!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief phenomenological crystal plasticity formulation using a powerlaw fitting !-------------------------------------------------------------------------------------------------- submodule(constitutive:constitutive_plastic) plastic_phenopowerlaw type :: tParameters real(pReal) :: & dot_gamma_0_sl = 1.0_pReal, & !< reference shear strain rate for slip dot_gamma_0_tw = 1.0_pReal, & !< reference shear strain rate for twin n_sl = 1.0_pReal, & !< stress exponent for slip n_tw = 1.0_pReal, & !< stress exponent for twin f_sl_sat_tw = 1.0_pReal, & !< push-up factor for slip saturation due to twinning c_1 = 1.0_pReal, & c_2 = 1.0_pReal, & c_3 = 1.0_pReal, & c_4 = 1.0_pReal, & h_0_sl_sl = 1.0_pReal, & !< reference hardening slip - slip h_0_tw_sl = 1.0_pReal, & !< reference hardening twin - slip h_0_tw_tw = 1.0_pReal, & !< reference hardening twin - twin a_sl = 1.0_pReal real(pReal), allocatable, dimension(:) :: & xi_inf_sl, & !< maximum critical shear stress for slip h_int, & !< per family hardening activity (optional) gamma_tw_char !< characteristic shear for twins real(pReal), allocatable, dimension(:,:) :: & h_sl_sl, & !< slip resistance from slip activity h_sl_tw, & !< slip resistance from twin activity h_tw_sl, & !< twin resistance from slip activity h_tw_tw !< twin resistance from twin activity real(pReal), allocatable, dimension(:,:,:) :: & P_sl, & P_tw, & nonSchmid_pos, & nonSchmid_neg integer :: & sum_N_sl, & !< total number of active slip system sum_N_tw !< total number of active twin systems logical :: & nonSchmidActive = .false. character(len=pStringLen), allocatable, dimension(:) :: & output end type tParameters type :: tPhenopowerlawState real(pReal), pointer, dimension(:,:) :: & xi_slip, & xi_twin, & gamma_slip, & gamma_twin end type tPhenopowerlawState !-------------------------------------------------------------------------------------------------- ! containers for parameters and state type(tParameters), allocatable, dimension(:) :: param type(tPhenopowerlawState), allocatable, dimension(:) :: & dotState, & state contains !-------------------------------------------------------------------------------------------------- !> @brief Perform module initialization. !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function plastic_phenopowerlaw_init() result(myPlasticity) logical, dimension(:), allocatable :: myPlasticity integer :: & Ninstance, & p, i, & NipcMyPhase, & sizeState, sizeDotState, & startIndex, endIndex integer, dimension(:), allocatable :: & N_sl, N_tw real(pReal), dimension(:), allocatable :: & xi_0_sl, & !< initial critical shear stress for slip xi_0_tw, & !< initial critical shear stress for twin a !< non-Schmid coefficients character(len=pStringLen) :: & extmsg = '' class(tNode), pointer :: & phases, & phase, & pl print'(/,a)', ' <<<+- plastic_phenopowerlaw init -+>>>' myPlasticity = plastic_active('phenopowerlaw') Ninstance = count(myPlasticity) print'(a,i2)', ' # instances: ',Ninstance; flush(6) if(Ninstance == 0) return allocate(param(Ninstance)) allocate(state(Ninstance)) allocate(dotState(Ninstance)) phases => config_material%get('phase') i = 0 do p = 1, phases%length phase => phases%get(p) if(.not. myPlasticity(p)) cycle i = i + 1 associate(prm => param(i), & dot => dotState(i), & stt => state(i)) pl => phase%get('plasticity') !