major edit.

combined routines into
CPFEM_general, CPFEM_stressIP (incl cutback scheme),
CPFEM_stressCrystallite, and CPFEM_timeIntegration (Newton scheme)

error management now based on text strings
This commit is contained in:
Philip Eisenlohr 2007-04-11 10:06:28 +00:00
parent 9da4b4cf24
commit ff6642ea8c
1 changed files with 365 additions and 517 deletions

View File

@ -1,15 +1,15 @@
! last modified 29.03.07
! ---------------------------
!##############################################################
MODULE CPFEM
! ---------------------------
!##############################################################
! *** CPFEM engine ***
!
use prec, only: pReal,pInt
implicit none
!
! ****************************************************************
! *** General variables for the material behaviour calculation ***
! ****************************************************************
! ****************************************************************
! *** General variables for the material behaviour calculation ***
! ****************************************************************
real(pReal), dimension (:,:,:), allocatable :: CPFEM_stress_all
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jacobi_all
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn_all
@ -28,15 +28,67 @@
CONTAINS
!***********************************************************************
!*** This routine checks for initialization, variables update and ***
!*** calls the actual material model ***
!***********************************************************************
subroutine cpfem_general(ffn, ffn1, CPFEM_inc, CPFEM_subinc, CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in)
!*********************************************************
!*** allocate the arrays defined in module CPFEM ***
!*** and initialize them ***
!*********************************************************
SUBROUTINE CPFEM_init()
!
use prec, only: pReal,pInt
! use math, only: math_I3
use mesh
use constitutive
!
implicit none
!
! *** mpie.marc parameters ***
allocate(CPFEM_ffn_all (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn_all = 0.0_pReal
allocate(CPFEM_ffn1_all (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn1_all = 0.0_pReal
allocate(CPFEM_stress_all( 6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_stress_all = 0.0_pReal
allocate(CPFEM_jacobi_all(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jacobi_all = 0.0_pReal
!
! *** User defined results !!! MISSING incorporate consti_Nresults ***
allocate(CPFEM_results(CPFEM_Nresults+constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_results = 0.0_pReal
!
! *** Second Piola-Kirchoff stress tensor at (t=t0) and (t=t1) ***
allocate(CPFEM_sigma_old(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_sigma_old = 0.0_pReal
allocate(CPFEM_sigma_new(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_sigma_new = 0.0_pReal
!
! *** Plastic deformation gradient at (t=t0) and (t=t1) ***
allocate(CPFEM_Fp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fp_old = 0.0_pReal
allocate(CPFEM_Fp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fp_new = 0.0_pReal
!
! *** Old jacobian (consistent tangent) ***
allocate(CPFEM_jaco_old(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jaco_old = 0.0_pReal
!
! *** Output to MARC output file ***
write(6,*)
write(6,*) 'Arrays allocated:'
write(6,*) 'CPFEM_ffn_all: ', shape(CPFEM_ffn_all)
write(6,*) 'CPFEM_ffn1_all: ', shape(CPFEM_ffn1_all)
write(6,*) 'CPFEM_stress_all: ', shape(CPFEM_stress_all)
write(6,*) 'CPFEM_jacobi_all: ', shape(CPFEM_jacobi_all)
write(6,*) 'CPFEM_results: ', shape(CPFEM_results)
write(6,*) 'CPFEM_sigma_old: ', shape(CPFEM_sigma_old)
write(6,*) 'CPFEM_sigma_new: ', shape(CPFEM_sigma_new)
write(6,*) 'CPFEM_Fp_old: ', shape(CPFEM_Fp_old)
write(6,*) 'CPFEM_Fp_new: ', shape(CPFEM_Fp_new)
write(6,*) 'CPFEM_jaco_old: ', shape(CPFEM_jaco_old)
write(6,*)
call flush(6)
return
END SUBROUTINE
!
!
!***********************************************************************
!*** perform initialization at first call, update variables and ***
!*** call the actual material model ***
!***********************************************************************
SUBROUTINE CPFEM_general(ffn, ffn1, CPFEM_inc, CPFEM_subinc, CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in)
!
use prec, only: pReal,pInt
! use CPFEM, only: CPFEM_ffn_all, CPFEM_ffn1_all, CPFEM_inc_old
! use IO, only: IO_init
use constitutive, only: constitutive_state_old, constitutive_state_new
implicit none
!
@ -46,15 +98,13 @@
! initialization step
if (CPFEM_first_call) then
! three dimensional stress state ?
! call IO_init()
call math_init()
call mesh_init()
call constitutive_init()
call math_init()
call CPFEM_init()
CPFEM_first_call = .false.
endif
! not a new increment
if (CPFEM_inc==CPFEM_inc_old) then
if (CPFEM_inc==CPFEM_inc_old) then ! not a new increment
! case of a new subincrement:update starting with subinc 2
if (CPFEM_subinc > CPFEM_subinc_old) then
CPFEM_sigma_old = CPFEM_sigma_new
@ -62,8 +112,7 @@
constitutive_state_old = constitutive_state_new
CPFEM_subinc_old = CPFEM_subinc
endif
! case of a new increment
else
else ! new increment
CPFEM_sigma_old = CPFEM_sigma_new
CPFEM_Fp_old = CPFEM_Fp_new
constitutive_state_old = constitutive_state_new
@ -71,535 +120,330 @@
CPFEM_subinc_old = 1_pInt
endif
!
