546 lines
25 KiB
Fortran
546 lines
25 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief phenomenological crystal plasticity formulation using a powerlaw fitting
|
|
!--------------------------------------------------------------------------------------------------
|
|
submodule(constitutive:constitutive_plastic) plastic_phenopowerlaw
|
|
|
|
type :: tParameters
|
|
real(pReal) :: &
|
|
dot_gamma_0_sl = 1.0_pReal, & !< reference shear strain rate for slip
|
|
dot_gamma_0_tw = 1.0_pReal, & !< reference shear strain rate for twin
|
|
n_sl = 1.0_pReal, & !< stress exponent for slip
|
|
n_tw = 1.0_pReal, & !< stress exponent for twin
|
|
f_sl_sat_tw = 1.0_pReal, & !< push-up factor for slip saturation due to twinning
|
|
c_1 = 1.0_pReal, &
|
|
c_2 = 1.0_pReal, &
|
|
c_3 = 1.0_pReal, &
|
|
c_4 = 1.0_pReal, &
|
|
h_0_sl_sl = 1.0_pReal, & !< reference hardening slip - slip
|
|
h_0_tw_sl = 1.0_pReal, & !< reference hardening twin - slip
|
|
h_0_tw_tw = 1.0_pReal, & !< reference hardening twin - twin
|
|
a_sl = 1.0_pReal
|
|
real(pReal), allocatable, dimension(:) :: &
|
|
xi_inf_sl, & !< maximum critical shear stress for slip
|
|
h_int, & !< per family hardening activity (optional)
|
|
gamma_tw_char !< characteristic shear for twins
|
|
real(pReal), allocatable, dimension(:,:) :: &
|
|
h_sl_sl, & !< slip resistance from slip activity
|
|
h_sl_tw, & !< slip resistance from twin activity
|
|
h_tw_sl, & !< twin resistance from slip activity
|
|
h_tw_tw !< twin resistance from twin activity
|
|
real(pReal), allocatable, dimension(:,:,:) :: &
|
|
P_sl, &
|
|
P_tw, &
|
|
nonSchmid_pos, &
|
|
nonSchmid_neg
|
|
integer :: &
|
|
sum_N_sl, & !< total number of active slip system
|
|
sum_N_tw !< total number of active twin systems
|
|
logical :: &
|
|
nonSchmidActive = .false.
|
|
character(len=pStringLen), allocatable, dimension(:) :: &
|
|
output
|
|
end type tParameters
|
|
|
|
type :: tPhenopowerlawState
|
|
real(pReal), pointer, dimension(:,:) :: &
|
|
xi_slip, &
|
|
xi_twin, &
|
|
gamma_slip, &
|
|
gamma_twin
|
|
end type tPhenopowerlawState
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! containers for parameters and state
|
|
type(tParameters), allocatable, dimension(:) :: param
|
|
type(tPhenopowerlawState), allocatable, dimension(:) :: &
|
|
dotState, &
|
|
state
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Perform module initialization.
|
|
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
|
!--------------------------------------------------------------------------------------------------
|
|
module function plastic_phenopowerlaw_init() result(myPlasticity)
|
|
|
|
logical, dimension(:), allocatable :: myPlasticity
|
|
integer :: &
|
|
Ninstance, &
|
|
p, i, &
|
|
NipcMyPhase, &
|
|
sizeState, sizeDotState, &
|
|
startIndex, endIndex
|
|
integer, dimension(:), allocatable :: &
|
|
N_sl, N_tw
|
|
real(pReal), dimension(:), allocatable :: &
|
|
xi_0_sl, & !< initial critical shear stress for slip
|
|
xi_0_tw, & !< initial critical shear stress for twin
|
|
a !< non-Schmid coefficients
|
|
character(len=pStringLen) :: &
|
|
extmsg = ''
|
|
class(tNode), pointer :: &
|
|
phases, &
|
|
phase, &
|
|
pl
|
|
|
|
print'(/,a)', ' <<<+- plastic_phenopowerlaw init -+>>>'
|
|
|
|
myPlasticity = plastic_active('phenopowerlaw')
|
|
Ninstance = count(myPlasticity)
|
|
print'(a,i2)', ' # instances: ',Ninstance; flush(6)
|
|
if(Ninstance == 0) return
|
|
|
|
allocate(param(Ninstance))
|
|
allocate(state(Ninstance))
|
|
allocate(dotState(Ninstance))
|
|
|
|
phases => config_material%get('phase')
|
|
i = 0
|
|
do p = 1, phases%length
|
|
phase => phases%get(p)
|
|
|
|
if(.not. myPlasticity(p)) cycle
|
|
i = i + 1
|
|
associate(prm => param(i), &
|
|
dot => dotState(i), &
|
|
stt => state(i))
|
|
pl => phase%get('plasticity')
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! slip related parameters
|
|
N_sl = pl%get_asInts('N_sl',defaultVal=emptyIntArray)
|
|
prm%sum_N_sl = sum(abs(N_sl))
|
|
slipActive: if (prm%sum_N_sl > 0) then
|
|
prm%P_sl = lattice_SchmidMatrix_slip(N_sl,phase%get_asString('lattice'),&
|
|
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
|
|
|
|
if(phase%get_asString('lattice') == 'bcc') then
|
|
a = pl%get_asFloats('nonSchmid_coefficients',defaultVal=emptyRealArray)
|
|
if(size(a) > 0) prm%nonSchmidActive = .true.
