462 lines
19 KiB
Fortran
462 lines
19 KiB
Fortran
|
||
!##############################################################
|
||
MODULE CPFEM
|
||
!##############################################################
|
||
! *** CPFEM engine ***
|
||
!
|
||
use prec, only: pReal,pInt
|
||
implicit none
|
||
!
|
||
! ****************************************************************
|
||
! *** General variables for the material behaviour calculation ***
|
||
! ****************************************************************
|
||
real(pReal), dimension (:,:,:), allocatable :: CPFEM_stress_all
|
||
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jacobi_all
|
||
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn_all
|
||
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn1_all
|
||
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_results
|
||
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ini_ori
|
||
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_sigma_old
|
||
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_sigma_new
|
||
real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_old
|
||
real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_new
|
||
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jaco_old
|
||
integer(pInt) :: CPFEM_inc_old = 0_pInt
|
||
integer(pInt) :: CPFEM_subinc_old = 1_pInt
|
||
integer(pInt) :: CPFEM_Nresults = 3_pInt
|
||
logical :: CPFEM_first_call = .true.
|
||
|
||
CONTAINS
|
||
|
||
!*********************************************************
|
||
!*** allocate the arrays defined in module CPFEM ***
|
||
!*** and initialize them ***
|
||
!*********************************************************
|
||
SUBROUTINE CPFEM_init()
|
||
!
|
||
use prec, only: pReal,pInt
|
||
! use math, only: math_I3
|
||
use mesh
|
||
use constitutive
|
||
!
|
||
implicit none
|
||
!
|
||
! *** mpie.marc parameters ***
|
||
allocate(CPFEM_ffn_all (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn_all = 0.0_pReal
|
||
allocate(CPFEM_ffn1_all (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn1_all = 0.0_pReal
|
||
allocate(CPFEM_stress_all( 6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_stress_all = 0.0_pReal
|
||
allocate(CPFEM_jacobi_all(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jacobi_all = 0.0_pReal
|
||
!
|
||
! *** User defined results !!! MISSING incorporate consti_Nresults ***
|
||
allocate(CPFEM_results(CPFEM_Nresults+constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
|
||
CPFEM_results = 0.0_pReal
|
||
!
|
||
! *** Second Piola-Kirchoff stress tensor at (t=t0) and (t=t1) ***
|
||
allocate(CPFEM_sigma_old(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_sigma_old = 0.0_pReal
|
||
allocate(CPFEM_sigma_new(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_sigma_new = 0.0_pReal
|
||
!
|
||
! *** Plastic deformation gradient at (t=t0) and (t=t1) ***
|
||
allocate(CPFEM_Fp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fp_old = 0.0_pReal
|
||
allocate(CPFEM_Fp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fp_new = 0.0_pReal
|
||
!
|
||
! *** Old jacobian (consistent tangent) ***
|
||
allocate(CPFEM_jaco_old(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jaco_old = 0.0_pReal
|
||
!
|
||
! *** Output to MARC output file ***
|
||
write(6,*)
|
||
write(6,*) 'Arrays allocated:'
|
||
write(6,*) 'CPFEM_ffn_all: ', shape(CPFEM_ffn_all)
|
||
write(6,*) 'CPFEM_ffn1_all: ', shape(CPFEM_ffn1_all)
|
||
write(6,*) 'CPFEM_stress_all: ', shape(CPFEM_stress_all)
|
||
write(6,*) 'CPFEM_jacobi_all: ', shape(CPFEM_jacobi_all)
|
||
write(6,*) 'CPFEM_results: ', shape(CPFEM_results)
|
||
write(6,*) 'CPFEM_sigma_old: ', shape(CPFEM_sigma_old)
|
||
write(6,*) 'CPFEM_sigma_new: ', shape(CPFEM_sigma_new)
|
||
write(6,*) 'CPFEM_Fp_old: ', shape(CPFEM_Fp_old)
|
||
write(6,*) 'CPFEM_Fp_new: ', shape(CPFEM_Fp_new)
|
||
write(6,*) 'CPFEM_jaco_old: ', shape(CPFEM_jaco_old)
|
||
write(6,*)
|
||
call flush(6)
|
||
return
|
||
|
||
END SUBROUTINE
|
||
!