! get cp element number for fe element number
CPFEM_ffn_all(:,:,CPFEM_in, cp_en) = ffn
CPFEM_ffn1_all(:,:,CPFEM_in, cp_en) = ffn1
call CPFEM_general_material(CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in)
call CPFEM_stressIP(CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in)
return
end subroutine
END SUBROUTINE
!***********************************************************************
!*** This routine allocates the arrays defined in module CPFEM ***
!*** and initializes them ***
!***********************************************************************
subroutine CPFEM_init()
!
use prec, only: pReal,pInt
! use math, only: math_I3
use mesh
use constitutive
!
implicit none
!
! *** mpie.marc parameters ***
allocate(CPFEM_ffn_all(3,3,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_ffn1_all(3,3,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_stress_all(6,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_jacobi_all(6,6,mesh_maxNips,mesh_NcpElems))
CPFEM_ffn_all = 0.0_pReal
CPFEM_ffn1_all = 0.0_pReal
CPFEM_stress_all = 0.0_pReal
CPFEM_jacobi_all = 0.0_pReal
!
! *** User defined results !!! MISSING incorporate consti_Nresults ***
allocate(CPFEM_results(CPFEM_Nresults+constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_results = 0.0_pReal
!
! *** Second Piola-Kirchoff stress tensor at (t=t0) and (t=t1) ***
allocate(CPFEM_sigma_old(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_sigma_new(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_sigma_old = 0.0_pReal
CPFEM_sigma_new = 0.0_pReal
!
! *** Plastic deformation gradient at (t=t0) and (t=t1) ***
allocate(CPFEM_Fp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_Fp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_Fp_old = 0.0_pReal
CPFEM_Fp_new = 0.0_pReal
!
! *** Old jacobian (consistent tangent) ***
allocate(CPFEM_jaco_old(6,6,mesh_maxNips,mesh_NcpElems))
CPFEM_jaco_old = 0.0_pReal
!
! *** Output to MARC output file ***
write(6,*)
write(6,*) 'Arrays allocated:'
write(6,*) 'CPFEM_ffn_all: ', shape(CPFEM_ffn_all)
write(6,*) 'CPFEM_ffn1_all: ', shape(CPFEM_ffn1_all)
write(6,*) 'CPFEM_stress_all: ', shape(CPFEM_stress_all)
write(6,*) 'CPFEM_jacobi_all: ', shape(CPFEM_jacobi_all)
write(6,*) 'CPFEM_results: ', shape(CPFEM_results)
write(6,*) 'CPFEM_sigma_old: ', shape(CPFEM_sigma_old)
write(6,*) 'CPFEM_sigma_new: ', shape(CPFEM_sigma_new)
write(6,*) 'CPFEM_Fp_old: ', shape(CPFEM_Fp_old)
write(6,*) 'CPFEM_Fp_new: ', shape(CPFEM_Fp_new)
write(6,*) 'CPFEM_jaco_old: ', shape(CPFEM_jaco_old)
write(6,*)
call flush(6)
return
end subroutine
!
!
subroutine CPFEM_general_material(&
!**********************************************************
!*** calculate the material behaviour at IP level ***
!**********************************************************
SUBROUTINE CPFEM_stressIP(&
CPFEM_cn,& ! Cycle number
CPFEM_dt,& ! Time increment (dt)
cp_en,& ! Element number
CPFEM_in) ! Integration point number
!***********************************************************************
!*** This routine calculates the material behaviour ***
!***********************************************************************
use prec, only: pReal,pInt, ijaco
! use IO, only: IO_error
use math
use mesh
use prec, only: pReal,pInt,ijaco,nCutback
use IO, only: IO_error
use mesh, only: mesh_element
use constitutive
!
implicit none
!
! *** Definition of variables ***
! *** Subroutine parameters ***
real(pReal) CPFEM_dt
integer(pInt) CPFEM_cn, cp_en ,CPFEM_in
! *** Local variables ***
real(pReal) vf, cs(6), cd(6,6), CPFEM_d(6,6), CPFEM_s(6)
integer(pInt) jpara,nori, iori, ising, icut, iconv, CPFEM_en
!
! *** Flag for recalculation of jacobian ***
jpara = 1_pInt
! get number of grains from cp element number and integration point number
nori = constitutive_Ngrains(CPFEM_in,cp_en) !ÄÄÄ
!
CPFEM_en = mesh_element(1,cp_en) ! remap back to FE id
!
CPFEM_s=0
CPFEM_d=0
!
! *** Loop over all the components ***
do iori=1,nori
!
! *** Initialization of the matrices for t=t0 ***
! data from constitutive?
vf = constitutive_matVolFrac(iori,CPFEM_in,cp_en)*constitutive_texVolFrac(iori,CPFEM_in,cp_en) !ÄÄÄ
! *** Calculation of the solution at t=t1 ***
! QUESTION use the mod() as flag parameter in the call ??
if (mod(CPFEM_cn,ijaco)==0) then !ÄÄÄ
call CPFEM_stress(cs, cd, CPFEM_dt,cp_en,CPFEM_in, iori, ising, icut, iconv, 1_pInt)
! *** Evaluation of ising ***
! *** ising=2 => singular matrix in jacobi calculation ***
! *** => use old jacobi ***
if (ising==2) jpara=0
! *** Calculation of the consistent tangent ***
CPFEM_d=CPFEM_d+vf*cd
else
call CPFEM_stress(cs, cd, CPFEM_dt,cp_en,CPFEM_in, iori, ising, icut, iconv, 0_pInt)
jpara=0
endif
! *** Cases of unsuccessful calculations ***
! *** Evaluation of ising ***
! *** ising!=0 => singular matrix ***
if (ising==1) then
write(6,*) 'Singular matrix!'
