crystallite does not accelerate anymore, since, typically, longer step immediately fails and uses resources in vain. (future: remember number of successful steps to increase step size after x of those...)
homogenization.f90 and crystallite.f90 >>> Correction in the algorithm to count the iteration distribution (for better statistics).
material.config and numerics.config >>> more collection of parameters.
constitutive_phenopowerlaw.f90 >>> adding new parameter: constitutive_phenopowerlaw_w0_slip, i.e., the hardening rate exponent.
homogenization.f90 >>> most important change is to add an if-else statement (line 379-380) to switch crystallite_requeted = .false. for already converged material point iteration (el/ip). the rest of the changes are cosmetics and debugging stuffs.
crystallite.f90 >>> similar to homogenization.f90, the most important change is to add additional if-else statement (line 574) in the jacobian (perturbation) loop. now the jacobian calculation will only be performed when crystallite_requested = .true.. the rest is only cosmetic.
- completed postResults output function
- connecting vector of neighboring material points is mapped to intermediate configuration of my neighbor
crystallite.f90
- zero out dotState only when crystallite is non-finished
- set nonfinished flag to false if crystallite is not on Track after state update
- in updateState: set onTrack flag to false if encounter NaN
- removed some old debugging outputs and added others
homogenization.f90
- in debugging mode now telling when a cutback happens
debugging memory leak closed
debugging counters corrected
center of gravity stored in mesh
state updated is now split into a collecting loop and an execution
updateState and updateTemperature fill sequentially separate logicals and evaluate afterwards to converged
added 3x3 transposition function, norm for 3x1 matrix and 33x3 matrix multiplication in math
non-converged crystallite triggers materialpoint cutback (used to respond elastically)
non-converged materialpoint raises terminal illness which in turn renders whole FE increment useless by means of odd stress/stiffness and thus waits for FE cutback
# non-greedy memory allocation
# generation of outputConstitutive to allow for script-based T16 extraction
# exchange of phenomenological by more general phenopowerlaw
# lattice is based on slip and twin families which can be treated as individual entities (switched on/off, separate hardening, etc.)
# nicer debugging output
# changed some error/warning codes
# plus potentially some minor additional brushes here and there