|
||
!
|
||
!***********************************************************************
|
||
!*** perform initialization at first call, update variables and ***
|
||
!*** call the actual material model ***
|
||
!***********************************************************************
|
||
SUBROUTINE CPFEM_general(ffn, ffn1, CPFEM_inc, CPFEM_subinc, CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in)
|
||
!
|
||
use prec, only: pReal,pInt
|
||
use constitutive, only: constitutive_state_old, constitutive_state_new
|
||
implicit none
|
||
!
|
||
real(pReal) ffn(3,3), ffn1(3,3), CPFEM_dt
|
||
integer(pInt) CPFEM_inc, CPFEM_subinc, CPFEM_cn, cp_en, CPFEM_in
|
||
!
|
||
! initialization step
|
||
if (CPFEM_first_call) then
|
||
! three dimensional stress state ?
|
||
call math_init()
|
||
call mesh_init()
|
||
call constitutive_init()
|
||
call CPFEM_init()
|
||
CPFEM_first_call = .false.
|
||
endif
|
||
if (CPFEM_inc==CPFEM_inc_old) then ! not a new increment
|
||
! case of a new subincrement:update starting with subinc 2
|
||
if (CPFEM_subinc > CPFEM_subinc_old) then
|
||
CPFEM_sigma_old = CPFEM_sigma_new
|
||
CPFEM_Fp_old = CPFEM_Fp_new
|
||
constitutive_state_old = constitutive_state_new
|
||
CPFEM_subinc_old = CPFEM_subinc
|
||
endif
|
||
else ! new increment
|
||
CPFEM_sigma_old = CPFEM_sigma_new
|
||
CPFEM_Fp_old = CPFEM_Fp_new
|
||
constitutive_state_old = constitutive_state_new
|
||
CPFEM_inc_old = CPFEM_inc
|
||
CPFEM_subinc_old = 1_pInt
|
||
endif
|
||
!
|
||
CPFEM_ffn_all(:,:,CPFEM_in, cp_en) = ffn
|
||
CPFEM_ffn1_all(:,:,CPFEM_in, cp_en) = ffn1
|
||
call CPFEM_stressIP(CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in)
|
||
return
|
||
|
||
END SUBROUTINE
|
||
|
||
|
||
!**********************************************************
|
||
!*** calculate the material behaviour at IP level ***
|
||
!**********************************************************
|
||
SUBROUTINE CPFEM_stressIP(&
|
||
CPFEM_cn,& ! Cycle number
|
||
CPFEM_dt,& ! Time increment (dt)
|
||
cp_en,& ! Element number
|
||
CPFEM_in) ! Integration point number
|
||
|
||
use prec, only: pReal,pInt,ijaco,nCutback
|
||
use IO, only: IO_error
|
||
use mesh, only: mesh_element
|
||
use constitutive
|
||
!