-------------------------------------------------------------------------------------------------- ! slip related parameters N_sl = pl%get_asInts('N_sl',defaultVal=emptyIntArray) prm%sum_N_sl = sum(abs(N_sl)) slipActive: if (prm%sum_N_sl > 0) then prm%P_sl = lattice_SchmidMatrix_slip(N_sl,phase%get_asString('lattice'),& phase%get_asFloat('c/a',defaultVal=0.0_pReal)) if(phase%get_asString('lattice') == 'bcc') then a = pl%get_asFloats('nonSchmid_coefficients',defaultVal=emptyRealArray) if(size(a) > 0) prm%nonSchmidActive = .true. prm%nonSchmid_pos = lattice_nonSchmidMatrix(N_sl,a,+1) prm%nonSchmid_neg = lattice_nonSchmidMatrix(N_sl,a,-1) else prm%nonSchmid_pos = prm%P_sl prm%nonSchmid_neg = prm%P_sl endif prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl, & pl%get_asFloats('h_sl_sl'), & phase%get_asString('lattice')) xi_0_sl = pl%get_asFloats('xi_0_sl', requiredSize=size(N_sl)) prm%xi_inf_sl = pl%get_asFloats('xi_inf_sl', requiredSize=size(N_sl)) prm%h_int = pl%get_asFloats('h_int', requiredSize=size(N_sl), & defaultVal=[(0.0_pReal,i=1,size(N_sl))]) prm%dot_gamma_0_sl = pl%get_asFloat('dot_gamma_0_sl') prm%n_sl = pl%get_asFloat('n_sl') prm%a_sl = pl%get_asFloat('a_sl') prm%h_0_sl_sl = pl%get_asFloat('h_0_sl_sl') ! expand: family => system xi_0_sl = math_expand(xi_0_sl, N_sl) prm%xi_inf_sl = math_expand(prm%xi_inf_sl,N_sl) prm%h_int = math_expand(prm%h_int, N_sl) ! sanity checks if ( prm%dot_gamma_0_sl <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_sl' if ( prm%a_sl <= 0.0_pReal) extmsg = trim(extmsg)//' a_sl' if ( prm%n_sl <= 0.0_pReal) extmsg = trim(extmsg)//' n_sl' if (any(xi_0_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_0_sl' if (any(prm%xi_inf_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_sl' else slipActive xi_0_sl = emptyRealArray allocate(prm%xi_inf_sl,prm%h_int,source=emptyRealArray) allocate(prm%h_sl_sl(0,0)) endif slipActive !-------------------------------------------------------------------------------------------------- ! twin related parameters N_tw = pl%get_asInts('N_tw', defaultVal=emptyIntArray) prm%sum_N_tw = sum(abs(N_tw)) twinActive: if (prm%sum_N_tw > 0) then prm%P_tw = lattice_SchmidMatrix_twin(N_tw,phase%get_asString('lattice'),& phase%get_asFloat('c/a',defaultVal=0.0_pReal)) prm%h_tw_tw = lattice_interaction_TwinByTwin(N_tw,& pl%get_asFloats('h_tw_tw'), & phase%get_asString('lattice')) prm%gamma_tw_char = lattice_characteristicShear_twin(N_tw,phase%get_asString('lattice'),& phase%get_asFloat('c/a',defaultVal=0.0_pReal)) xi_0_tw = pl%get_asFloats('xi_0_tw',requiredSize=size(N_tw)) prm%c_1 = pl%get_asFloat('c_1',defaultVal=0.0_pReal) prm%c_2 = pl%get_asFloat('c_2',defaultVal=1.0_pReal) prm%c_3 = pl%get_asFloat('c_3',defaultVal=0.0_pReal) prm%c_4 = pl%get_asFloat('c_4',defaultVal=0.0_pReal) prm%dot_gamma_0_tw = pl%get_asFloat('dot_gamma_0_tw') prm%n_tw = pl%get_asFloat('n_tw') prm%f_sl_sat_tw = pl%get_asFloat('f_sl_sat_tw') prm%h_0_tw_tw = pl%get_asFloat('h_0_tw_tw') ! expand: family => system xi_0_tw = math_expand(xi_0_tw,N_tw) ! sanity checks if (prm%dot_gamma_0_tw <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_tw' if (prm%n_tw <= 0.0_pReal) extmsg = trim(extmsg)//' n_tw' else twinActive xi_0_tw = emptyRealArray allocate(prm%gamma_tw_char,source=emptyRealArray) allocate(prm%h_tw_tw(0,0)) endif twinActive !-------------------------------------------------------------------------------------------------- ! slip-twin related parameters slipAndTwinActive: if (prm%sum_N_sl > 0 .and. prm%sum_N_tw > 0) then prm%h_0_tw_sl = pl%get_asFloat('h_0_tw_sl') prm%h_sl_tw = lattice_interaction_SlipByTwin(N_sl,N_tw,& pl%get_asFloats('h_sl_tw'), & phase%get_asString('lattice')) prm%h_tw_sl = lattice_interaction_TwinBySlip(N_tw,N_sl,& pl%get_asFloats('h_tw_sl'), & phase%get_asString('lattice')) else slipAndTwinActive allocate(prm%h_sl_tw(prm%sum_N_sl,prm%sum_N_tw)) ! at least one dimension is 0 allocate(prm%h_tw_sl(prm%sum_N_tw,prm%sum_N_sl)) ! at least one dimension is 0 prm%h_0_tw_sl = 0.0_pReal endif slipAndTwinActive !