Major Update: all modules are now correctly submitted

This commit is contained in:
Luc Hantcherli 2009-07-01 10:55:31 +00:00
parent a16b8a619d
commit 4aed2ade80
8 changed files with 152 additions and 80 deletions

View File

@ -121,8 +121,8 @@ subroutine CPFEM_general(mode, ffn, ffn1, Temperature, dt, element, IP, cauchySt
integer(pInt), intent(in) :: element, & ! FE element number
IP, & ! FE integration point number
ngens ! size of stress strain law
real(pReal), intent(in) :: Temperature, & ! temperature
dt ! time increment
real(pReal), intent(inout) :: Temperature ! temperature
real(pReal), intent(in) :: dt ! time increment
real(pReal), dimension (3,3), intent(in) :: ffn, & ! deformation gradient for t=t0
ffn1 ! deformation gradient for t=t1
integer(pInt), intent(in) :: mode ! computation mode 1: regular computation with aged results
@ -170,8 +170,8 @@ subroutine CPFEM_general(mode, ffn, ffn1, Temperature, dt, element, IP, cauchySt
call lattice_init()
call material_init()
call constitutive_init()
call crystallite_init()
call homogenization_init()
call crystallite_init(Temperature) ! (have to) use temperature of first IP for whole model
call homogenization_init(Temperature)
call CPFEM_init()
CPFEM_init_done = .true.
endif
@ -262,6 +262,7 @@ subroutine CPFEM_general(mode, ffn, ffn1, Temperature, dt, element, IP, cauchySt
! --+>> COLLECTION OF FEM DATA AND RETURN OF ODD STRESS AND JACOBIAN <<+--
case (3)
if (IP==1.AND.cp_en==1) write(6,*) 'Temp from CPFEM', Temperature
materialpoint_Temperature(IP,cp_en) = Temperature
materialpoint_F0(:,:,IP,cp_en) = ffn
materialpoint_F(:,:,IP,cp_en) = ffn1
@ -287,7 +288,7 @@ subroutine CPFEM_general(mode, ffn, ffn1, Temperature, dt, element, IP, cauchySt
cauchyStress(1:ngens) = CPFEM_cs(1:ngens,IP,cp_en)
jacobian(1:ngens,1:ngens) = CPFEM_dcsdE(1:ngens,1:ngens,IP,cp_en)
! return temperature
Temperature = materialpoint_Temperature(IP,cp_en)
if (theInc > 0_pInt) Temperature = materialpoint_Temperature(IP,cp_en) ! homogenized result except for potentially non-isothermal starting condition.
return

View File

@ -373,7 +373,6 @@ subroutine constitutive_dislobased_microstructure(Temperature,state,ipc,ip,el)
real(pReal) Temperature
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
Temperature = 298.0
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
n = constitutive_dislobased_Nslip(matID)
!* Quantities derived from state - slip
@ -448,7 +447,6 @@ subroutine constitutive_dislobased_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Tempera
real(pReal), dimension(constitutive_dislobased_Nslip(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
gdot_slip,dgdot_dtauslip,tau_slip
Temperature = 298.0
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
n = constitutive_dislobased_Nslip(matID)
@ -512,7 +510,6 @@ function constitutive_dislobased_dotState(Tstar_v,Temperature,state,ipc,ip,el)
real(pReal), dimension(constitutive_dislobased_Nslip(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
constitutive_dislobased_dotState
Temperature = 298.0
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
n = constitutive_dislobased_Nslip(matID)
@ -605,7 +602,7 @@ pure function constitutive_dislobased_postResults(Tstar_v,Temperature,dt,state,i
select case(constitutive_dislobased_output(o,matID))
case ('dislodensity')
constitutive_dislobased_postResults(c+1:c+n) = state(ipc,ip,el)%p(1:n)
constitutive_dislobased_postResults(c+1:c+n) = state(ipc,ip,el)%p(6*n+1:7*n)
c = c + n
case ('rateofshear')
@ -613,7 +610,7 @@ pure function constitutive_dislobased_postResults(Tstar_v,Temperature,dt,state,i
tau_slip = dot_product(Tstar_v,lattice_Sslip_v(:,i,constitutive_dislobased_structure(matID)))
if ((abs(tau_slip)-state(ipc,ip,el)%p(3*n+i))>0) then
constitutive_dislobased_postResults(c+i) = state(ipc,ip,el)%p(7*n+i)*sign(1.0_pReal,tau_slip)*&
sinh(((abs(tau_slip)-state(ipc,ip,el)%p(3*n+i))*state(ipc,ip,el)%p(5*n+i))/(kB*298.0))
sinh(((abs(tau_slip)-state(ipc,ip,el)%p(3*n+i))*state(ipc,ip,el)%p(5*n+i))/(kB*Temperature))
else
constitutive_dislobased_postResults(c+i) = 0.0_pReal
endif

