* better use SINGLE (having an implicit barrier at the end) instead of MASTER construct
* deleted all explicit BARRIERs after do loops since parallel loop construct implies barrier at the end
* had to add some BARRIER constructs
* only the master thread is allowed to increase the state counter
yet parallelization seems not to give a significant decrease in calculation time with nonlocal model (because of too many CRITICAL statements?)
* also put a call to constitutive_microstructure at the start of each crystallite_integration subroutine like it was before. need that for nonlocal model in case of crystallite cutback
numerics: polishing
mpie_cpfem_marc: polishing
..powerlaw: aware of symmetryType function
crystallite: aware of symmetryType function, smaller leapfrog acceleration
IO: new warning 101
CPFEM: range of odd stress is now -1e15...+1e15, H_sym is used for stiffness
* in Fixed Point Iteration: update dependent states after state preguess was missing; on the other hand, the first call to constitutive_microstructure was obsolete
* now remembering stiffness similar to how we do it for Lp etc.; avoids undefined stiffness values for nonconverged stiffness calculation
* non-local stuff:
* changed non-local kinetics (Gilman2002)
* enforce zero shearrate for overall carrrier density below relevant density
* enforce zero density for those states that become negative and were below relevant density before
* dislocation velocity is not limited by V^(1/3) / dt anymore
2) local stiffness calculation is now standard for non-local grains
3) stressLoopDistribution discriminates between (a) central solution and (b) stiffness perturbation
4) debugger is switched on as standard... (but verboseDebugger not!)
rather perturb all components at once (and optionally decrease the frequency of the Jacobian update with the iJaco parameter) than perturbing only a single component per cycle
- grainrotation calculation now is done with symmetryID 0, i.e. without symmetry reduction since we want the absolute misorientation.
- While math has everything in radians, post results eulerangles and axisangle are given in degrees.
And: grain rotation seems OK after the previous changes in math module.
beware that crystallite output "orientation" now by default returns the orientation as quaternion. if you want euler angles instead, you have to add "eulerangles" as a crystallite output in your material.config file (see material.config template).
for input of orientations in the texture block of the material.config you still have to specify the rotation in terms of euler angles, quaternions are not yet supported for input.
- nonlocal stiffness calculation: we perturb all material points at the same time, so instead of N^2 loops we just need N
- set "forceLocalStiffnessCalculation" to false as standard
--> new "crystallite" part in config file
--> new "crystallite" option for microstructures
--> new output file "...job.outputCrystallite" to be used in conjunction with marc_addUserOutput for meaningful naming of User Defined Vars.