|
|
arr2 = arr2.repeat(sz, axis=j)
|
|
|
|
ans.insert(0,arr2)
|
|
return tuple(ans)
|
|
|
|
def findClosestSeed(fargs):
|
|
point, seeds, weightssquared = fargs
|
|
tmp = np.repeat(point.reshape(3,1), len(seeds), axis=1).T
|
|
dist = np.sum((tmp - seeds)*(tmp - seeds),axis=1) - weightssquared
|
|
return np.argmin(dist) # seed point closest to point
|
|
|
|
|
|
def laguerreTessellation(undeformed, coords, weights, grains, nonperiodic = False, cpus = 2):
|
|
|
|
copies = \
|
|
np.array([
|
|
[ 0, 0, 0 ],
|
|
]).astype(float) if nonperiodic else \
|
|
np.array([
|
|
[ -1,-1,-1 ],
|
|
[ 0,-1,-1 ],
|
|
[ 1,-1,-1 ],
|
|
[ -1, 0,-1 ],
|
|
[ 0, 0,-1 ],
|
|
[ 1, 0,-1 ],
|
|
[ -1, 1,-1 ],
|
|
[ 0, 1,-1 ],
|
|
[ 1, 1,-1 ],
|
|
[ -1,-1, 0 ],
|
|
[ 0,-1, 0 ],
|
|
[ 1,-1, 0 ],
|
|
[ -1, 0, 0 ],
|
|
[ 0, 0, 0 ],
|
|
[ 1, 0, 0 ],
|
|
[ -1, 1, 0 ],
|
|
[ 0, 1, 0 ],
|
|
[ 1, 1, 0 ],
|
|
[ -1,-1, 1 ],
|
|
[ 0,-1, 1 ],
|
|
[ 1,-1, 1 ],
|
|
[ -1, 0, 1 ],
|
|
[ 0, 0, 1 ],
|
|
[ 1, 0, 1 ],
|
|
[ -1, 1, 1 ],
|
|
[ 0, 1, 1 ],
|
|
[ 1, 1, 1 ],
|
|
]).astype(float)
|
|
|
|
squaredweights = np.power(np.tile(weights,len(copies)),2) # Laguerre weights (squared, size N*n)
|
|
|
|
for i,vec in enumerate(copies): # periodic copies of seed points (size N*n)
|
|
seeds = np.append(seeds, coords+vec, axis=0) if i > 0 else coords+vec
|
|
|
|
arguments = [[arg] + [seeds,squaredweights] for arg in list(undeformed)]
|
|
|
|
# Initialize workers
|
|
pool = multiprocessing.Pool(processes = cpus)
|
|
|
|
# Evaluate function
|
|
result = pool.map_async(findClosestSeed, arguments)
|
|
pool.close()
|
|
pool.join()
|
|
|
|
closestSeeds = np.array(result.get()).flatten()
|
|
|
|
return grains[closestSeeds%coords.shape[0]] # closestSeed is modulo number of original seed points (i.e. excluding periodic copies)
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Generate geometry description and material configuration by standard Voronoi tessellation of given seeds file.
|
|
|
|
""", version = scriptID)
|
|
|
|
parser.add_option('-g', '--grid',
|
|
dest = 'grid',
|
|
type = 'int', nargs = 3, metavar = ' '.join(['int']*3),
|
|
help = 'a,b,c grid of hexahedral box [from seeds file]')
|
|
parser.add_option('-s', '--size',
|
|
dest = 'size',
|
|
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
|
|
help = 'x,y,z size of hexahedral box [from seeds file or 1.0 along largest grid point number]')
|
|
parser.add_option('-o', '--origin',
|
|
dest = 'origin',
|
|
type = 'float', nargs = 3, metavar=' '.join(['float']*3),
|
|
help = 'offset from old to new origin of grid')
|
|
parser.add_option('-p', '--position',
|
|
dest = 'position',
|
|
type = 'string', metavar = 'string',
|
|
help = 'column label for seed positions [%default]')
|
|
parser.add_option('-w', '--weight',
|
|
dest = 'weight',
|
|
type = 'string', metavar = 'string',
|
|
help = 'column label for seed weights [%default]')
|
|
parser.add_option('-m', '--microstructure',
|
|
dest = 'microstructure',
|
|
type = 'string', metavar = 'string',
|
|
help = 'column label for seed microstructures [%default]')
|
|
parser.add_option('-e', '--eulers',
|
|
dest = 'eulers',
|
|
type = 'string', metavar = 'string',
|
|
help = 'column label for seed Euler angles [%default]')
|
|
parser.add_option('--axes',
|
|
dest = 'axes',
|
|
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
|
|
help = 'orientation coordinate frame in terms of position coordinate frame [same]')
|
|
parser.add_option('--homogenization',
|
|
dest = 'homogenization',
|
|
type = 'int', metavar = 'int',
|
|
help = 'homogenization index to be used [%default]')
|
|
parser.add_option('--crystallite',
|
|
dest = 'crystallite',
|
|
type = 'int', metavar = 'int',
|
|