View File

@ -414,6 +414,36 @@ pure function constitutive_j2_dotState(Tstar_v, Temperature, state, g, ip, el)
return
endfunction
!****************************************************************
!* calculates the rate of change of microstructure *
!****************************************************************
pure function constitutive_j2_dotTemperature(Tstar_v, Temperature, state, g, ip, el)
!*** variables and functions from other modules ***!
use prec, only: pReal,pInt,p_vec
use lattice, only: lattice_Sslip_v
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance
implicit none
!*** input variables ***!
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: Temperature
integer(pInt), intent(in):: g, & ! grain number
ip, & ! integration point number
el ! element number
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state ! state of the current microstructure
!*** output variables ***!
real(pReal) constitutive_j2_dotTemperature ! evolution of state variable
! calculate dotTemperature
constitutive_j2_dotTemperature = 0.0_pReal
return
endfunction

View File

@ -354,19 +354,23 @@ subroutine constitutive_phenomenological_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,T
!* Calculation of Lp
Lp = 0.0_pReal
do i = 1,constitutive_phenomenological_Nslip(matID)
tau_slip(i) = dot_product(Tstar_v,lattice_Sslip_v(:,i,constitutive_phenomenological_structure(matID)))
tau_slip(i) = dot_product(Tstar_v,lattice_Sslip_v(:,i,constitutive_phenomenological_structure(matID)))
gdot_slip(i) = constitutive_phenomenological_gdot0_slip(matID)*(abs(tau_slip(i))/state(ipc,ip,el)%p(i))**&
constitutive_phenomenological_n_slip(matID)*sign(1.0_pReal,tau_slip(i))
Lp = Lp + gdot_slip(i)*lattice_Sslip(:,:,i,constitutive_phenomenological_structure(matID))
enddo
!* Calculation of the tangent of Lp
dLp_dTstar3333 = 0.0_pReal
dLp_dTstar = 0.0_pReal
do i = 1,constitutive_phenomenological_Nslip(matID)
do i = 1,constitutive_phenomenological_Nslip(matID)
dgdot_dtauslip(i) = constitutive_phenomenological_gdot0_slip(matID)*(abs(tau_slip(i))/state(ipc,ip,el)%p(i))**&
(constitutive_phenomenological_n_slip(matID)-1.0_pReal)*&
constitutive_phenomenological_n_slip(matID)/state(ipc,ip,el)%p(i)
constitutive_phenomenological_n_slip(matID)/state(ipc,ip,el)%p(i)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtauslip(i)*lattice_Sslip(k,l,i,constitutive_phenomenological_structure(matID))* &
@ -408,10 +412,13 @@ function constitutive_phenomenological_dotState(Tstar_v,Temperature,state,ipc,ip
n = constitutive_phenomenological_Nslip(matID)
!* Self-Hardening of each system
do i = 1,n
tau_slip = dot_product(Tstar_v,lattice_Sslip_v(:,i,constitutive_phenomenological_structure(matID)))
do i = 1,n
tau_slip = dot_product(Tstar_v,lattice_Sslip_v(:,i,constitutive_phenomenological_structure(matID)))
gdot_slip = constitutive_phenomenological_gdot0_slip(matID)*(abs(tau_slip)/state(ipc,ip,el)%p(i))**&
constitutive_phenomenological_n_slip(matID)*sign(1.0_pReal,tau_slip)
constitutive_phenomenological_n_slip(matID)*sign(1.0_pReal,tau_slip)
self_hardening(i) = constitutive_phenomenological_h0(matID)*(1.0_pReal-state(ipc,ip,el)%p(i)/&
constitutive_phenomenological_s_sat(matID))**constitutive_phenomenological_w0(matID)*abs(gdot_slip)
enddo
@ -423,6 +430,37 @@ function constitutive_phenomenological_dotState(Tstar_v,Temperature,state,ipc,ip
end function
function constitutive_phenomenological_dotTemperature(Tstar_v,Temperature,state,ipc,ip,el)
!*********************************************************************
!* rate of change of microstructure *
!* INPUT: *
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
!* - ipc : component-ID at current integration point *
!* - ip : current integration point *
!* - el : current element *
!* OUTPUT: *
!* - constitutive_dotTemperature : evolution of temperature *
!*********************************************************************
use prec, only: pReal,pInt,p_vec
use lattice, only: lattice_Sslip_v
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
implicit none
!* Definition of variables
integer(pInt) ipc,ip,el
integer(pInt) matID,i,n
real(pReal) Temperature
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
real(pReal), dimension(6) :: Tstar_v
real(pReal) constitutive_phenomenological_dotTemperature
constitutive_phenomenological_dotTemperature = 0.0_pReal
return
end function
pure function constitutive_phenomenological_postResults(Tstar_v,Temperature,dt,state,ipc,ip,el)
!*********************************************************************
@ -456,10 +494,12 @@ pure function constitutive_phenomenological_postResults(Tstar_v,Temperature,dt,s
constitutive_phenomenological_postResults = 0.0_pReal
do o = 1,phase_Noutput(material_phase(ipc,ip,el))
select case(constitutive_phenomenological_output(o,matID))
select case(constitutive_phenomenological_output(o,matID))
case ('slipresistance')
constitutive_phenomenological_postResults(c+1:c+n) = state(ipc,ip,el)%p(1:n)
c = c + n
c = c + n
case ('rateofshear')
do i = 1,n
tau_slip = dot_product(Tstar_v,lattice_Sslip_v(:,i,constitutive_phenomenological_structure(matID)))
@ -467,7 +507,8 @@ pure function constitutive_phenomenological_postResults(Tstar_v,Temperature,dt,s
(abs(tau_slip)/state(ipc,ip,el)%p(i))**&
constitutive_phenomenological_n_slip(matID)
enddo
c = c + n
c = c + n
end select
enddo

