#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,re,sys,math,string import numpy as np import multiprocessing from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] def meshgrid2(*arrs): ''' code inspired by http://stackoverflow.com/questions/1827489/numpy-meshgrid-in-3d ''' arrs = tuple(reversed(arrs)) arrs = tuple(arrs) lens = np.array(map(len, arrs)) dim = len(arrs) ans = [] for i, arr in enumerate(arrs): slc = np.ones(dim,'i') slc[i] = lens[i] arr2 = np.asarray(arr).reshape(slc) for j, sz in enumerate(lens): if j != i: arr2 = arr2.repeat(sz, axis=j) ans.insert(0,arr2) return tuple(ans) def findClosestSeed(fargs): point, seeds, weightssquared = fargs tmp = np.repeat(point.reshape(3,1), len(seeds), axis=1).T dist = np.sum((tmp - seeds)*(tmp - seeds),axis=1) - weightssquared return np.argmin(dist) # seed point closest to point def laguerreTessellation(undeformed, coords, weights, grains, nonperiodic = False, cpus = 2): copies = \ np.array([ [ 0, 0, 0 ], ]).astype(float) if nonperiodic else \ np.array([ [ -1,-1,-1 ], [ 0,-1,-1 ], [ 1,-1,-1 ], [ -1, 0,-1 ], [ 0, 0,-1 ], [ 1, 0,-1 ], [ -1, 1,-1 ], [ 0, 1,-1 ], [ 1, 1,-1 ], [ -1,-1, 0 ], [ 0,-1, 0 ], [ 1,-1, 0 ], [ -1, 0, 0 ], [ 0, 0, 0 ], [ 1, 0, 0 ], [ -1, 1, 0 ], [ 0, 1, 0 ], [ 1, 1, 0 ], [ -1,-1, 1 ], [ 0,-1, 1 ], [ 1,-1, 1 ], [ -1, 0, 1 ], [ 0, 0, 1 ], [ 1, 0, 1 ], [ -1, 1, 1 ], [ 0, 1, 1 ], [ 1, 1, 1 ], ]).astype(float) squaredweights = np.power(np.tile(weights,len(copies)),2) # Laguerre weights (squared, size N*n) for i,vec in enumerate(copies): # periodic copies of seed points (size N*n) seeds = np.append(seeds, coords+vec, axis=0) if i > 0 else coords+vec arguments = [[arg] + [seeds,squaredweights] for arg in list(undeformed)] # Initialize workers pool = multiprocessing.Pool(processes = cpus) # Evaluate function result = pool.map_async(findClosestSeed, arguments) pool.close() pool.join() closestSeeds = np.array(result.get()).flatten() return grains[closestSeeds%coords.shape[0]] # closestSeed is modulo number of original seed points (i.e. excluding periodic copies) # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Generate geometry description and material configuration by standard Voronoi tessellation of given seeds file. """, version = scriptID) parser.add_option('-g', '--grid', dest = 'grid', type = 'int', nargs = 3, metavar = ' '.join(['int']*3), help = 'a,b,c grid of hexahedral box [from seeds file]') parser.add_option('-s', '--size', dest = 'size', type = 'float', nargs = 3, metavar=' '.join(['float']*3), help = 'x,y,z size of hexahedral box [from seeds file or 1.0 along largest grid point number]') parser.add_option('-o', '--origin', dest = 'origin', type = 'float', nargs = 3, metavar=' '.join(['float']*3), help = 'offset from old to new origin of grid') parser.add_option('-p', '--position', dest = 'position', type = 'string', metavar = 'string', help = 'column label for seed positions [%default]') parser.add_option('-w', '--weight', dest = 'weight', type = 'string', metavar = 'string', help = 'column label for seed weights [%default]') parser.add_option('-m', '--microstructure', dest = 'microstructure', type = 'string', metavar = 'string', help = 'column label for seed microstructures [%default]') parser.add_option('-e', '--eulers', dest = 'eulers', type = 'string', metavar = 'string', help = 'column label for seed Euler angles [%default]') parser.add_option('--axes', dest = 'axes', type = 'string', nargs = 3, metavar = ' '.join(['string']*3), help = 'orientation coordinate frame in terms of position coordinate frame [same]') parser.add_option('--homogenization', dest = 'homogenization', type = 'int', metavar = 'int', help = 'homogenization index to be used [%default]') parser.add_option('--crystallite', dest = 'crystallite', type = 'int', metavar = 'int', help = 'crystallite index to be used [%default]') parser.add_option('--phase', dest = 'phase', type = 'int', metavar = 'int', help = 'phase index to be used [%default]') parser.add_option('-r', '--rnd', dest = 'randomSeed', type = 'int', metavar='int', help = 'seed of random number generator for second phase distribution [%default]') parser.add_option('--secondphase', dest = 'secondphase', type = 'float', metavar= 'float', help = 'volume fraction of randomly distribute second phase [%default]') parser.add_option('-l', '--laguerre', dest = 'laguerre', action = 'store_true', help = 'use Laguerre (weighted Voronoi) tessellation [%default]') parser.add_option('--cpus', dest = 'cpus', type = 'int', metavar = 'int', help = 'number of parallel processes to use for Laguerre tessellation [%default]') parser.add_option('--nonperiodic', dest = 'nonperiodic', action = 'store_true', help = 'use nonperiodic tessellation [%default]') parser.set_defaults(grid = None, size = None, origin = None, position = 'pos', weight = 'weight', microstructure = 'microstructure', eulers = 'Euler', homogenization = 1, crystallite = 1, phase = 1, secondphase = 0.0, cpus = 2, laguerre = False, nonperiodic = False, randomSeed = None, ) (options,filenames) = parser.parse_args() if options.secondphase > 1.0 or options.secondphase < 0.0: parser.error('volume fraction of second phase ({}) out of bounds.'.format(options.secondphase)) # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = ['STDIN'] for name in filenames: if not (name == 'STDIN' or os.path.exists(name)): continue table = damask.ASCIItable(name = name, outname = os.path.splitext(name)[0]+'.geom', buffered = False) table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else '')) # --- read header ---------------------------------------------------------------------------- table.head_read() info,extra_header = table.head_getGeom() if options.grid != None: info['grid'] = options.grid if options.size != None: info['size'] = options.size if options.origin != None: info['origin'] = options.origin # ------------------------------------------ sanity checks --------------------------------------- remarks = [] errors = [] labels = [] hasGrains = table.label_dimension(options.microstructure) == 1 hasEulers = table.label_dimension(options.eulers) == 3 hasWeights = table.label_dimension(options.weight) == 1 if np.any(info['grid'] < 1): errors.append('invalid grid a b c.') if np.any(info['size'] <= 0.0) \ and np.all(info['grid'] < 1): errors.append('invalid size x y z.') else: for i in xrange(3): if info['size'][i] <= 0.0: # any invalid size? info['size'][i] = float(info['grid'][i])/max(info['grid']) # normalize to grid remarks.append('rescaling size {} to {}...'.format({0:'x',1:'y',2:'z'}[i],info['size'][i])) if table.label_dimension(options.position) != 3: errors.append('position columns "{}" have dimension {}.'.format(options.position, table.label_dimension(options.position))) else: labels += [options.position] if not hasEulers: remarks.append('missing seed orientations...') else: labels += [options.eulers] if not hasGrains: remarks.append('missing seed microstructure indices...') else: labels += [options.microstructure] if options.laguerre and not hasWeights: remarks.append('missing seed weights...') else: labels += [options.weight] if remarks != []: table.croak(remarks) if errors != []: table.croak(errors) table.close(dismiss=True) continue # ------------------------------------------ read seeds --------------------------------------- table.data_readArray(labels) coords = table.data[:,table.label_index(options.position):table.label_index(options.position)+3] eulers = table.data[:,table.label_index(options.eulers ):table.label_index(options.eulers )+3] if