help = 'crystallite index to be used [%default]')
|
|
parser.add_option('--phase',
|
|
dest = 'phase',
|
|
type = 'int', metavar = 'int',
|
|
help = 'phase index to be used [%default]')
|
|
parser.add_option('-r', '--rnd',
|
|
dest = 'randomSeed',
|
|
type = 'int', metavar='int',
|
|
help = 'seed of random number generator for second phase distribution [%default]')
|
|
parser.add_option('--secondphase',
|
|
dest = 'secondphase',
|
|
type = 'float', metavar= 'float',
|
|
help = 'volume fraction of randomly distribute second phase [%default]')
|
|
parser.add_option('-l', '--laguerre',
|
|
dest = 'laguerre',
|
|
action = 'store_true',
|
|
help = 'use Laguerre (weighted Voronoi) tessellation [%default]')
|
|
parser.add_option('--cpus',
|
|
dest = 'cpus',
|
|
type = 'int', metavar = 'int',
|
|
help = 'number of parallel processes to use for Laguerre tessellation [%default]')
|
|
parser.add_option('--nonperiodic',
|
|
dest = 'nonperiodic',
|
|
action = 'store_true',
|
|
help = 'use nonperiodic tessellation [%default]')
|
|
|
|
parser.set_defaults(grid = None,
|
|
size = None,
|
|
origin = None,
|
|
position = 'pos',
|
|
weight = 'weight',
|
|
microstructure = 'microstructure',
|
|
eulers = 'Euler',
|
|
homogenization = 1,
|
|
crystallite = 1,
|
|
phase = 1,
|
|
secondphase = 0.0,
|
|
cpus = 2,
|
|
laguerre = False,
|
|
nonperiodic = False,
|
|
randomSeed = None,
|
|
)
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
if options.secondphase > 1.0 or options.secondphase < 0.0:
|
|
parser.error('volume fraction of second phase ({}) out of bounds.'.format(options.secondphase))
|
|
|
|
# --- loop over input files -------------------------------------------------------------------------
|
|
|
|
if filenames == []: filenames = ['STDIN']
|
|
|
|
for name in filenames:
|
|
if not (name == 'STDIN' or os.path.exists(name)): continue
|
|
table = damask.ASCIItable(name = name,
|
|
outname = os.path.splitext(name)[0]+'.geom',
|
|
buffered = False)
|
|
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
|
|
|
|
# --- read header ----------------------------------------------------------------------------
|
|
|
|
table.head_read()
|
|
info,extra_header = table.head_getGeom()
|
|
|
|
if options.grid != None: info['grid'] = options.grid
|
|
if options.size != None: info['size'] = options.size
|
|
if options.origin != None: info['origin'] = options.origin
|
|
|
|
# ------------------------------------------ sanity checks ---------------------------------------
|
|
|
|
remarks = []
|
|
errors = []
|
|
labels = []
|
|
|
|
hasGrains = table.label_dimension(options.microstructure) == 1
|
|
hasEulers = table.label_dimension(options.eulers) == 3
|
|
hasWeights = table.label_dimension(options.weight) == 1
|
|
|
|
if np.any(info['grid'] < 1): errors.append('invalid grid a b c.')
|
|
if np.any(info['size'] <= 0.0) \
|
|
and np.all(info['grid'] < 1): errors.append('invalid size x y z.')
|
|
else:
|
|
for i in xrange(3):
|
|
if info['size'][i] <= 0.0: # any invalid size?
|
|
info['size'][i] = float(info['grid'][i])/max(info['grid']) # normalize to grid
|
|
remarks.append('rescaling size {} to {}...'.format({0:'x',1:'y',2:'z'}[i],info['size'][i]))
|
|
|
|
if table.label_dimension(options.position) != 3:
|
|
errors.append('position columns "{}" have dimension {}.'.format(options.position,
|
|
table.label_dimension(options.position)))
|
|
else:
|
|
labels += [options.position]
|
|
|
|
if not hasEulers: remarks.append('missing seed orientations...')
|
|
else: labels += [options.eulers]
|
|
if not hasGrains: remarks.append('missing seed microstructure indices...')
|
|
else: labels += [options.microstructure]
|
|
if options.laguerre and not hasWeights: remarks.append('missing seed weights...')