View File

@ -19,42 +19,41 @@ implicit none
! ****************************************************************
! *** General variables for the crystallite calculation ***
! ****************************************************************
integer(pInt), parameter :: crystallite_Nresults = 5_pInt ! phaseID, volume, Euler angles
integer(pInt), parameter :: crystallite_Nresults = 5_pInt ! phaseID, volume, Euler angles
real(pReal), dimension (:,:,:), allocatable :: crystallite_dt, & ! requested time increment of each grain
crystallite_subdt, & ! substepped time increment of each grain
crystallite_subFrac, & ! already calculated fraction of increment
crystallite_subStep, & ! size of next integration step
crystallite_Temperature, & ! Temp of each grain
crystallite_Temperature0, & ! Temp of each grain at start of FE inc
real(pReal), dimension (:,:,:), allocatable :: crystallite_dt, & ! requested time increment of each grain
crystallite_subdt, & ! substepped time increment of each grain
crystallite_subFrac, & ! already calculated fraction of increment
crystallite_subStep, & ! size of next integration step
crystallite_Temperature, & ! Temp of each grain
crystallite_partionedTemperature0, & ! Temp of each grain at start of homog inc
crystallite_subTemperature0 ! Temp of each grain at start of crystallite inc
real(pReal), dimension (:,:,:,:), allocatable :: crystallite_Tstar_v, & ! current 2nd Piola-Kirchhoff stress vector (end of converged time step)
crystallite_Tstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of FE inc
crystallite_partionedTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of homog inc
crystallite_subTstar0_v ! 2nd Piola-Kirchhoff stress vector at start of crystallite inc
real(pReal), dimension (:,:,:,:,:), allocatable :: crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
crystallite_Fp, & ! current plastic def grad (end of converged time step)
crystallite_Fp0, & ! plastic def grad at start of FE inc
crystallite_partionedFp0,& ! plastic def grad at start of homog inc
crystallite_subFp0,& ! plastic def grad at start of crystallite inc
crystallite_F0, & ! def grad at start of FE inc
crystallite_partionedF, & ! def grad to be reached at end of homog inc
crystallite_partionedF0, & ! def grad at start of homog inc
crystallite_subF, & ! def grad to be reached at end of crystallite inc
crystallite_subF0, & ! def grad at start of crystallite inc
crystallite_Lp, & ! current plastic velocitiy grad (end of converged time step)
crystallite_Lp0, & ! plastic velocitiy grad at start of FE inc
crystallite_partionedLp0,& ! plastic velocity grad at start of homog inc
crystallite_subLp0,& ! plastic velocity grad at start of crystallite inc
crystallite_P ! 1st Piola-Kirchhoff stress per grain
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: crystallite_dPdF, & ! individual dPdF per grain
crystallite_fallbackdPdF ! dPdF fallback for non-converged grains (elastic prediction)
crystallite_subTemperature0 ! Temp of each grain at start of crystallite inc
real(pReal), dimension (:,:,:,:), allocatable :: crystallite_Tstar_v, & ! current 2nd Piola-Kirchhoff stress vector (end of converged time step)
crystallite_Tstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of FE inc