|
|
prm%nonSchmid_pos = lattice_nonSchmidMatrix(N_sl,a,+1)
|
|
prm%nonSchmid_neg = lattice_nonSchmidMatrix(N_sl,a,-1)
|
|
else
|
|
prm%nonSchmid_pos = prm%P_sl
|
|
prm%nonSchmid_neg = prm%P_sl
|
|
endif
|
|
prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl, &
|
|
pl%get_asFloats('h_sl_sl'), &
|
|
phase%get_asString('lattice'))
|
|
|
|
xi_0_sl = pl%get_asFloats('xi_0_sl', requiredSize=size(N_sl))
|
|
prm%xi_inf_sl = pl%get_asFloats('xi_inf_sl', requiredSize=size(N_sl))
|
|
prm%h_int = pl%get_asFloats('h_int', requiredSize=size(N_sl), &
|
|
defaultVal=[(0.0_pReal,i=1,size(N_sl))])
|
|
|
|
prm%dot_gamma_0_sl = pl%get_asFloat('dot_gamma_0_sl')
|
|
prm%n_sl = pl%get_asFloat('n_sl')
|
|
prm%a_sl = pl%get_asFloat('a_sl')
|
|
prm%h_0_sl_sl = pl%get_asFloat('h_0_sl_sl')
|
|
|
|
! expand: family => system
|
|
xi_0_sl = math_expand(xi_0_sl, N_sl)
|
|
prm%xi_inf_sl = math_expand(prm%xi_inf_sl,N_sl)
|
|
prm%h_int = math_expand(prm%h_int, N_sl)
|
|
|
|
! sanity checks
|
|
if ( prm%dot_gamma_0_sl <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_sl'
|
|
if ( prm%a_sl <= 0.0_pReal) extmsg = trim(extmsg)//' a_sl'
|
|
if ( prm%n_sl <= 0.0_pReal) extmsg = trim(extmsg)//' n_sl'
|
|
if (any(xi_0_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_0_sl'
|
|
if (any(prm%xi_inf_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_sl'
|
|
|
|
else slipActive
|
|
xi_0_sl = emptyRealArray
|
|
allocate(prm%xi_inf_sl,prm%h_int,source=emptyRealArray)
|
|
allocate(prm%h_sl_sl(0,0))
|
|
endif slipActive
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! twin related parameters
|
|
N_tw = pl%get_asInts('N_tw', defaultVal=emptyIntArray)
|
|
prm%sum_N_tw = sum(abs(N_tw))
|
|
twinActive: if (prm%sum_N_tw > 0) then
|
|
prm%P_tw = lattice_SchmidMatrix_twin(N_tw,phase%get_asString('lattice'),&
|
|
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
|
|
prm%h_tw_tw = lattice_interaction_TwinByTwin(N_tw,&
|
|
pl%get_asFloats('h_tw_tw'), &
|
|
phase%get_asString('lattice'))
|
|
prm%gamma_tw_char = lattice_characteristicShear_twin(N_tw,phase%get_asString('lattice'),&
|
|
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
|
|
|
|
xi_0_tw = pl%get_asFloats('xi_0_tw',requiredSize=size(N_tw))
|
|
|
|
prm%c_1 = pl%get_asFloat('c_1',defaultVal=0.0_pReal)
|
|
prm%c_2 = pl%get_asFloat('c_2',defaultVal=1.0_pReal)
|
|
prm%c_3 = pl%get_asFloat('c_3',defaultVal=0.0_pReal)
|
|
prm%c_4 = pl%get_asFloat('c_4',defaultVal=0.0_pReal)
|
|
prm%dot_gamma_0_tw = pl%get_asFloat('dot_gamma_0_tw')
|
|
prm%n_tw = pl%get_asFloat('n_tw')
|
|
prm%f_sl_sat_tw = pl%get_asFloat('f_sl_sat_tw')
|
|
prm%h_0_tw_tw = pl%get_asFloat('h_0_tw_tw')
|
|
|
|
! expand: family => system
|
|
xi_0_tw = math_expand(xi_0_tw,N_tw)
|
|
|
|
! sanity checks
|
|
if (prm%dot_gamma_0_tw <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_tw'
|
|
if (prm%n_tw <= 0.0_pReal) extmsg = trim(extmsg)//' n_tw'
|
|
|
|
else twinActive
|
|
xi_0_tw = emptyRealArray
|
|
allocate(prm%gamma_tw_char,source=emptyRealArray)
|
|
allocate(prm%h_tw_tw(0,0))
|
|
endif twinActive
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! slip-twin related parameters
|
|
