DAMASK_EICMD/code/CPFEM.f90

300 lines
15 KiB
Fortran

!##############################################################
MODULE CPFEM
!##############################################################
! *** CPFEM engine ***
!
use prec, only: pReal, &
pInt
implicit none
real(pReal), parameter :: CPFEM_odd_stress = 1e15_pReal, &
CPFEM_odd_jacobian = 1e50_pReal
real(pReal), dimension (:,:,:), allocatable :: CPFEM_cs ! Cauchy stress
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_dcsdE ! Cauchy stress tangent
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_dcsdE_knownGood ! known good tangent
logical :: CPFEM_init_done = .false., & ! remember whether init has been done already
CPFEM_calc_done = .false. ! remember whether first IP has already calced the results
CONTAINS
!*********************************************************
!*** allocate the arrays defined in module CPFEM ***
!*** and initialize them ***
!*********************************************************
subroutine CPFEM_init()
use prec, only: pInt
use FEsolving, only: parallelExecution, &
symmetricSolver
use mesh, only: mesh_NcpElems, &
mesh_maxNips
implicit none
! initialize stress and jacobian to zero
allocate(CPFEM_cs(6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_cs = 0.0_pReal
allocate(CPFEM_dcsdE(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsde = 0.0_pReal
allocate(CPFEM_dcsdE_knownGood(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsde_knownGood = 0.0_pReal
!$OMP CRITICAL (write2out)
write(6,*)
write(6,*) '<<<+- cpfem init -+>>>'
write(6,*)
write(6,'(a32,x,6(i5,x))') 'CPFEM_cs: ', shape(CPFEM_cs)
write(6,'(a32,x,6(i5,x))') 'CPFEM_dcsde: ', shape(CPFEM_dcsde)
write(6,'(a32,x,6(i5,x))') 'CPFEM_dcsde_knownGood: ', shape(CPFEM_dcsde_knownGood)
write(6,*)
write(6,*) 'parallelExecution: ', parallelExecution
write(6,*) 'symmetricSolver: ', symmetricSolver
call flush(6)
!$OMP END CRITICAL (write2out)
return
endsubroutine
!***********************************************************************
!*** perform initialization at first call, update variables and ***
!*** call the actual material model ***
!***********************************************************************
subroutine CPFEM_general(mode, ffn, ffn1, Temperature, dt, element, IP, cauchyStress, jacobian, ngens)
! note: cauchyStress = Cauchy stress cs(6) and jacobian = Consistent tangent dcs/de
!*** variables and functions from other modules ***!
use prec, only: pReal, &
pInt
use numerics, only: numerics_init, &
relevantStrain, &
iJacoStiffness
use debug, only: debug_init
use FEsolving, only: FE_init, &
parallelExecution, &
outdatedFFN1, &
cycleCounter, &
theInc, &
theCycle, &
theLovl, &
theTime, &
FEsolving_execElem, &
FEsolving_execIP
use math, only: math_init, &
math_identity2nd, &
math_mul33x33, &
math_det3x3, &
math_I3, &
math_Mandel3333to66, &
math_Mandel33to6
use mesh, only: mesh_init, &
mesh_FEasCP, &
mesh_NcpElems, &
mesh_maxNips
use lattice, only: lattice_init
use material, only: material_init, &
homogenization_maxNgrains
use constitutive, only: constitutive_init,&
constitutive_state0,constitutive_state
use crystallite, only: crystallite_init, &
crystallite_F0, &
crystallite_partionedF, &
crystallite_Fp0, &
crystallite_Fp, &
crystallite_Lp0, &
crystallite_Lp
use homogenization, only: homogenization_init, &
homogenization_sizeState, &
homogenization_state, &
homogenization_state0, &
materialpoint_F, &
materialpoint_F0, &
materialpoint_P, &
materialpoint_dPdF, &
materialpoint_Temperature, &
materialpoint_stressAndItsTangent, &
materialpoint_postResults
implicit none
!*** input variables ***!