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',CPFEM_en
call IO_error(700)
! CPFEM_timefactor=1.e5_pReal
return
endif
! *** Evaluation of icut ***
! *** icut!=0 => too many cutbacks ***
if (icut==1) then
write(6,*) 'Too many cutbacks'
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',CPFEM_en
call IO_error(600)
! CPFEM_timefactor=1.e5_pReal
return
endif
! *** Evaluation of iconv ***
! *** iconv!=0 => no convergence ***
if (iconv==1) then
write(6,*) 'Inner loop did not converge!'
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',CPFEM_en
call IO_error(600)
! CPFEM_timefactor=1.e5_pReal
return
else if (iconv==2) then
write(6,*) 'Outer loop did not converge!'
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',CPFEM_en
call IO_error(600)
! CPFEM_timefactor=1.e5_pReal
return
endif
! *** Evaluation of the average Cauchy stress ***
CPFEM_s=CPFEM_s+vf*cs
enddo
! *** End of the loop over the components ***
! *************************************
! *** End of the CP-FEM Calculation ***
! *************************************
! *** Store the new stress ***
CPFEM_stress_all(:,CPFEM_in,cp_en)=CPFEM_s
! *** Store the new jacobian ***
if (jpara/=0) CPFEM_jaco_old(:,:,CPFEM_in,cp_en)=CPFEM_d
integer(pInt), parameter :: i_now = 1_pInt,i_then = 2_pInt
character(len=128) msg
integer(pInt) CPFEM_cn,cp_en,CPFEM_in,grain,i
logical updateJaco
real(pReal) CPFEM_dt,dt,t,volfrac
real(pReal), dimension(6) :: cs,Tstar_v
real(pReal), dimension(6,6) :: cd,cd_IP
real(pReal), dimension(3,3) :: deltaFg
real(pReal), dimension(3) :: Euler
real(pReal), dimension(3,3,2) :: Fg,Fp
real(pReal), dimension(constitutive_Nstatevars(grain,CPFEM_in,cp_en),2) :: state
updateJaco = (mod(CPFEM_cn,ijaco)==0) ! update consistent tangent every ijaco'th iteration
CPFEM_stress_all(:,CPFEM_in,cp_en) = 0.0_pReal ! average Cauchy stress
cd_IP = 0.0_pReal ! average consistent tangent
! -------------- grain loop -----------------
do grain = 1,constitutive_Ngrains(CPFEM_in,cp_en)
! -------------------------------------------
i = 0_pInt ! cutback counter
state(:,i_now) = constitutive_state_old(:,grain,CPFEM_in,cp_en)
Fg(:,:,i_now) = CPFEM_ffn_all(:,:,CPFEM_in,cp_en)
Fp(:,:,i_now) = CPFEM_Fp_old(:,:,grain,CPFEM_in,cp_en)
deltaFg = CPFEM_ffn1_all(:,:,CPFEM_in,cp_en)-CPFEM_ffn_all(:,:,CPFEM_in,cp_en)
dt = CPFEM_dt
Tstar_v = 0.0_pReal ! fully elastic initial guess
Fg(:,:,i_then) = Fg(:,:,i_now)
state(:,i_then) = 0.0_pReal ! state_old as initial guess
t = 0.0_pReal
! ------- crystallite integration -----------
do
! -------------------------------------------
if (t+dt < CPFEM_dt) then ! intermediate solution
t = t+dt ! next time inc
Fg(:,:,i_then) = Fg(:,:,i_then)+deltaFg ! corresponding Fg
else ! full step solution
t = CPFEM_dt ! final time
Fg(:,:,i_then) = CPFEM_ffn_all(:,:,CPFEM_in,cp_en) ! final Fg
endif
call CPFEM_stressCrystallite(msg,cs,cd,Tstar_v,Fp(:,:,i_then),state(:,i_then),Euler,&
dt,cp_en,CPFEM_in,grain,updateJaco .and. t==CPFEM_dt,&
Fg(:,:,i_now),Fg(:,:,i_then),Fp(:,:,i_now),state(:,i_now))
if (msg == 'ok') then ! solution converged
if (t == CPFEM_dt) exit ! reached final "then"
else ! solution not found
i = i+1_pInt ! inc cutback counter
if (i > nCutback) then ! limit exceeded?