|
||
implicit none
|
||
|
||
integer(pInt), parameter :: i_now = 1_pInt,i_then = 2_pInt
|
||
character(len=128) msg
|
||
integer(pInt) CPFEM_cn,cp_en,CPFEM_in,grain,i
|
||
logical updateJaco
|
||
real(pReal) CPFEM_dt,dt,t,volfrac
|
||
real(pReal), dimension(6) :: cs,Tstar_v
|
||
real(pReal), dimension(6,6) :: cd,cd_IP
|
||
real(pReal), dimension(3,3) :: deltaFg
|
||
real(pReal), dimension(3) :: Euler
|
||
real(pReal), dimension(3,3,2) :: Fg,Fp
|
||
real(pReal), dimension(constitutive_Nstatevars(grain,CPFEM_in,cp_en),2) :: state
|
||
|
||
updateJaco = (mod(CPFEM_cn,ijaco)==0) ! update consistent tangent every ijaco'th iteration
|
||
|
||
CPFEM_stress_all(:,CPFEM_in,cp_en) = 0.0_pReal ! average Cauchy stress
|
||
cd_IP = 0.0_pReal ! average consistent tangent
|
||
|
||
! -------------- grain loop -----------------
|
||
do grain = 1,constitutive_Ngrains(CPFEM_in,cp_en)
|
||
! -------------------------------------------
|
||
|
||
i = 0_pInt ! cutback counter
|
||
state(:,i_now) = constitutive_state_old(:,grain,CPFEM_in,cp_en)
|
||
Fg(:,:,i_now) = CPFEM_ffn_all(:,:,CPFEM_in,cp_en)
|
||
Fp(:,:,i_now) = CPFEM_Fp_old(:,:,grain,CPFEM_in,cp_en)
|
||
|
||
deltaFg = CPFEM_ffn1_all(:,:,CPFEM_in,cp_en)-CPFEM_ffn_all(:,:,CPFEM_in,cp_en)
|
||
dt = CPFEM_dt
|
||
|
||
Tstar_v = 0.0_pReal ! fully elastic initial guess
|
||
Fg(:,:,i_then) = Fg(:,:,i_now)
|
||
state(:,i_then) = 0.0_pReal ! state_old as initial guess
|
||
t = 0.0_pReal
|
||
|
||
! ------- crystallite integration -----------
|
||
do
|
||
! -------------------------------------------
|
||
if (t+dt < CPFEM_dt) then ! intermediate solution
|
||
t = t+dt ! next time inc
|
||
Fg(:,:,i_then) = Fg(:,:,i_then)+deltaFg ! corresponding Fg
|
||
else ! full step solution
|
||
t = CPFEM_dt ! final time
|
||
Fg(:,:,i_then) = CPFEM_ffn_all(:,:,CPFEM_in,cp_en) ! final Fg
|
||
endif
|
||
|
||
call CPFEM_stressCrystallite(msg,cs,cd,Tstar_v,Fp(:,:,i_then),state(:,i_then),Euler,&
|
||
dt,cp_en,CPFEM_in,grain,updateJaco .and. t==CPFEM_dt,&
|
||
Fg(:,:,i_now),Fg(:,:,i_then),Fp(:,:,i_now),state(:,i_now))
|
||
if (msg == 'ok') then ! solution converged
|
||
if (t == CPFEM_dt) exit ! reached final "then"
|
||
else ! solution not found
|
||
i = i+1_pInt ! inc cutback counter
|
||
if (i > nCutback) then ! limit exceeded?
|
||
write(6,*) 'cutback limit --> '//msg
|
||
write(6,*) 'Grain: ',grain
|
||
write(6,*) 'Integration point: ',CPFEM_in
|
||
write(6,*) 'Element: ',mesh_element(1,cp_en)
|
||
call IO_error(600)
|
||
return ! byebye
|
||
else
|
||
t = t-dt ! rewind time
|
||
Fg(:,:,i_then) = Fg(:,:,i_then)-deltaFg ! rewind Fg
|
||
dt = 0.5_pReal*dt ! cut time-step in half
|
||
deltaFg = 0.5_pReal*deltaFg ! cut Fg-step in half
|
||
endif
|
||
endif
|
||
enddo ! crystallite integration (cutback loop)
|
||
|
||
! ---- update crystallite matrices at t = t1 ----
|
||
CPFEM_Fp_new(:,:,grain,CPFEM_in,cp_en) = Fp(:,:,i_then)
|
||
constitutive_state_new(:,grain,CPFEM_in,cp_en) = state(:,i_then)
|
||
CPFEM_sigma_new(:,grain,CPFEM_in,cp_en) = Tstar_v
|
||
! ---- update results plotted in MENTAT ----