integer(pInt), intent(in) :: element, & ! FE element number
IP, & ! FE integration point number
ngens ! size of stress strain law
real(pReal), intent(inout) :: Temperature ! temperature
real(pReal), intent(in) :: dt ! time increment
real(pReal), dimension (3,3), intent(in) :: ffn, & ! deformation gradient for t=t0
ffn1 ! deformation gradient for t=t1
integer(pInt), intent(in) :: mode ! computation mode 1: regular computation with aged results
! 2: regular computation
! 3: collection of FEM data
! 4: recycling of former results (MARC speciality)
! 5: record tangent from former converged inc
! 6: restore tangent from former converged inc
!*** output variables ***!
real(pReal), dimension(ngens), intent(out) :: cauchyStress ! stress vector in Mandel notation
real(pReal), dimension(ngens,ngens), intent(out) :: jacobian ! jacobian in Mandel notation
!*** local variables ***!
real(pReal) J_inverse ! inverse of Jacobian
real(pReal), dimension (3,3) :: Kirchhoff
real(pReal), dimension (3,3,3,3) :: H, &
H_sym
integer(pInt) cp_en, & ! crystal plasticity element number
i, &
j, &
k, &
l, &
m, &
n
logical updateJaco ! flag indicating if JAcobian has to be updated
!*** global variables ***!
! CPFEM_cs, &
! CPFEM_dcsdE, &
! CPFEM_dcsdE_knownGood, &
! CPFEM_init_done, &
! CPFEM_calc_done, &
! CPFEM_odd_stress, &
! CPFEM_odd_jacobian
! initialization step (three dimensional stress state check missing?)
if (.not. CPFEM_init_done) then
call numerics_init()
call debug_init()
call math_init()
call FE_init()
call mesh_init()
call lattice_init()
call material_init()
call constitutive_init()
call crystallite_init(Temperature) ! (have to) use temperature of first IP for whole model
call homogenization_init(Temperature)
call CPFEM_init()
CPFEM_init_done = .true.
endif
cp_en = mesh_FEasCP('elem',element)
if (cp_en == 1 .and. IP == 1) then
write(6,*) '#####################################'
write(6,'(a10,1x,f8.4,1x,a10,1x,i4,1x,a10,1x,i3,1x,a10,1x,i2,x,a10,1x,i2)') &
'theTime',theTime,'theInc',theInc,'theCycle',theCycle,'theLovl',theLovl,&
'mode',mode
write(6,*) '#####################################'
endif
! according to our "mode" we decide what to do
select case (mode)
! --+>> REGULAR COMPUTATION (WITH AGING OF RESULTS IF MODE == 1) <<+--
case (1,2)
! age results if mode == 1
if (mode == 1) then
crystallite_F0 = crystallite_partionedF ! crystallite deformation (_subF is perturbed...)
crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation
crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity
forall ( i = 1:homogenization_maxNgrains, &
j = 1:mesh_maxNips, &
k = 1:mesh_NcpElems ) &
constitutive_state0(i,j,k)%p = constitutive_state(i,j,k)%p ! microstructure of crystallites
write(6,'(a10,/,4(3(f10.3,x),/))') 'aged state',constitutive_state(1,1,1)%p/1e6
do j = 1,mesh_maxNips
do k = 1,mesh_NcpElems
if (homogenization_sizeState(j,k) > 0_pInt) &
homogenization_state0(j,k)%p = homogenization_state(j,k)%p ! internal state of homogenization scheme
enddo
enddo
endif
! deformation gradient outdated or any actual deformation gradient differs more than relevantStrain from the stored one
if (outdatedFFN1 .or. any(abs(ffn1 - materialpoint_F(:,:,IP,cp_en)) > relevantStrain)) then
if (.not. outdatedFFN1) &
write(6,'(a11,x,i5,x,i2,x,a10,/,3(3(f10.3,x),/))') 'outdated at',cp_en,IP,'FFN1 now:',ffn1(:,1),ffn1(:,2),ffn1(:,3)
outdatedFFN1 = .true.