slipAndTwinActive: if (prm%sum_N_sl > 0 .and. prm%sum_N_tw > 0) then
|
|
prm%h_0_tw_sl = pl%get_asFloat('h_0_tw_sl')
|
|
prm%h_sl_tw = lattice_interaction_SlipByTwin(N_sl,N_tw,&
|
|
pl%get_asFloats('h_sl_tw'), &
|
|
phase%get_asString('lattice'))
|
|
prm%h_tw_sl = lattice_interaction_TwinBySlip(N_tw,N_sl,&
|
|
pl%get_asFloats('h_tw_sl'), &
|
|
phase%get_asString('lattice'))
|
|
else slipAndTwinActive
|
|
allocate(prm%h_sl_tw(prm%sum_N_sl,prm%sum_N_tw)) ! at least one dimension is 0
|
|
allocate(prm%h_tw_sl(prm%sum_N_tw,prm%sum_N_sl)) ! at least one dimension is 0
|
|
prm%h_0_tw_sl = 0.0_pReal
|
|
endif slipAndTwinActive
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! output pararameters
|
|
|
|
#if defined (__GFORTRAN__)
|
|
prm%output = output_asStrings(pl)
|
|
#else
|
|
prm%output = pl%get_asStrings('output',defaultVal=emptyStringArray)
|
|
#endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocate state arrays
|
|
NipcMyPhase = count(material_phaseAt == p) * discretization_nIP
|
|
sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl &
|
|
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw
|
|
sizeState = sizeDotState
|
|
|
|
|
|
call constitutive_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! state aliases and initialization
|
|
startIndex = 1
|
|
endIndex = prm%sum_N_sl
|
|
stt%xi_slip => plasticState(p)%state (startIndex:endIndex,:)
|
|
stt%xi_slip = spread(xi_0_sl, 2, NipcMyPhase)
|
|
dot%xi_slip => plasticState(p)%dotState(startIndex:endIndex,:)
|
|
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
|
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
|
|
|
|
startIndex = endIndex + 1
|
|
endIndex = endIndex + prm%sum_N_tw
|
|
stt%xi_twin => plasticState(p)%state (startIndex:endIndex,:)
|
|
stt%xi_twin = spread(xi_0_tw, 2, NipcMyPhase)
|
|
dot%xi_twin => plasticState(p)%dotState(startIndex:endIndex,:)
|
|
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
|
|
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
|
|
|
|
startIndex = endIndex + 1
|
|
endIndex = endIndex + prm%sum_N_sl
|
|
stt%gamma_slip => plasticState(p)%state (startIndex:endIndex,:)
|
|
dot%gamma_slip => plasticState(p)%dotState(startIndex:endIndex,:)
|
|
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
|
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_gamma'
|
|
! global alias
|
|
plasticState(p)%slipRate => plasticState(p)%dotState(startIndex:endIndex,:)
|
|
|
|
startIndex = endIndex + 1
|
|
endIndex = endIndex + prm%sum_N_tw
|
|
stt%gamma_twin => plasticState(p)%state (startIndex:endIndex,:)
|
|
dot%gamma_twin => plasticState(p)%dotState(startIndex:endIndex,:)
|
|
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
|
|
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_gamma'
|
|
|
|
plasticState(p)%state0 = plasticState(p)%state ! ToDo: this could be done centrally
|
|
|
|
end associate
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! exit if any parameter is out of range
|
|
if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(phenopowerlaw)')
|
|
|
|
enddo
|
|
|
|
end function plastic_phenopowerlaw_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate plastic velocity gradient and its tangent.