|
||
CPFEM_results(1:3,grain,CPFEM_in,cp_en) = Euler
|
||
CPFEM_results(4:3+constitutive_Nresults(grain,CPFEM_in,cp_en),grain,CPFEM_in,cp_en) = &
|
||
constitutive_results(1:constitutive_Nresults(grain,CPFEM_in,cp_en),grain,CPFEM_in,cp_en)!<21><><EFBFBD><EFBFBD>
|
||
|
||
! ---- contribute to IP result ----
|
||
volfrac = constitutive_matVolFrac(grain,CPFEM_in,cp_en)*constitutive_texVolFrac(grain,CPFEM_in,cp_en)
|
||
CPFEM_stress_all(:,CPFEM_in,cp_en) = CPFEM_stress_all(:,CPFEM_in,cp_en)+volfrac*cs ! average Cauchy stress
|
||
if (updateJaco) cd_IP = cd_IP+volfrac*cd ! average consistent tangent
|
||
|
||
enddo ! grain loop
|
||
|
||
return
|
||
END SUBROUTINE
|
||
|
||
|
||
!********************************************************************
|
||
! Calculates the stress for a single component
|
||
! it is based on the paper by Kalidindi et al.:
|
||
! J. Mech. Phys, Solids Vol. 40, No. 3, pp. 537-569, 1992
|
||
! it is modified to use anisotropic elasticity matrix
|
||
!********************************************************************
|
||
subroutine CPFEM_stressCrystallite(&
|
||
msg,& ! return message
|
||
cs,& ! Cauchy stress vector
|
||
dcs_de,& ! consistent tangent
|
||
Tstar_v,& ! second Piola-Kirchoff stress tensor
|
||
Fp_new,& ! new plastic deformation gradient
|
||
state_new,& ! new state variable array
|
||
Euler,& ! Euler angles
|
||
!
|
||
dt,& ! time increment
|
||
cp_en,& ! element number
|
||
CPFEM_in,& ! integration point number
|
||
grain,& ! grain number
|
||
updateJaco,& ! boolean to calculate Jacobi matrix
|
||
Fg_old,& ! old global deformation gradient
|
||
Fg_new,& ! new global deformation gradient
|
||
Fp_old,& ! old plastic deformation gradient
|
||
state_old) ! old state variable array
|
||
|
||
use prec, only: pReal,pInt,pert_e
|
||
use constitutive, only: constitutive_Nstatevars
|
||
use math, only: math_Mandel6to33, mapMandel,math_pDecomposition,math_RtoEuler
|
||
implicit none
|
||
|
||
character(len=*) msg
|
||
logical updateJaco,error
|
||
integer(pInt) cp_en,CPFEM_in,grain,i
|
||
real(pReal) dt
|
||
real(pReal), dimension(3) :: Euler
|
||
real(pReal), dimension(3,3) :: Fg_old,Fg_new,Fg_pert,Fp_old,Fp_new,Fp_pert,Fe_new,Fe_pert,R,U,E_pert
|
||
real(pReal), dimension(6) :: cs,Tstar_v,Tstar_v_pert
|
||
real(pReal), dimension(6,6) :: dcs_de
|
||
real(pReal), dimension(constitutive_Nstatevars(grain, CPFEM_in, cp_en)) :: state_old,state_new,state_pert
|
||
|
||
call CPFEM_timeIntegration(msg,Fp_new,Fe_new,Tstar_v,state_new, &
|
||
dt,cp_en,CPFEM_in,grain,Fg_new,Fp_old,state_old)
|
||
if (msg /= 'ok') return
|
||
cs = CPFEM_CauchyStress(Tstar_v,Fe_new) ! Cauchy stress
|
||
|
||
call math_pDecomposition(Fe_new,U,R,error) ! polar decomposition
|
||
if (error) then
|
||
msg = 'polar decomposition'
|
||
return
|
||
endif
|
||
Euler = math_RtoEuler(transpose(R)) ! orientation
|
||
|
||
if (updateJaco) then
|
||
! *** Calculation of the consistent tangent with perturbation ***
|
||
! *** Perturbation on the component of Fg ***
|
||
do i = 1,6
|
||