-------------------------------------------------------------------------------------------------- ! output pararameters #if defined (__GFORTRAN__) prm%output = output_asStrings(pl) #else prm%output = pl%get_asStrings('output',defaultVal=emptyStringArray) #endif !-------------------------------------------------------------------------------------------------- ! allocate state arrays NipcMyPhase = count(material_phaseAt == p) * discretization_nIP sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl & + size(['xi_tw ','gamma_tw']) * prm%sum_N_tw sizeState = sizeDotState call constitutive_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0) !-------------------------------------------------------------------------------------------------- ! state aliases and initialization startIndex = 1 endIndex = prm%sum_N_sl stt%xi_slip => plasticState(p)%state (startIndex:endIndex,:) stt%xi_slip = spread(xi_0_sl, 2, NipcMyPhase) dot%xi_slip => plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal) if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi' startIndex = endIndex + 1 endIndex = endIndex + prm%sum_N_tw stt%xi_twin => plasticState(p)%state (startIndex:endIndex,:) stt%xi_twin = spread(xi_0_tw, 2, NipcMyPhase) dot%xi_twin => plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal) if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi' startIndex = endIndex + 1 endIndex = endIndex + prm%sum_N_sl stt%gamma_slip => plasticState(p)%state (startIndex:endIndex,:) dot%gamma_slip => plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal) if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_gamma' ! global alias plasticState(p)%slipRate => plasticState(p)%dotState(startIndex:endIndex,:) startIndex = endIndex + 1 endIndex = endIndex + prm%sum_N_tw stt%gamma_twin => plasticState(p)%state (startIndex:endIndex,:) dot%gamma_twin => plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal) if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_gamma' plasticState(p)%state0 = plasticState(p)%state ! ToDo: this could be done centrally end associate !-------------------------------------------------------------------------------------------------- ! exit if any parameter is out of range if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(phenopowerlaw)') enddo end function plastic_phenopowerlaw_init !-------------------------------------------------------------------------------------------------- !> @brief Calculate plastic velocity gradient and its tangent. !> @details asummes that deformation by dislocation glide affects twinned and untwinned volume ! equally (Taylor assumption). Twinning happens only in untwinned volume !-------------------------------------------------------------------------------------------------- pure module subroutine plastic_phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,instance,of) real(pReal), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pReal), dimension(3,3,3,3), intent(out) :: & dLp_dMp !< derivative of Lp with respect to the Mandel stress real(pReal), dimension(3,3), intent(in) :: & Mp !< Mandel stress integer, intent(in) :: & instance, & of integer :: & i,k,l,m,n real(pReal), dimension(param(instance)%sum_N_sl) :: & gdot_slip_pos,gdot_slip_neg, & dgdot_dtauslip_pos,dgdot_dtauslip_neg real(pReal), dimension(param(instance)%sum_N_tw) :: & gdot_twin,dgdot_dtautwin Lp = 0.0_pReal dLp_dMp = 0.0_pReal associate(prm => param(instance)) call kinetics_slip(Mp,instance,of,gdot_slip_pos,gdot_slip_neg,dgdot_dtauslip_pos,dgdot_dtauslip_neg) slipSystems: do i = 1, prm%sum_N_sl Lp = Lp + (gdot_slip_pos(i)+gdot_slip_neg(i))*prm%P_sl(1:3,1:3,i) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) & + dgdot_dtauslip_pos(i) * prm%P_sl(k,l,i) * prm%nonSchmid_pos(m,n,i) & + dgdot_dtauslip_neg(i) * prm%P_sl(k,l,i) * prm%nonSchmid_neg(m,n,i) enddo slipSystems call kinetics_twin(Mp,instance,of,gdot_twin,dgdot_dtautwin) twinSystems: do i = 1, prm%sum_N_tw Lp = Lp + gdot_twin(i)*prm%P_tw(1:3,1:3,i) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) & + dgdot_dtautwin(i)*prm%P_tw(k,l,i)*prm%P_tw(m,n,i) enddo twinSystems end associate end subroutine plastic_phenopowerlaw_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief Calculate the rate of change of microstructure. !