write(6,*) 'cutback limit --> '//msg
write(6,*) 'Grain: ',grain
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',mesh_element(1,cp_en)
call IO_error(600)
return ! byebye
else
t = t-dt ! rewind time
Fg(:,:,i_then) = Fg(:,:,i_then)-deltaFg ! rewind Fg
dt = 0.5_pReal*dt ! cut time-step in half
deltaFg = 0.5_pReal*deltaFg ! cut Fg-step in half
endif
endif
enddo ! crystallite integration (cutback loop)
! ---- update crystallite matrices at t = t1 ----
CPFEM_Fp_new(:,:,grain,CPFEM_in,cp_en) = Fp(:,:,i_then)
constitutive_state_new(:,grain,CPFEM_in,cp_en) = state(:,i_then)
CPFEM_sigma_new(:,grain,CPFEM_in,cp_en) = Tstar_v
! ---- update results plotted in MENTAT ----
CPFEM_results(1:3,grain,CPFEM_in,cp_en) = Euler
CPFEM_results(4:3+constitutive_Nresults(grain,CPFEM_in,cp_en),grain,CPFEM_in,cp_en) = &
constitutive_results(1:constitutive_Nresults(grain,CPFEM_in,cp_en),grain,CPFEM_in,cp_en)!ÄÄÄÄ
! ---- contribute to IP result ----
volfrac = constitutive_matVolFrac(grain,CPFEM_in,cp_en)*constitutive_texVolFrac(grain,CPFEM_in,cp_en)
CPFEM_stress_all(:,CPFEM_in,cp_en) = CPFEM_stress_all(:,CPFEM_in,cp_en)+volfrac*cs ! average Cauchy stress
if (updateJaco) cd_IP = cd_IP+volfrac*cd ! average consistent tangent
enddo ! grain loop
return
end subroutine
!
!
subroutine CPFEM_stress(&
cs,& ! stress vector
cd,& ! Jacoby matrix
CPFEM_dt,& ! Time increment (dt)
cp_en,& ! Element number
CPFEM_in,& ! Integration point number
iori,& ! number of orintation
ising,& ! flag for singular matrix
icut,& ! flag for too many cut backs
iconv,& ! flag for non convergence
isjaco) ! flag whether to calculate Jacoby matrix
!********************************************************************
! This routine calculates the stress for a single component
! and manages the independent time incrmentation
!********************************************************************
use prec, only: pReal,pInt, ncut
use constitutive, only: constitutive_Nstatevars, constitutive_state_old, constitutive_state_new, constitutive_Nresults,&
constitutive_results
implicit none
!
! *** Definition of variables ***
! *** Subroutine parameters ***
real(pReal) cs(6), cd(6,6), CPFEM_dt
integer(pInt) cp_en ,CPFEM_in, iori, ising, icut, iconv, isjaco
! *** Local variables ***
real(pReal) Fp_old(3,3), Fp_new(3,3), state_old(constitutive_Nstatevars(iori, CPFEM_in, cp_en))
real(pReal) state_new(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), Tstar_v(6), CPFEM_ffn(3,3), CPFEM_ffn1(3,3)
real(pReal) Tstar_v_h(6), state_new_h(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), phi1, PHI, phi2, dt_i
real(pReal) delta_Fg(3,3), Fg_i(3,3), state_new_i(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), time
integer(pInt) jcut
!
icut=0
!
! *** Initialization of the matrices for t=t0 ***
Fp_old = CPFEM_Fp_old(:,:,iori,CPFEM_in,cp_en)
Fp_new = 0.0_pReal
state_old = constitutive_state_old(:,iori,CPFEM_in,cp_en)
state_new = state_old
Tstar_v = CPFEM_sigma_old(:,iori,CPFEM_in,cp_en)
CPFEM_ffn = CPFEM_ffn_all(:,:,CPFEM_in,cp_en)
CPFEM_ffn1 = CPFEM_ffn1_all(:,:,CPFEM_in,cp_en)
!
! *** First attempt to calculate Tstar and tauc with initial timestep ***
! save copies of Tstar_v and state_new
Tstar_v_h = Tstar_v
state_new_h = state_new
call CPFEM_stress_int(cs, cd, CPFEM_dt, cp_en,CPFEM_in, iori, ising, iconv, isjaco, phi1, PHI, phi2,&
CPFEM_ffn, CPFEM_ffn1,Fp_old,Fp_new,state_old, state_new, Tstar_v)
if ((iconv==0).AND.(ising==0)) then
! *** Update the differents matrices for t=t1 ***
CPFEM_Fp_new(:,:,iori,CPFEM_in,cp_en) = Fp_new
constitutive_state_new(:,iori,CPFEM_in,cp_en) = state_new
CPFEM_sigma_new(:,iori,CPFEM_in,cp_en) = Tstar_v
! *** Update the results plotted in MENTAT ***
CPFEM_results(1,iori,CPFEM_in,cp_en) = phi1
CPFEM_results(2,iori,CPFEM_in,cp_en) = PHI
CPFEM_results(3,iori,CPFEM_in,cp_en) = phi2
CPFEM_results(4:3+constitutive_Nresults(iori,CPFEM_in,cp_en),iori,CPFEM_in,cp_en)=&
constitutive_results(1:constitutive_Nresults(iori,CPFEM_in,cp_en),iori,CPFEM_in,cp_en)!ÄÄÄÄ
return
endif
!
! *** Calculation of stress and resistences with a cut timestep ***
! *** when first try did not converge ***
jcut=1_pInt
dt_i=0.5_pReal*CPFEM_dt
delta_Fg=0.5_pReal*(CPFEM_ffn1-CPFEM_ffn)
Fg_i=CPFEM_ffn+delta_Fg
Tstar_v=Tstar_v_h
state_new_i=state_new_h
! *** Start time ***
time=dt_i
do while (time<=CPFEM_dt)
call CPFEM_stress_int(cs, cd, time, cp_en,CPFEM_in, iori, ising, iconv, isjaco, phi1, PHI, phi2,&
CPFEM_ffn, Fg_i,Fp_old,Fp_new,state_old, state_new_i, Tstar_v)
if ((iconv==0).AND.(ising==0)) then
time=time+dt_i
Fg_i=Fg_i+delta_Fg
Tstar_v_h=Tstar_v
state_new_h=state_new_i
else
jcut=jcut+1_pInt
if (jcut>ncut) then
icut=1_pInt
return
endif
dt_i=0.5_pReal*dt_i
time=time-dt_i
delta_Fg=0.5_pReal*delta_Fg
Fg_i=Fg_i-delta_Fg
Tstar_v=Tstar_v_h
state_new_i=state_new_h
endif
enddo
!