|
|
!> @details asummes that deformation by dislocation glide affects twinned and untwinned volume
|
|
! equally (Taylor assumption). Twinning happens only in untwinned volume
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure module subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,instance,of)
|
|
|
|
real(pReal), dimension(3,3), intent(out) :: &
|
|
Lp !< plastic velocity gradient
|
|
real(pReal), dimension(3,3,3,3), intent(out) :: &
|
|
dLp_dMp !< derivative of Lp with respect to the Mandel stress
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: &
|
|
Mp !< Mandel stress
|
|
integer, intent(in) :: &
|
|
instance, &
|
|
of
|
|
|
|
integer :: &
|
|
i,k,l,m,n
|
|
real(pReal), dimension(param(instance)%sum_N_sl) :: &
|
|
gdot_slip_pos,gdot_slip_neg, &
|
|
dgdot_dtauslip_pos,dgdot_dtauslip_neg
|
|
real(pReal), dimension(param(instance)%sum_N_tw) :: &
|
|
gdot_twin,dgdot_dtautwin
|
|
|
|
Lp = 0.0_pReal
|
|
dLp_dMp = 0.0_pReal
|
|
|
|
associate(prm => param(instance))
|
|
|
|
call kinetics_slip(Mp,instance,of,gdot_slip_pos,gdot_slip_neg,dgdot_dtauslip_pos,dgdot_dtauslip_neg)
|
|
slipSystems: do i = 1, prm%sum_N_sl
|
|
Lp = Lp + (gdot_slip_pos(i)+gdot_slip_neg(i))*prm%P_sl(1:3,1:3,i)
|
|
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
|
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
|
+ dgdot_dtauslip_pos(i) * prm%P_sl(k,l,i) * prm%nonSchmid_pos(m,n,i) &
|
|
+ dgdot_dtauslip_neg(i) * prm%P_sl(k,l,i) * prm%nonSchmid_neg(m,n,i)
|
|
enddo slipSystems
|
|
|
|
call kinetics_twin(Mp,instance,of,gdot_twin,dgdot_dtautwin)
|
|
twinSystems: do i = 1, prm%sum_N_tw
|
|
Lp = Lp + gdot_twin(i)*prm%P_tw(1:3,1:3,i)
|
|
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
|
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
|
|
+ dgdot_dtautwin(i)*prm%P_tw(k,l,i)*prm%P_tw(m,n,i)
|
|
enddo twinSystems
|
|
|
|
end associate
|
|
|
|
end subroutine plastic_phenopowerlaw_LpAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate the rate of change of microstructure.