CPFEM_cs(1:ngens,IP,cp_en) = CPFEM_odd_stress
CPFEM_dcsde(1:ngens,1:ngens,IP,cp_en) = CPFEM_odd_jacobian*math_identity2nd(ngens)
! deformation gradient is not outdated
else
! set flag for Jacobian update
updateJaco = (mod(cycleCounter-4,4_pInt*iJacoStiffness)==0)
! no parallel computation
if (.not. parallelExecution) then
! we just take one single element and IP
FEsolving_execElem(1) = cp_en
FEsolving_execElem(2) = cp_en
FEsolving_execIP(1,cp_en) = IP
FEsolving_execIP(2,cp_en) = IP
call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent
call materialpoint_postResults(dt) ! post results
! parallel computation and calulation not yet done
elseif (.not. CPFEM_calc_done) then
call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent (parallel execution inside)
call materialpoint_postResults(dt) ! post results
CPFEM_calc_done = .true.
endif
! translate from P to CS
Kirchhoff = math_mul33x33(materialpoint_P(:,:,IP, cp_en),transpose(materialpoint_F(:,:,IP, cp_en)))
J_inverse = 1.0_pReal/math_det3x3(materialpoint_F(:,:,IP, cp_en))
CPFEM_cs(1:ngens,IP,cp_en) = math_Mandel33to6(J_inverse*Kirchhoff)
! translate from dP/dF to dCS/dE
H = 0.0_pReal
forall(i=1:3,j=1:3,k=1:3,l=1:3,m=1:3,n=1:3) &
H(i,j,k,l) = H(i,j,k,l) + &
materialpoint_F(j,m,IP,cp_en) * &
materialpoint_F(l,n,IP,cp_en) * &
materialpoint_dPdF(i,m,k,n,IP,cp_en) - &
math_I3(j,l)*materialpoint_F(i,m,IP,cp_en)*materialpoint_P(k,m,IP,cp_en) + &
0.5_pReal*(math_I3(i,k)*Kirchhoff(j,l) + math_I3(j,l)*Kirchhoff(i,k) + &
math_I3(i,l)*Kirchhoff(j,k) + math_I3(j,k)*Kirchhoff(i,l))
forall(i=1:3,j=1:3,k=1:3,l=1:3) &
H_sym(i,j,k,l)= 0.25_pReal*(H(i,j,k,l)+H(j,i,k,l)+H(i,j,l,k)+H(j,i,l,k)) ! where to use the symmetric version??
CPFEM_dcsde(1:ngens,1:ngens,IP,cp_en) = math_Mandel3333to66(J_inverse*H)
endif
! --+>> COLLECTION OF FEM DATA AND RETURN OF ODD STRESS AND JACOBIAN <<+--
case (3)
if (IP==1.AND.cp_en==1) write(6,*) 'Temp from CPFEM', Temperature
materialpoint_Temperature(IP,cp_en) = Temperature
materialpoint_F0(:,:,IP,cp_en) = ffn
materialpoint_F(:,:,IP,cp_en) = ffn1
CPFEM_cs(1:ngens,IP,cp_en) = CPFEM_odd_stress
CPFEM_dcsde(1:ngens,1:ngens,IP,cp_en) = CPFEM_odd_jacobian*math_identity2nd(ngens)
CPFEM_calc_done = .false.
! --+>> RECYCLING OF FORMER RESULTS (MARC SPECIALTY) <<+--
case (4)
! do nothing
! --+>> RECORD JACOBIAN FROM FORMER CONVERGED INC <<+--
case (5)
CPFEM_dcsde_knownGood = CPFEM_dcsde
! --+>> RESTORE CONSISTENT JACOBIAN FROM FORMER CONVERGED INC <<+--
case (6)
CPFEM_dcsde = CPFEM_dcsde_knownGood
end select
! return the local stress and the jacobian from storage
cauchyStress(1:ngens) = CPFEM_cs(1:ngens,IP,cp_en)
jacobian(1:ngens,1:ngens) = CPFEM_dcsdE(1:ngens,1:ngens,IP,cp_en)
! return temperature
if (theInc > 0_pInt) Temperature = materialpoint_Temperature(IP,cp_en) ! homogenized result except for potentially non-isothermal starting condition.
return
end subroutine
END MODULE CPFEM