|
|
else: labels += [options.weight]
|
|
|
|
if remarks != []: table.croak(remarks)
|
|
if errors != []:
|
|
table.croak(errors)
|
|
table.close(dismiss=True)
|
|
continue
|
|
|
|
# ------------------------------------------ read seeds ---------------------------------------
|
|
|
|
table.data_readArray(labels)
|
|
coords = table.data[:,table.label_index(options.position):table.label_index(options.position)+3]
|
|
eulers = table.data[:,table.label_index(options.eulers ):table.label_index(options.eulers )+3] if hasEulers else np.zeros(3*len(coords))
|
|
grains = table.data[:,table.label_index(options.microstructure)].astype('i') if hasGrains else 1+np.arange(len(coords))
|
|
weights = table.data[:,table.label_index(options.weight)] if hasWeights else np.zeros(len(coords))
|
|
grainIDs = np.unique(grains).astype('i')
|
|
NgrainIDs = len(grainIDs)
|
|
|
|
# --- tessellate microstructure ------------------------------------------------------------
|
|
|
|
x = (np.arange(info['grid'][0])+0.5)*info['size'][0]/info['grid'][0]
|
|
y = (np.arange(info['grid'][1])+0.5)*info['size'][1]/info['grid'][1]
|
|
z = (np.arange(info['grid'][2])+0.5)*info['size'][2]/info['grid'][2]
|
|
|
|
table.croak('tessellating...')
|
|
|
|
if options.laguerre:
|
|
table.croak('...using {} cpu{}'.format(options.cpus, 's' if options.cpus > 1 else ''))
|
|
undeformed = np.vstack(np.meshgrid(x, y, z)).reshape(3,-1).T
|
|
indices = laguerreTessellation(undeformed, coords, weights, grains, options.nonperiodic, options.cpus)
|
|
else:
|
|
coords = (coords*info['size']).T
|
|
undeformed = np.vstack(map(np.ravel, meshgrid2(x, y, z)))
|
|
|
|
indices = damask.core.math.periodicNearestNeighbor(\
|
|
info['size'],\
|
|
np.eye(3),\
|
|
undeformed,coords)//3**3 + 1 # floor division to kill periodic images
|
|
indices = grains[indices-1]
|
|
|
|
# --- write header ---------------------------------------------------------------------------------
|
|
|
|
grainIDs = np.intersect1d(grainIDs,indices)
|
|
info['microstructures'] = len(grainIDs)
|
|
|
|
if info['homogenization'] == 0: info['homogenization'] = options.homogenization
|
|
|
|
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
|
|
'size x y z: %s'%(' x '.join(map(str,info['size']))),
|
|
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
|
|
'homogenization: %i'%info['homogenization'],
|
|
'microstructures: %i%s'%(info['microstructures'],
|
|
(' out of %i'%NgrainIDs if NgrainIDs != info['microstructures'] else '')),
|
|
])
|
|
|
|
config_header = []
|
|
formatwidth = 1+int(math.log10(info['microstructures']))
|
|
|
|
phase = options.phase * np.ones(info['microstructures'],'i')
|
|
if int(options.secondphase*info['microstructures']) > 0:
|
|
phase[0:int(options.secondphase*info['microstructures'])] += 1
|
|
randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None \
|
|
else options.randomSeed # random seed for second phase
|
|
np.random.seed(randomSeed)
|
|
np.random.shuffle(phase)
|
|
config_header += ['# random seed (phase shuffling): {}'.format(randomSeed)]
|
|
|
|
config_header += ['<microstructure>']
|
|
for i,ID in enumerate(grainIDs):
|
|
config_header += ['[Grain%s]'%(str(ID).zfill(formatwidth)),
|
|
'crystallite %i'%options.crystallite,
|
|
'(constituent)\tphase %i\ttexture %s\tfraction 1.0'%(phase[i],str(ID).rjust(formatwidth)),
|
|
]
|
|
if hasEulers:
|
|
config_header += ['<texture>']
|
|
for ID in grainIDs:
|
|
eulerID = np.nonzero(grains == ID)[0][0] # find first occurrence of this grain id
|
|
config_header += ['[Grain%s]'%(str(ID).zfill(formatwidth)),
|
|
'axes\t%s %s %s'%tuple(options.axes) if options.axes != None else '',
|
|
'(gauss)\tphi1 %g\tPhi %g\tphi2 %g\tscatter 0.0\tfraction 1.0'%tuple(eulers[eulerID]),
|
|
]
|
|
|
|
table.labels_clear()
|
|
table.info_clear()
|
|
table.info_append([
|
|
scriptID + ' ' + ' '.join(sys.argv[1:]),
|
|
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
|
|
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
|
|
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
|
|
"homogenization\t{homog}".format(homog=info['homogenization']),
|
|
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
|
|
config_header,
|
|
])
|
|
table.head_write()
|
|
|
|
# --- write microstructure information ------------------------------------------------------------
|
|
|
|
table.data = indices.reshape(info['grid'][1]*info['grid'][2],info['grid'][0])
|
|
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
|
|
|
|
#--- output finalization --------------------------------------------------------------------------
|
|
|
|
table.close()
|