|
|
!--------------------------------------------------------------------------------------------------
|
|
module subroutine plastic_phenopowerlaw_dotState(Mp,instance,of)
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: &
|
|
Mp !< Mandel stress
|
|
integer, intent(in) :: &
|
|
instance, &
|
|
of
|
|
|
|
real(pReal) :: &
|
|
c_SlipSlip,c_TwinSlip,c_TwinTwin, &
|
|
xi_slip_sat_offset,&
|
|
sumGamma,sumF
|
|
real(pReal), dimension(param(instance)%sum_N_sl) :: &
|
|
left_SlipSlip,right_SlipSlip, &
|
|
gdot_slip_pos,gdot_slip_neg
|
|
|
|
associate(prm => param(instance), stt => state(instance), dot => dotState(instance))
|
|
|
|
sumGamma = sum(stt%gamma_slip(:,of))
|
|
sumF = sum(stt%gamma_twin(:,of)/prm%gamma_tw_char)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
|
|
c_SlipSlip = prm%h_0_sl_sl * (1.0_pReal + prm%c_1*sumF** prm%c_2)
|
|
c_TwinSlip = prm%h_0_tw_sl * sumGamma**prm%c_3
|
|
c_TwinTwin = prm%h_0_tw_tw * sumF**prm%c_4
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate left and right vectors
|
|
left_SlipSlip = 1.0_pReal + prm%h_int
|
|
xi_slip_sat_offset = prm%f_sl_sat_tw*sqrt(sumF)
|
|
right_SlipSlip = abs(1.0_pReal-stt%xi_slip(:,of) / (prm%xi_inf_sl+xi_slip_sat_offset)) **prm%a_sl &
|
|
* sign(1.0_pReal,1.0_pReal-stt%xi_slip(:,of) / (prm%xi_inf_sl+xi_slip_sat_offset))
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! shear rates
|
|
call kinetics_slip(Mp,instance,of,gdot_slip_pos,gdot_slip_neg)
|
|
dot%gamma_slip(:,of) = abs(gdot_slip_pos+gdot_slip_neg)
|
|
call kinetics_twin(Mp,instance,of,dot%gamma_twin(:,of))
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! hardening
|
|
dot%xi_slip(:,of) = c_SlipSlip * left_SlipSlip * &
|
|
matmul(prm%h_sl_sl,dot%gamma_slip(:,of)*right_SlipSlip) &
|
|
+ matmul(prm%h_sl_tw,dot%gamma_twin(:,of))
|
|
|
|
dot%xi_twin(:,of) = c_TwinSlip * matmul(prm%h_tw_sl,dot%gamma_slip(:,of)) &
|
|
+ c_TwinTwin * matmul(prm%h_tw_tw,dot%gamma_twin(:,of))
|
|
end associate
|
|
|
|
end subroutine plastic_phenopowerlaw_dotState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Write results to HDF5 output file.
|
|
!--------------------------------------------------------------------------------------------------
|
|
module subroutine plastic_phenopowerlaw_results(instance,group)
|
|
|
|
integer, intent(in) :: instance
|
|
character(len=*), intent(in) :: group
|
|
|
|
integer :: o
|
|
|
|
associate(prm => param(instance), stt => state(instance))
|
|
outputsLoop: do o = 1,size(prm%output)
|
|
select case(trim(prm%output(o)))
|
|
|
|
case('xi_sl')
|
|
if(prm%sum_N_sl>0) call results_writeDataset(group,stt%xi_slip, trim(prm%output(o)), &
|
|
'resistance against plastic slip','Pa')
|
|
case('gamma_sl')
|
|
if(prm%sum_N_sl>0) call results_writeDataset(group,stt%gamma_slip,trim(prm%output(o)), &
|
|
'plastic shear','1')
|
|
|
|
case('xi_tw')
|
|
if(prm%sum_N_tw>0) call results_writeDataset(group,stt%xi_twin, trim(prm%output(o)), &
|
|
'resistance against twinning','Pa')
|
|
case('gamma_tw')
|
|
if(prm%sum_N_tw>0) call results_writeDataset(group,stt%gamma_twin,trim(prm%output(o)), &
|
|
'twinning shear','1')
|
|
|
|
end select
|
|
enddo outputsLoop
|
|
end associate
|
|
|
|
end subroutine plastic_phenopowerlaw_results
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate shear rates on slip systems and their derivatives with respect to resolved
|
|
! stress.
|
|
!> @details Derivatives are calculated only optionally.