-------------------------------------------------------------------------------------------------- module subroutine plastic_phenopowerlaw_dotState(Mp,instance,of) real(pReal), dimension(3,3), intent(in) :: & Mp !< Mandel stress integer, intent(in) :: & instance, & of real(pReal) :: & c_SlipSlip,c_TwinSlip,c_TwinTwin, & xi_slip_sat_offset,& sumGamma,sumF real(pReal), dimension(param(instance)%sum_N_sl) :: & left_SlipSlip,right_SlipSlip, & gdot_slip_pos,gdot_slip_neg associate(prm => param(instance), stt => state(instance), dot => dotState(instance)) sumGamma = sum(stt%gamma_slip(:,of)) sumF = sum(stt%gamma_twin(:,of)/prm%gamma_tw_char) !-------------------------------------------------------------------------------------------------- ! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices c_SlipSlip = prm%h_0_sl_sl * (1.0_pReal + prm%c_1*sumF** prm%c_2) c_TwinSlip = prm%h_0_tw_sl * sumGamma**prm%c_3 c_TwinTwin = prm%h_0_tw_tw * sumF**prm%c_4 !-------------------------------------------------------------------------------------------------- ! calculate left and right vectors left_SlipSlip = 1.0_pReal + prm%h_int xi_slip_sat_offset = prm%f_sl_sat_tw*sqrt(sumF) right_SlipSlip = abs(1.0_pReal-stt%xi_slip(:,of) / (prm%xi_inf_sl+xi_slip_sat_offset)) **prm%a_sl & * sign(1.0_pReal,1.0_pReal-stt%xi_slip(:,of) / (prm%xi_inf_sl+xi_slip_sat_offset)) !-------------------------------------------------------------------------------------------------- ! shear rates call kinetics_slip(Mp,instance,of,gdot_slip_pos,gdot_slip_neg) dot%gamma_slip(:,of) = abs(gdot_slip_pos+gdot_slip_neg) call kinetics_twin(Mp,instance,of,dot%gamma_twin(:,of)) !-------------------------------------------------------------------------------------------------- ! hardening dot%xi_slip(:,of) = c_SlipSlip * left_SlipSlip * & matmul(prm%h_sl_sl,dot%gamma_slip(:,of)*right_SlipSlip) & + matmul(prm%h_sl_tw,dot%gamma_twin(:,of)) dot%xi_twin(:,of) = c_TwinSlip * matmul(prm%h_tw_sl,dot%gamma_slip(:,of)) & + c_TwinTwin * matmul(prm%h_tw_tw,dot%gamma_twin(:,of)) end associate end subroutine plastic_phenopowerlaw_dotState !-------------------------------------------------------------------------------------------------- !> @brief Write results to HDF5 output file. !-------------------------------------------------------------------------------------------------- module subroutine plastic_phenopowerlaw_results(instance,group) integer, intent(in) :: instance character(len=*), intent(in) :: group integer :: o associate(prm => param(instance), stt => state(instance)) outputsLoop: do o = 1,size(prm%output) select case(trim(prm%output(o))) case('xi_sl') if(prm%sum_N_sl>0) call results_writeDataset(group,stt%xi_slip, trim(prm%output(o)), & 'resistance against plastic slip','Pa') case('gamma_sl') if(prm%sum_N_sl>0) call results_writeDataset(group,stt%gamma_slip,trim(prm%output(o)), & 'plastic shear','1') case('xi_tw') if(prm%sum_N_tw>0) call results_writeDataset(group,stt%xi_twin, trim(prm%output(o)), & 'resistance against twinning','Pa') case('gamma_tw') if(prm%sum_N_tw>0) call results_writeDataset(group,stt%gamma_twin,trim(prm%output(o)), & 'twinning shear','1') end select enddo outputsLoop end associate end subroutine plastic_phenopowerlaw_results !