hasEulers else np.zeros(3*len(coords)) grains = table.data[:,table.label_index(options.microstructure)].astype('i') if hasGrains else 1+np.arange(len(coords)) weights = table.data[:,table.label_index(options.weight)] if hasWeights else np.zeros(len(coords)) grainIDs = np.unique(grains).astype('i') NgrainIDs = len(grainIDs) # --- tessellate microstructure ------------------------------------------------------------ x = (np.arange(info['grid'][0])+0.5)*info['size'][0]/info['grid'][0] y = (np.arange(info['grid'][1])+0.5)*info['size'][1]/info['grid'][1] z = (np.arange(info['grid'][2])+0.5)*info['size'][2]/info['grid'][2] table.croak('tessellating...') if options.laguerre: table.croak('...using {} cpu{}'.format(options.cpus, 's' if options.cpus > 1 else '')) undeformed = np.vstack(np.meshgrid(x, y, z)).reshape(3,-1).T indices = laguerreTessellation(undeformed, coords, weights, grains, options.nonperiodic, options.cpus) else: coords = (coords*info['size']).T undeformed = np.vstack(map(np.ravel, meshgrid2(x, y, z))) indices = damask.core.math.periodicNearestNeighbor(\ info['size'],\ np.eye(3),\ undeformed,coords)//3**3 + 1 # floor division to kill periodic images indices = grains[indices-1] # --- write header --------------------------------------------------------------------------------- grainIDs = np.intersect1d(grainIDs,indices) info['microstructures'] = len(grainIDs) if info['homogenization'] == 0: info['homogenization'] = options.homogenization table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))), 'size x y z: %s'%(' x '.join(map(str,info['size']))), 'origin x y z: %s'%(' : '.join(map(str,info['origin']))), 'homogenization: %i'%info['homogenization'], 'microstructures: %i%s'%(info['microstructures'], (' out of %i'%NgrainIDs if NgrainIDs != info['microstructures'] else '')), ]) config_header = [] formatwidth = 1+int(math.log10(info['microstructures'])) phase = options.phase * np.ones(info['microstructures'],'i') if int(options.secondphase*info['microstructures']) > 0: phase[0:int(options.secondphase*info['microstructures'])] += 1 randomSeed = int(os.urandom(4).encode('hex'), 16) if options.randomSeed == None \ else options.randomSeed # random seed for second phase np.random.seed(randomSeed) np.random.shuffle(phase) config_header += ['# random seed (phase shuffling): {}'.format(randomSeed)] config_header += [''] for i,ID in enumerate(grainIDs): config_header += ['[Grain%s]'%(str(ID).zfill(formatwidth)), 'crystallite %i'%options.crystallite, '(constituent)\tphase %i\ttexture %s\tfraction 1.0'%(phase[i],str(ID).rjust(formatwidth)), ] if hasEulers: config_header += [''] for ID in grainIDs: eulerID = np.nonzero(grains == ID)[0][0] # find first occurrence of this grain id config_header += ['[Grain%s]'%(str(ID).zfill(formatwidth)), 'axes\t%s %s %s'%tuple(options.axes) if options.axes != None else '', '(gauss)\tphi1 %g\tPhi %g\tphi2 %g\tscatter 0.0\tfraction 1.0'%tuple(eulers[eulerID]), ] table.labels_clear() table.info_clear() table.info_append([ scriptID + ' ' + ' '.join(sys.argv[1:]), "grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']), "size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']), "origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']), "homogenization\t{homog}".format(homog=info['homogenization']), "microstructures\t{microstructures}".format(microstructures=info['microstructures']), config_header, ]) table.head_write() # --- write microstructure information ------------------------------------------------------------ table.data = indices.reshape(info['grid'][1]*info['grid'][2],info['grid'][0]) table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ') #--- output finalization -------------------------------------------------------------------------- table.close()