crystallite_partionedTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of homog inc
crystallite_subTstar0_v ! 2nd Piola-Kirchhoff stress vector at start of crystallite inc
real(pReal), dimension (:,:,:,:,:), allocatable :: crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
crystallite_Fp, & ! current plastic def grad (end of converged time step)
crystallite_Fp0, & ! plastic def grad at start of FE inc
crystallite_partionedFp0,& ! plastic def grad at start of homog inc
crystallite_subFp0,& ! plastic def grad at start of crystallite inc
crystallite_F0, & ! def grad at start of FE inc
crystallite_partionedF, & ! def grad to be reached at end of homog inc
crystallite_partionedF0, & ! def grad at start of homog inc
crystallite_subF, & ! def grad to be reached at end of crystallite inc
crystallite_subF0, & ! def grad at start of crystallite inc
crystallite_Lp, & ! current plastic velocitiy grad (end of converged time step)
crystallite_Lp0, & ! plastic velocitiy grad at start of FE inc
crystallite_partionedLp0,& ! plastic velocity grad at start of homog inc
crystallite_subLp0,& ! plastic velocity grad at start of crystallite inc
crystallite_P ! 1st Piola-Kirchhoff stress per grain
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: crystallite_dPdF, & ! individual dPdF per grain
crystallite_fallbackdPdF ! dPdF fallback for non-converged grains (elastic prediction)
logical, dimension (:,:,:), allocatable :: crystallite_localConstitution, & ! indicates this grain to have purely local constitutive law
crystallite_requested, & ! flag to request crystallite calculation
crystallite_onTrack, & ! flag to indicate ongoing calculation
crystallite_converged ! convergence flag
logical, dimension (:,:,:), allocatable :: crystallite_localConstitution, & ! indicates this grain to have purely local constitutive law
crystallite_requested, & ! flag to request crystallite calculation
crystallite_onTrack, & ! flag to indicate ongoing calculation
crystallite_converged ! convergence flag
CONTAINS
@ -62,7 +61,7 @@ CONTAINS
!********************************************************************
! allocate and initialize per grain variables
!********************************************************************
subroutine crystallite_init()
subroutine crystallite_init(Temperature)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
@ -83,7 +82,8 @@ subroutine crystallite_init()
phase_localConstitution
implicit none
!*** input variables ***!
!*** input variables ***!
real(pReal) Temperature
!*** output variables ***!
@ -100,13 +100,12 @@ subroutine crystallite_init()
iMax = mesh_maxNips
eMax = mesh_NcpElems
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = 0.0_pReal
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
allocate(crystallite_Temperature0(gMax,iMax,eMax)); crystallite_Temperature0 = 0.0_pReal
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
@ -139,8 +138,8 @@ subroutine crystallite_init()
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element
do g = 1,myNgrains
crystallite_partionedTemperature0(g,i,e) = crystallite_Temperature0(g,i,e)
crystallite_Fp0(:,:,g,i,e) = math_EulerToR(material_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