-------------------------------------------------------------------------------------------------- !> @brief Calculate shear rates on slip systems and their derivatives with respect to resolved ! stress. !> @details Derivatives are calculated only optionally. ! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to ! have the optional arguments at the end. !-------------------------------------------------------------------------------------------------- pure subroutine kinetics_slip(Mp,instance,of, & gdot_slip_pos,gdot_slip_neg,dgdot_dtau_slip_pos,dgdot_dtau_slip_neg) real(pReal), dimension(3,3), intent(in) :: & Mp !< Mandel stress integer, intent(in) :: & instance, & of real(pReal), intent(out), dimension(param(instance)%sum_N_sl) :: & gdot_slip_pos, & gdot_slip_neg real(pReal), intent(out), optional, dimension(param(instance)%sum_N_sl) :: & dgdot_dtau_slip_pos, & dgdot_dtau_slip_neg real(pReal), dimension(param(instance)%sum_N_sl) :: & tau_slip_pos, & tau_slip_neg integer :: i associate(prm => param(instance), stt => state(instance)) do i = 1, prm%sum_N_sl tau_slip_pos(i) = math_tensordot(Mp,prm%nonSchmid_pos(1:3,1:3,i)) tau_slip_neg(i) = merge(math_tensordot(Mp,prm%nonSchmid_neg(1:3,1:3,i)), & 0.0_pReal, prm%nonSchmidActive) enddo where(dNeq0(tau_slip_pos)) gdot_slip_pos = prm%dot_gamma_0_sl * merge(0.5_pReal,1.0_pReal, prm%nonSchmidActive) & ! 1/2 if non-Schmid active * sign(abs(tau_slip_pos/stt%xi_slip(:,of))**prm%n_sl, tau_slip_pos) else where gdot_slip_pos = 0.0_pReal end where where(dNeq0(tau_slip_neg)) gdot_slip_neg = prm%dot_gamma_0_sl * 0.5_pReal & ! only used if non-Schmid active, always 1/2 * sign(abs(tau_slip_neg/stt%xi_slip(:,of))**prm%n_sl, tau_slip_neg) else where gdot_slip_neg = 0.0_pReal end where if (present(dgdot_dtau_slip_pos)) then where(dNeq0(gdot_slip_pos)) dgdot_dtau_slip_pos = gdot_slip_pos*prm%n_sl/tau_slip_pos else where dgdot_dtau_slip_pos = 0.0_pReal end where endif if (present(dgdot_dtau_slip_neg)) then where(dNeq0(gdot_slip_neg)) dgdot_dtau_slip_neg = gdot_slip_neg*prm%n_sl/tau_slip_neg else where dgdot_dtau_slip_neg = 0.0_pReal end where endif end associate end subroutine kinetics_slip !-------------------------------------------------------------------------------------------------- !> @brief Calculate shear rates on twin systems and their derivatives with respect to resolved ! stress. Twinning is assumed to take place only in untwinned volume. !> @details Derivatives are calculated only optionally. ! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to ! have the optional arguments at the end. !-------------------------------------------------------------------------------------------------- pure subroutine kinetics_twin(Mp,instance,of,& gdot_twin,dgdot_dtau_twin) real(pReal), dimension(3,3), intent(in) :: & Mp !< Mandel stress integer, intent(in) :: & instance, & of real(pReal), dimension(param(instance)%sum_N_tw), intent(out) :: & gdot_twin real(pReal), dimension(param(instance)%sum_N_tw), intent(out), optional :: & dgdot_dtau_twin real(pReal), dimension(param(instance)%sum_N_tw) :: & tau_twin integer :: i associate(prm => param(instance), stt => state(instance)) do i = 1, prm%sum_N_tw tau_twin(i) = math_tensordot(Mp,prm%P_tw(1:3,1:3,i)) enddo where(tau_twin > 0.0_pReal) gdot_twin = (1.0_pReal-sum(stt%gamma_twin(:,of)/prm%gamma_tw_char)) & ! only twin in untwinned volume fraction * prm%dot_gamma_0_tw*(abs(tau_twin)/stt%xi_twin(:,of))**prm%n_tw else where gdot_twin = 0.0_pReal end where if (present(dgdot_dtau_twin)) then where(dNeq0(gdot_twin)) dgdot_dtau_twin = gdot_twin*prm%n_tw/tau_twin else where dgdot_dtau_twin = 0.0_pReal end where endif end associate end subroutine kinetics_twin end submodule plastic_phenopowerlaw