|
|
! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to
|
|
! have the optional arguments at the end.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure subroutine kinetics_slip(Mp,instance,of, &
|
|
gdot_slip_pos,gdot_slip_neg,dgdot_dtau_slip_pos,dgdot_dtau_slip_neg)
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: &
|
|
Mp !< Mandel stress
|
|
integer, intent(in) :: &
|
|
instance, &
|
|
of
|
|
|
|
real(pReal), intent(out), dimension(param(instance)%sum_N_sl) :: &
|
|
gdot_slip_pos, &
|
|
gdot_slip_neg
|
|
real(pReal), intent(out), optional, dimension(param(instance)%sum_N_sl) :: &
|
|
dgdot_dtau_slip_pos, &
|
|
dgdot_dtau_slip_neg
|
|
|
|
real(pReal), dimension(param(instance)%sum_N_sl) :: &
|
|
tau_slip_pos, &
|
|
tau_slip_neg
|
|
integer :: i
|
|
|
|
associate(prm => param(instance), stt => state(instance))
|
|
|
|
do i = 1, prm%sum_N_sl
|
|
tau_slip_pos(i) = math_tensordot(Mp,prm%nonSchmid_pos(1:3,1:3,i))
|
|
tau_slip_neg(i) = merge(math_tensordot(Mp,prm%nonSchmid_neg(1:3,1:3,i)), &
|
|
0.0_pReal, prm%nonSchmidActive)
|
|
enddo
|
|
|
|
where(dNeq0(tau_slip_pos))
|
|
gdot_slip_pos = prm%dot_gamma_0_sl * merge(0.5_pReal,1.0_pReal, prm%nonSchmidActive) & ! 1/2 if non-Schmid active
|
|
* sign(abs(tau_slip_pos/stt%xi_slip(:,of))**prm%n_sl, tau_slip_pos)
|
|
else where
|
|
gdot_slip_pos = 0.0_pReal
|
|
end where
|
|
|
|
where(dNeq0(tau_slip_neg))
|
|
gdot_slip_neg = prm%dot_gamma_0_sl * 0.5_pReal & ! only used if non-Schmid active, always 1/2
|
|
* sign(abs(tau_slip_neg/stt%xi_slip(:,of))**prm%n_sl, tau_slip_neg)
|
|
else where
|
|
gdot_slip_neg = 0.0_pReal
|
|
end where
|
|
|
|
if (present(dgdot_dtau_slip_pos)) then
|
|
where(dNeq0(gdot_slip_pos))
|
|
dgdot_dtau_slip_pos = gdot_slip_pos*prm%n_sl/tau_slip_pos
|
|
else where
|
|
dgdot_dtau_slip_pos = 0.0_pReal
|
|
end where
|
|
endif
|
|
if (present(dgdot_dtau_slip_neg)) then
|
|
where(dNeq0(gdot_slip_neg))
|
|
dgdot_dtau_slip_neg = gdot_slip_neg*prm%n_sl/tau_slip_neg
|
|
else where
|
|
dgdot_dtau_slip_neg = 0.0_pReal
|
|
end where
|
|
endif
|
|
end associate
|
|
|
|
end subroutine kinetics_slip
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate shear rates on twin systems and their derivatives with respect to resolved
|
|
! stress. Twinning is assumed to take place only in untwinned volume.
|
|
!> @details Derivatives are calculated only optionally.
|
|
! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to
|
|
! have the optional arguments at the end.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure subroutine kinetics_twin(Mp,instance,of,&
|
|
gdot_twin,dgdot_dtau_twin)
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: &
|
|
Mp !< Mandel stress
|
|
integer, intent(in) :: &
|
|
instance, &
|
|
of
|
|
|
|
real(pReal), dimension(param(instance)%sum_N_tw), intent(out) :: &
|
|
gdot_twin
|
|
real(pReal), dimension(param(instance)%sum_N_tw), intent(out), optional :: &
|
|
dgdot_dtau_twin
|
|
|
|
real(pReal), dimension(param(instance)%sum_N_tw) :: &
|
|
tau_twin
|
|
integer :: i
|
|
|
|
associate(prm => param(instance), stt => state(instance))
|
|
|
|
do i = 1, prm%sum_N_tw
|
|
tau_twin(i) = math_tensordot(Mp,prm%P_tw(1:3,1:3,i))
|
|
enddo
|
|
|
|
where(tau_twin > 0.0_pReal)
|
|
gdot_twin = (1.0_pReal-sum(stt%gamma_twin(:,of)/prm%gamma_tw_char)) & ! only twin in untwinned volume fraction
|
|
* prm%dot_gamma_0_tw*(abs(tau_twin)/stt%xi_twin(:,of))**prm%n_tw
|
|
else where
|
|
gdot_twin = 0.0_pReal
|
|
end where
|
|
|
|
if (present(dgdot_dtau_twin)) then
|
|
where(dNeq0(gdot_twin))
|
|
dgdot_dtau_twin = gdot_twin*prm%n_tw/tau_twin
|
|
else where
|
|
dgdot_dtau_twin = 0.0_pReal
|
|
end where
|
|
endif
|
|
|
|
end associate
|
|
|
|
end subroutine kinetics_twin
|
|
|
|
end submodule plastic_phenopowerlaw
|