crystallite_partionedTemperature0(g,i,e) = Temperature ! isothermal assumption
crystallite_Fp0(:,:,g,i,e) = math_EulerToR(material_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
crystallite_F0(:,:,g,i,e) = math_I3
crystallite_partionedFp0(:,:,g,i,e) = crystallite_Fp0(:,:,g,i,e)
crystallite_partionedF0(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
@ -166,7 +165,6 @@ subroutine crystallite_init()
write(6,'(a32,x,7(i5,x))') 'crystallite_Fe: ', shape(crystallite_Fe)
write(6,'(a32,x,7(i5,x))') 'crystallite_Fp: ', shape(crystallite_Fp)
write(6,'(a32,x,7(i5,x))') 'crystallite_Lp: ', shape(crystallite_Lp)
write(6,'(a32,x,7(i5,x))') 'crystallite_Temperature0: ', shape(crystallite_Temperature0)
write(6,'(a32,x,7(i5,x))') 'crystallite_F0: ', shape(crystallite_F0)
write(6,'(a32,x,7(i5,x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
write(6,'(a32,x,7(i5,x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
@ -281,11 +279,11 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
write (6,*)
write (6,*) 'Crystallite request from Materialpoint'
write (6,'(a,/,(f12.7,x))') 'crystallite_partionedTemperature0 of 1 1 1',crystallite_partionedTemperature0(1,1,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedF0 of 1 1 1',crystallite_partionedF0(1:3,:,1,1,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedFp0 of 1 1 1',crystallite_partionedFp0(1:3,:,1,1,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedF of 1 1 1',crystallite_partionedF(1:3,:,1,1,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedLp0 of 1 1 1',crystallite_partionedLp0(1:3,:,1,1,1)
write (6,'(a,/,(f12.7,x))') 'crystallite_partionedTemp0 of 1 1 1' ,crystallite_partionedTemperature0(1,1,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedF0 of 1 1 1' ,crystallite_partionedF0(1:3,:,1,1,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedFp0 of 1 1 1' ,crystallite_partionedFp0(1:3,:,1,1,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedF of 1 1 1' ,crystallite_partionedF(1:3,:,1,1,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedLp0 of 1 1 1' ,crystallite_partionedLp0(1:3,:,1,1,1)
!$OMP PARALLEL DO
@ -456,8 +454,8 @@ subroutine crystallite_stressAndItsTangent(updateJaco)
if ( crystallite_requested(g,i,e) &
.and. crystallite_onTrack(g,i,e) &
.and. .not. crystallite_converged(g,i,e)) then ! all undone crystallites
crystallite_converged(g,i,e) = crystallite_updateState(g,i,e).AND.&
crystallite_updateTemperature(g,i,e)
crystallite_converged(g,i,e) = (crystallite_updateState(g,i,e).AND.&
crystallite_updateTemperature(g,i,e))
if (crystallite_converged(g,i,e)) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(NiterationState) = debug_StateLoopDistribution(NiterationState) + 1
@ -724,8 +722,7 @@ endsubroutine
crystallite_Temperature(g,i,e) = crystallite_Temperature(g,i,e) - residuum
! setting flag to true if state is below relative Tolerance, otherwise set it to false
crystallite_updateTemperature = maxval(abs(residuum/crystallite_Temperature(g,i,e)), &
crystallite_Temperature(g,i,e) /= 0.0_pReal) < rTol_crystalliteTemperature
crystallite_updateTemperature = abs(residuum/crystallite_Temperature(g,i,e)) < rTol_crystalliteTemperature
if (debugger) write(6,'(a,/,f12.4)') 'updated temperature: ', crystallite_Temperature(g,i,e)