! *** Final calculation of stress and resistences with full timestep ***
state_new=state_new_i
call CPFEM_stress_int(cs, cd, CPFEM_dt, cp_en,CPFEM_in, iori, ising, iconv, isjaco, phi1, PHI, phi2,&
CPFEM_ffn, CPFEM_ffn1,Fp_old,Fp_new,state_old, state_new, Tstar_v)
! *** Update the differents matrices for t=t1 ***
CPFEM_Fp_new(:,:,iori,CPFEM_in,cp_en) = Fp_new
constitutive_state_new(:,iori,CPFEM_in,cp_en) = state_new
CPFEM_sigma_new(:,iori,CPFEM_in,cp_en) = Tstar_v
! *** Update the results plotted in MENTAT ***
CPFEM_results(1,iori,CPFEM_in,cp_en) = phi1
CPFEM_results(2,iori,CPFEM_in,cp_en) = PHI
CPFEM_results(3,iori,CPFEM_in,cp_en) = phi2
return
end subroutine
!
!
subroutine CPFEM_stress_int(&
END SUBROUTINE
!********************************************************************
! Calculates the stress for a single component
! it is based on the paper by Kalidindi et al.:
! J. Mech. Phys, Solids Vol. 40, No. 3, pp. 537-569, 1992
! it is modified to use anisotropic elasticity matrix
!********************************************************************
subroutine CPFEM_stressCrystallite(&
msg,& ! return message
cs,& ! Cauchy stress vector
dcs_de,& ! Consistent tangent
dt,& ! Time increment
cp_en,& ! Element number
CPFEM_in,& ! Integration point number
iori,& ! number of orintation
ising,& ! flag for singular matrix
iconv,& ! flag for non convergence
isjaco,& ! flag whether to calculate Jacoby matrix
phi1,& ! Euler angle
PHI,& ! Euler angle
phi2,& ! Euler angle
Fg_old,& ! Old global deformation gradient
Fg_new,& ! New global deformation gradient
Fp_old,& ! Old plastic deformation gradient
Fp_new,& ! New plastic deformation gradient
state_old,& ! Old state variable array
state_new,& ! New state variable array
Tstar_v) ! Second Piola-Kirschoff stress tensor
!********************************************************************
! This routine calculates the stress for a single component
! it is based on the paper by Kalidindi et al.:
! J. Mech. Phys, Solids Vol. 40, No. 3, pp. 537-569, 1992
! it is modified to use anisotropic elasticity matrix
!********************************************************************
dcs_de,& ! consistent tangent
Tstar_v,& ! second Piola-Kirchoff stress tensor
Fp_new,& ! new plastic deformation gradient
state_new,& ! new state variable array
Euler,& ! Euler angles
!
dt,& ! time increment
cp_en,& ! element number
CPFEM_in,& ! integration point number
grain,& ! grain number
updateJaco,& ! boolean to calculate Jacobi matrix
Fg_old,& ! old global deformation gradient
Fg_new,& ! new global deformation gradient
Fp_old,& ! old plastic deformation gradient
state_old) ! old state variable array
use prec, only: pReal,pInt,pert_e
use constitutive, only: constitutive_Nstatevars
use math, only: math_Mandel6to33
use math, only: math_Mandel6to33, mapMandel,math_pDecomposition,math_RtoEuler
implicit none
!
! *** Definition of variables ***
! *** Subroutine parameters ***
integer(pInt) cp_en, CPFEM_in, iori, ising, iconv, isjaco
real(pReal) cs(6), dcs_de(6,6), dt, phi1, PHI, phi2, Fg_old(3,3), Fg_new(3,3)
real(pReal) Fp_old(3,3), Fp_new(3,3), state_old(constitutive_Nstatevars(iori, CPFEM_in, cp_en))
real(pReal) state_new(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), Tstar_v(6)
! *** Local variables ***
integer(pInt) ic
real(pReal) Fe(3,3), R(3,3), U(3,3), Fg_pert(3,3), sgm2(6)
real(pReal) state2(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), Fp2(3,3), cs1(6),E_pert(3,3)
! *** Error treatment ***
iconv = 0
ising = 0
character(len=*) msg
logical updateJaco,error
integer(pInt) cp_en,CPFEM_in,grain,i
real(pReal) dt
real(pReal), dimension(3) :: Euler
real(pReal), dimension(3,3) :: Fg_old,Fg_new,Fg_pert,Fp_old,Fp_new,Fp_pert,Fe_new,Fe_pert,R,U,E_pert
real(pReal), dimension(6) :: cs,Tstar_v,Tstar_v_pert
real(pReal), dimension(6,6) :: dcs_de
real(pReal), dimension(constitutive_Nstatevars(grain, CPFEM_in, cp_en)) :: state_old,state_new,state_pert
! *********************************************
! *** Calculation of the new Cauchy stress ***
! *********************************************
! *** Call Newton-Raphson method ***
call NEWTON_RAPHSON(dt,cp_en,CPFEM_in,iori,Fg_new,Fp_old,Fp_new,Fe,state_old,state_new,Tstar_v,cs,iconv,ising)
!