View File

@ -51,7 +51,7 @@ CONTAINS
!**************************************
!* Module initialization *
!**************************************
subroutine homogenization_init()
subroutine homogenization_init(Temperature)
use prec, only: pReal,pInt
use math, only: math_I3
use IO, only: IO_error, IO_open_file
@ -62,6 +62,7 @@ subroutine homogenization_init()
use homogenization_isostrain
! use homogenization_RGC
real(pReal) Temperature
integer(pInt), parameter :: fileunit = 200
integer(pInt) e,i,g,myInstance
@ -83,7 +84,7 @@ subroutine homogenization_init()
allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF0 = 0.0_pReal
allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF = 0.0_pReal
allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_P = 0.0_pReal
allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)); materialpoint_Temperature = 0.0_pReal
allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)); materialpoint_Temperature = Temperature
allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems)); materialpoint_subFrac = 0.0_pReal
allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems)); materialpoint_subStep = 0.0_pReal
allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems)); materialpoint_subdt = 0.0_pReal
@ -180,8 +181,7 @@ subroutine materialpoint_stressAndItsTangent(&
use constitutive, only: constitutive_state0, &
constitutive_partionedState0, &
constitutive_state
use crystallite, only: crystallite_Temperature0, &
crystallite_Temperature, &
use crystallite, only: crystallite_Temperature, &
crystallite_F0, &
crystallite_Fp0, &
crystallite_Fp, &
@ -210,7 +210,8 @@ subroutine materialpoint_stressAndItsTangent(&
write (6,*)
write (6,*) 'Material Point start'
write (6,'(a,/,3(3(f12.7,x)/))') 'F0 of 8 1',materialpoint_F0(1:3,:,8,1)
write (6,'(a,/,(f12.7,x))') 'Temp0 of 8 1' ,materialpoint_Temperature(8,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'F0 of 8 1',materialpoint_F0(1:3,:,8,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'F of 8 1',materialpoint_F(1:3,:,8,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'Fp0 of 1 8 1',crystallite_Fp0(1:3,:,1,8,1)
write (6,'(a,/,3(3(f12.7,x)/))') 'Lp0 of 1 8 1',crystallite_Lp0(1:3,:,1,8,1)
@ -222,7 +223,7 @@ subroutine materialpoint_stressAndItsTangent(&
! initialize restoration points of grain...
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p ! ...microstructures
crystallite_partionedTemperature0(1:myNgrains,i,e) = crystallite_Temperature0(1:myNgrains,i,e)! ...temperatures
crystallite_partionedTemperature0(1:myNgrains,i,e) = materialpoint_Temperature(i,e) ! ...temperatures
crystallite_partionedFp0(:,:,1:myNgrains,i,e) = crystallite_Fp0(:,:,1:myNgrains,i,e) ! ...plastic def grads
crystallite_partionedLp0(:,:,1:myNgrains,i,e) = crystallite_Lp0(:,:,1:myNgrains,i,e) ! ...plastic velocity grads
crystallite_partionedF0(:,:,1:myNgrains,i,e) = crystallite_F0(:,:,1:myNgrains,i,e) ! ...def grads