! *** Calculation of the new orientation ***
call math_pDecomposition(Fe,U,R,ising)
if (ising==1) then
call CPFEM_timeIntegration(msg,Fp_new,Fe_new,Tstar_v,state_new, &
dt,cp_en,CPFEM_in,grain,Fg_new,Fp_old,state_old)
if (msg /= 'ok') return
cs = CPFEM_CauchyStress(Tstar_v,Fe_new) ! Cauchy stress
call math_pDecomposition(Fe_new,U,R,error) ! polar decomposition
if (error) then
msg = 'polar decomposition'
return
endif
call math_RtoEuler(transpose(R),phi1,PHI,phi2)
!
! *** Choice of the calculation of the consistent tangent ***
if (isjaco==0) return
!
! *********************************************
! *** Calculation of the consistent tangent ***
! *********************************************
!
Euler = math_RtoEuler(transpose(R)) ! orientation
if (updateJaco) then
! *** Calculation of the consistent tangent with perturbation ***
! *** Perturbation on the component of Fg ***
do ic=1,6
!
! *** Method of small perturbation
! Missing direct matrix perturbation
E_pert=0
if(ic<=3) then
E_pert(ic,ic) = pert_e
else if(ic==4) then
E_pert(1,2) = pert_e/2
E_pert(2,1) = pert_e/2
else if(ic==5) then
E_pert(2,3) = pert_e/2
E_pert(3,2) = pert_e/2
else if(ic==6) then
E_pert(1,3) = pert_e/2
E_pert(3,1) = pert_e/2
end if
Fg_pert=Fg_new+matmul(E_pert, Fg_old)
sgm2=Tstar_v
state2=state_new
do i = 1,6
E_pert = 0.0_pReal
E_pert(mapMandel(1,i),mapMandel(2,i)) = E_pert(mapMandel(1,i),mapMandel(2,i)) + pert_e/2.0_pReal
E_pert(mapMandel(2,i),mapMandel(1,i)) = E_pert(mapMandel(2,i),mapMandel(1,i)) + pert_e/2.0_pReal
Fg_pert = Fg_new+matmul(E_pert,Fg_old) ! perturbated Fg
Tstar_v_pert = Tstar_v ! initial guess at center
state_pert = state_new ! initial guess at center
! *** Calculation of the perturbated Cauchy stress ***
call NEWTON_RAPHSON(dt,cp_en,CPFEM_in,iori,Fg_pert,Fp_old,Fp2,Fe,state_old,state2,sgm2,cs1,iconv,ising)
!
! *** Consistent tangent *** as cs is Mandel dcs_de(:,4:6) is too large by sqrt(2)
dcs_de(:,ic)=(cs1-cs)/pert_e
enddo
!
call CPFEM_timeIntegration(msg,Fp_pert,Fe_pert,Tstar_v_pert,state_pert, &
dt,cp_en,CPFEM_in,grain,Fg_pert,Fp_old,state_old)
if (msg /= 'ok') then
msg = 'consistent tangent --> '//msg
return
endif
! *** MISSING:Consistent tangent, (perturbated) Cauchy stress is Mandel hence dcs_de(:,4:6) is too large by sqrt(2)
dcs_de(:,i) = (CPFEM_CauchyStress(Tstar_v_pert,Fe_pert)-cs)/pert_e
enddo
endif
return
end subroutine
!
!
subroutine NEWTON_RAPHSON(&
dt,&
cp_en,& ! Element number
CPFEM_in,& ! Integration point number
iori,& ! number of orientation
Fg_new,&
Fp_old,&
Fp_new,&
Fe,&
state_old,&
state_new,&
Tstar_v,&
cs,&
iconv,&
ising)
!***********************************************************************
!*** NEWTON-RAPHSON Calculation ***
!***********************************************************************
use prec, only: pReal,pInt, nouter, tol_outer, ninner, tol_inner, crite
use constitutive, only: constitutive_Nstatevars, constitutive_HomogenizedC, constitutive_dotState
END SUBROUTINE
!***********************************************************************
!*** fully-implicit two-level time integration ***
!***********************************************************************
SUBROUTINE CPFEM_timeIntegration(&
msg,& ! return message
Fp_new,& ! new plastic deformation gradient
Fe_new,& ! new "elastic" deformation gradient
Tstar_v,& ! 2nd PK stress (taken as initial guess if /= 0)
state_new,& ! current microstructure at end of time inc (taken as guess if /= 0)
!