View File

@ -257,7 +257,7 @@ function homogenization_isostrain_averageTemperature(&
! homID = homogenization_typeInstance(mesh_element(3,el))
Ngrains = homogenization_Ngrains(mesh_element(3,el))
homogenization_isostrain_averageTemperature = sum(Temperature)/Ngrains
homogenization_isostrain_averageTemperature = sum(Temperature(1:Ngrains))/Ngrains
return

View File

@ -16,7 +16,8 @@ integer(pInt) iJacoStiffness, & ! freque
real(pReal) relevantStrain, & ! strain increment considered significant
pert_Fg, & ! strain perturbation for FEM Jacobi
subStepMin, & ! minimum (relative) size of sub-step allowed during cutback in crystallite
rTol_crystalliteState, & ! relative tolerance in crystallite state loop
rTol_crystalliteState, & ! relative tolerance in crystallite state loop
rTol_crystalliteTemperature, & ! relative tolerance in crystallite temperature loop
rTol_crystalliteStress, & ! relative tolerance in crystallite stress loop
aTol_crystalliteStress, & ! absolute tolerance in crystallite stress loop
resToler, & ! relative tolerance of residual in GIA iteration
@ -88,7 +89,8 @@ subroutine numerics_init()
nState = 10_pInt
nStress = 40_pInt
subStepMin = 1.0e-3_pReal
rTol_crystalliteState = 1.0e-6_pReal
rTol_crystalliteState = 1.0e-6_pReal
rTol_crystalliteTemperature = 1.0e-6_pReal
rTol_crystalliteStress = 1.0e-6_pReal
aTol_crystalliteStress = 1.0e-8_pReal
resToler = 1.0e-4_pReal
@ -129,7 +131,9 @@ subroutine numerics_init()
case ('substepmin')
subStepMin = IO_floatValue(line,positions,2)
case ('rtol_crystallitestate')
rTol_crystalliteState = IO_floatValue(line,positions,2)
rTol_crystalliteState = IO_floatValue(line,positions,2)
case ('rtol_crystalliteTemperature')
rTol_crystalliteTemperature = IO_floatValue(line,positions,2)
case ('rtol_crystallitestress')
rTol_crystalliteStress = IO_floatValue(line,positions,2)
case ('atol_crystallitestress')
@ -164,7 +168,8 @@ subroutine numerics_init()
write(6,'(a24,x,i8)') 'nState: ',nState
write(6,'(a24,x,i8)') 'nStress: ',nStress
write(6,'(a24,x,e8.1)') 'subStepMin: ',subStepMin
write(6,'(a24,x,e8.1)') 'rTol_crystalliteState: ',rTol_crystalliteState
write(6,'(a24,x,e8.1)') 'rTol_crystalliteState: ',rTol_crystalliteState
write(6,'(a24,x,e8.1)') 'rTol_crystalliteTemp: ',rTol_crystalliteTemperature
write(6,'(a24,x,e8.1)') 'rTol_crystalliteStress: ',rTol_crystalliteStress
write(6,'(a24,x,e8.1)') 'aTol_crystalliteStress: ',aTol_crystalliteStress
write(6,'(a24,x,e8.1)') 'resToler: ',resToler
@ -173,7 +178,7 @@ subroutine numerics_init()
write(6,'(a24,x,i8)') 'NRiterMax: ',NRiterMax
write(6,*)
! sanity check
! sanity check (Temperature check missing!!!!!!!)
if (relevantStrain <= 0.0_pReal) call IO_error(260)
if (iJacoStiffness < 1_pInt) call IO_error(261)
if (iJacoLpresiduum < 1_pInt) call IO_error(262)