dt,& ! time increment
cp_en,& ! element number
CPFEM_in,& ! integration point number
grain,& ! grain number
Fg_new,& ! new total def gradient
Fp_old,& ! former plastic def gradient
state_old) ! former microstructure
use prec, only: pReal,pInt, nState,tol_State,nStress,tol_Stress, crite, nReg
use constitutive, only: constitutive_Nstatevars,&
constitutive_homogenizedC,constitutive_dotState,constitutive_LpAndItsTangent
use math
implicit none
! *** Definition of variables ***
! *** Subroutine parameters ***
integer(pInt) cp_en, CPFEM_in, iori, iconv, ising
real(pReal) dt,Fg_new(3,3),Fp_old(3,3),Fp_new(3,3), Fe(3,3)
real(pReal) state_old(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), state_new(constitutive_Nstatevars(iori, CPFEM_in, cp_en))
real(pReal) Tstar_v(6), cs(6)
! *** Local variables ***
real(pReal) invFp_old(3,3), det, A(3,3), C_66(6,6), Lp(3,3), dLp(3,3,3,3)
real(pReal) I3tLp(3,3), help(3,3), help1(3,3,3,3), Tstar0_v(6), R1(6)
real(pReal) dstate(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), R2(constitutive_Nstatevars(iori, CPFEM_in, cp_en))
real(pReal) R2s(constitutive_Nstatevars(iori, CPFEM_in, cp_en)), invFp_new(3,3)
real(pReal) Jacobi(6,6), invJacobi(6,6), dTstar_v(6), help2(6,6)
integer(pInt) iouter, iinner , dummy, err, i, j, k, l, m
!
! *** Error treatment ***
iconv = 0
ising = 0
!
! initialize new state
state_new=state_old
! *** Calculation of Fp_old(-1) ***
call invert3x3(Fp_old, invFp_old, det, err) !ÄÄÄ
if (err==1_pInt) then
ising=1
character(len=*) msg
integer(pInt) cp_en, CPFEM_in, grain
integer(pInt) iState,iStress,dummy, i,j,k,l,m
real(pReal) dt,det
real(pReal), dimension(6) :: Tstar_v,dTstar_v,Rstress
real(pReal), dimension(6,6) :: C_66,Jacobi,invJacobi,help2
real(pReal), dimension(3,3) :: Fg_new,Fp_old,Fp_new,Fe_new,invFp_old,invFp_new,Lp,A,B,AB
real(pReal), dimension(3,3,3,3) :: dLp, LTL
real(pReal), dimension(constitutive_Nstatevars(grain, CPFEM_in, cp_en)) :: state_old,state_new,dstate,Rstate,RstateS
logical failed
msg = 'ok' ! error-free so far
call math_invert3x3(Fp_old,invFp_old,det,failed) ! inversion of Fp
if (failed) then
msg = 'inversion Fp_old'
return
endif
!
! *** Calculation of A and T*0 (see Kalidindi) ***
C_66 = constitutive_HomogenizedC(grain, CPFEM_in, cp_en)
A = matmul(Fg_new,invFp_old) ! actually Fe
A = matmul(transpose(A), A)
C_66 = constitutive_HomogenizedC(iori, CPFEM_in, cp_en) !ÄÄÄ
Tstar_v = 0.5_pReal*matmul(C_66, math_Mandel33to6(A-math_I3)) ! fully elastic guess ADDED 1/2
! QUESTION follow former plastic slope to guess better?
!
! *** Second level of iterative procedure: Resistences ***
do iouter=1,nouter
! *** First level of iterative procedure: Stresses ***
do iinner=1,ninner
!
! *** Calculation of gdot_slip ***
call constitutive_LpAndItsTangent(Tstar_v, iori, CPFEM_in, cp_en, Lp, dLp)
I3tLp = math_I3-dt*Lp
help=matmul(transpose(I3tLp),matmul(A, I3tLp))
Tstar0_v = 0.5_pReal * matmul(C_66, math_Mandel33to6(help-math_I3))
R1=Tstar_v-Tstar0_v
if (maxval(abs(R1/maxval(abs(Tstar_v)))) < tol_inner) goto 100
!
! *** Jacobi Calculation: dRes/dTstar ***
help=matmul(A, I3tLp)
help1=0.0_pReal
do i=1,3
do j=1,3
do k=1,3
do l=1,3
do m=1,3
help1(i,j,k,l)=help1(i,j,k,l)+help(i,m)*dLp(m,j,k,l)+help(j,m)*dLp(m,i,l,k)
enddo
enddo
enddo
enddo
enddo
help2=math_Mandel3333to66(help1)
Jacobi= 0.5_pReal*matmul(C_66, help2) + math_identity2nd(6)
call math_invert6x6(Jacobi, invJacobi, dummy, err) !ÄÄÄ
if (err==1_pInt) then
forall (i=1:6) Jacobi(i,i)=1.05d0*maxval(Jacobi(i,:)) ! regularization
call math_invert6x6(Jacobi, invJacobi, dummy, err)
if (err==1_pInt) then ! sorry, can't help here!!
ising=1
return
endif
endif
dTstar_v=matmul(invJacobi,R1) ! correction to Tstar
! *** Correction (see Kalidindi) ***
forall(i=1:6, abs(dTstar_v(i)) > crite*maxval(abs(Tstar_v))) &
dTstar_v(i) = sign(crite*maxval(abs(Tstar_v)),dTstar_v(i))
Tstar_v=Tstar_v-dTstar_v
!
enddo
iconv=1
return
! *** End of the first level of iterative procedure ***
100 dstate=dt*constitutive_dotState(Tstar_v, iori, CPFEM_in, cp_en)
! *** Arrays of residuals ***
R2=state_new-state_old-dstate
R2s=0.0_pReal
forall(i=1:constitutive_Nstatevars(iori, CPFEM_in, cp_en), state_new(i)/=0.0_pReal) R2s(i)=R2(i)/state_new(i)
if (maxval(abs(R2s)) < tol_outer) goto 200
state_new=state_old+dstate
enddo
iconv=2
return
! *** End of the second level of iterative procedure ***
! *** Calculation of Fp(t+dt) (see Kalidindi) ***
200 invFp_new=matmul(Fp_old, I3tLp)
call math_invert3x3(invFp_new, Fp_new, det, err) !ÄÄÄ
if (err==1_pInt) then
ising=1
! former state guessed, if none specified
if (all(state_new == 0.0_pReal)) state_new = state_old
RstateS = state_new
iState = 0_pInt
! fully elastic guess (Lp = 0), if none specified
if (all(Tstar_v == 0.0_pReal)) Tstar_v = 0.5_pReal*matmul(C_66,math_Mandel33to6(A-math_I3))
! QUESTION follow former plastic slope to guess better?
Rstress = Tstar_v
iStress = 0_pInt
state: do ! outer iteration: state
iState = iState+1
if (iState > nState) then
msg = 'limit state iteration'
return
endif
stress: do ! inner iteration: stress
iStress = iStress+1
if (iStress > nStress) then ! too many loops required
msg = 'limit stress iteration'
return
endif
call constitutive_LpAndItsTangent(Lp,dLp, Tstar_v,state_new,grain,CPFEM_in,cp_en)
B = math_I3-dt*Lp
Rstress = Tstar_v - 0.5_pReal*matmul(C_66,math_Mandel33to6(matmul(transpose(B),matmul(A,B))-math_I3))
if (maxval(abs(Rstress/maxval(abs(Tstar_v)))) < tol_Stress) exit stress
! update stress guess using inverse of dRes/dTstar (Newton--Raphson)
AB = matmul(A,B)
LTL = 0.0_pReal
do i=1,3
do j=1,3
do k=1,3
do l=1,3
do m=1,3
! LTL(i,j,k,l) = LTL(i,j,k,l) + AB(i,m)*dLp(m,j,k,l) + AB(j,m)*dLp(m,i,l,k) ! old
LTL(i,j,k,l) = LTL(i,j,k,l) + dLp(j,i,k,m)*AB(m,l) + AB(m,i)*dLp(m,j,k,l) ! new (and correct??)
enddo
enddo
enddo
enddo
enddo
Jacobi = math_identity2nd(6) + 0.5_pReal*dt*matmul(C_66,math_Mandel3333to66(LTL))
j = 0_pInt ; failed = .true.
do while (failed .and. j <= nReg)
call math_invert6x6(Jacobi,invJacobi,dummy,failed)
forall (i=1:6) Jacobi(i,i) = 1.05_pReal*maxval(Jacobi(i,:)) ! regularization
j = j+1
enddo
if (failed) then
msg = 'regularization Jacobi'
return
endif
dTstar_v = matmul(invJacobi,Rstress) ! correction to Tstar
forall(i=1:6, abs(dTstar_v(i)) > crite*maxval(abs(Tstar_v))) &
dTstar_v(i) = sign(crite*maxval(abs(Tstar_v)),dTstar_v(i)) ! cap to maximum correction
Tstar_v = Tstar_v-dTstar_v
enddo stress
dstate = dt*constitutive_dotState(Tstar_v,state_new,grain,CPFEM_in,cp_en) ! evolution of microstructure
Rstate = state_new - (state_old+dstate)
RstateS = 0.0_pReal
forall (i=1:constitutive_Nstatevars(grain,CPFEM_in,cp_en), state_new(i)/=0.0_pReal) &
RstateS(i) = Rstress(i)/state_new(i)
if (maxval(abs(RstateS)) < tol_State) exit state
state_new = state_old+dstate
enddo state
invFp_new = matmul(invFp_old,B)
call math_invert3x3(invFp_new,Fp_new,det,failed)
if (failed) then
msg = 'inversion Fp_new'
return
endif
Fp_new=Fp_new/math_det3x3(Fp_new)**(1.0_pReal/3.0_pReal)
!
! *** Calculation of F*(t+dt) (see Kalidindi) ***
Fe=matmul(Fg_new,invFp_new)
!
! *** Calculation of the Cauchy stress ***
! QUESTION seems to need Tstar, not Estar..??
cs = CPFEM_cauchy_stress(Tstar_v,Fe)
!
Fp_new = Fp_new*det**(1.0_pReal/3.0_pReal) ! det = det(InvFp_new) !!
Fe_new = matmul(Fg_new,invFp_new)
return
end subroutine
!
function CPFEM_cauchy_stress(PK_v, Fe)
END SUBROUTINE
FUNCTION CPFEM_CauchyStress(PK_v,Fe)
!***********************************************************************
!*** Cauchy stress calculation ***
!***********************************************************************
@ -607,8 +451,12 @@
use math, only: math_Mandel33to6,math_Mandel6to33,math_det3x3
implicit none
! *** Subroutine parameters ***
real(pReal) PK_v(6), Fe(3,3), CPFEM_cauchy_stress(6)
real(pReal) PK_v(6), Fe(3,3), CPFEM_CauchyStress(6)
CPFEM_cauchy_stress = math_Mandel33to6(matmul(matmul(Fe,math_Mandel6to33(PK_v)),transpose(Fe))/math_det3x3(Fe))
end function
end module
CPFEM_CauchyStress = math_Mandel33to6(matmul(matmul(Fe,math_Mandel6to33(PK_v)),transpose(Fe))/math_det3x3(Fe))
return
END FUNCTION
END MODULE