E_pert = 0.0_pReal
|
||
E_pert(mapMandel(1,i),mapMandel(2,i)) = E_pert(mapMandel(1,i),mapMandel(2,i)) + pert_e/2.0_pReal
|
||
E_pert(mapMandel(2,i),mapMandel(1,i)) = E_pert(mapMandel(2,i),mapMandel(1,i)) + pert_e/2.0_pReal
|
||
|
||
Fg_pert = Fg_new+matmul(E_pert,Fg_old) ! perturbated Fg
|
||
Tstar_v_pert = Tstar_v ! initial guess at center
|
||
state_pert = state_new ! initial guess at center
|
||
|
||
call CPFEM_timeIntegration(msg,Fp_pert,Fe_pert,Tstar_v_pert,state_pert, &
|
||
dt,cp_en,CPFEM_in,grain,Fg_pert,Fp_old,state_old)
|
||
if (msg /= 'ok') then
|
||
msg = 'consistent tangent --> '//msg
|
||
return
|
||
endif
|
||
! *** MISSING:Consistent tangent, (perturbated) Cauchy stress is Mandel hence dcs_de(:,4:6) is too large by sqrt(2)
|
||
dcs_de(:,i) = (CPFEM_CauchyStress(Tstar_v_pert,Fe_pert)-cs)/pert_e
|
||
enddo
|
||
endif
|
||
return
|
||
|
||
END SUBROUTINE
|
||
|
||
|
||
!***********************************************************************
|
||
!*** fully-implicit two-level time integration ***
|
||
!***********************************************************************
|
||
SUBROUTINE CPFEM_timeIntegration(&
|
||
msg,& ! return message
|
||
Fp_new,& ! new plastic deformation gradient
|
||
Fe_new,& ! new "elastic" deformation gradient
|
||
Tstar_v,& ! 2nd PK stress (taken as initial guess if /= 0)
|
||
state_new,& ! current microstructure at end of time inc (taken as guess if /= 0)
|
||
!
|
||
dt,& ! time increment
|
||
cp_en,& ! element number
|
||
CPFEM_in,& ! integration point number
|
||
grain,& ! grain number
|
||
Fg_new,& ! new total def gradient
|
||
Fp_old,& ! former plastic def gradient
|
||
state_old) ! former microstructure
|
||
|
||
use prec, only: pReal,pInt, nState,tol_State,nStress,tol_Stress, crite, nReg
|
||
use constitutive, only: constitutive_Nstatevars,&
|
||
constitutive_homogenizedC,constitutive_dotState,constitutive_LpAndItsTangent
|
||
use math
|
||
implicit none
|
||
|
||
character(len=*) msg
|
||
integer(pInt) cp_en, CPFEM_in, grain
|
||
integer(pInt) iState,iStress,dummy, i,j,k,l,m
|
||
real(pReal) dt,det
|
||
real(pReal), dimension(6) :: Tstar_v,dTstar_v,Rstress
|
||
real(pReal), dimension(6,6) :: C_66,Jacobi,invJacobi,help2
|
||
real(pReal), dimension(3,3) :: Fg_new,Fp_old,Fp_new,Fe_new,invFp_old,invFp_new,Lp,A,B,AB
|
||
real(pReal), dimension(3,3,3,3) :: dLp, LTL
|
||
real(pReal), dimension(constitutive_Nstatevars(grain, CPFEM_in, cp_en)) :: state_old,state_new,dstate,Rstate,RstateS
|
||
logical failed
|
||
|
||
msg = 'ok' ! error-free so far
|
||
|
||
call math_invert3x3(Fp_old,invFp_old,det,failed) ! inversion of Fp
|
||
if (failed) then
|
||
msg = 'inversion Fp_old'
|
||
return
|
||
endif
|
||
|
||
C_66 = constitutive_HomogenizedC(grain, CPFEM_in, cp_en)
|
||
A = matmul(Fg_new,invFp_old) ! actually Fe
|
||
A = matmul(transpose(A), A)
|
||
|
||
! former state guessed, if none specified
|
||
if (all(state_new == 0.0_pReal)) state_new = state_old
|
||
RstateS = state_new
|
||
iState = 0_pInt
|
||
! fully elastic guess (Lp = 0), if none specified
|
||
if (all(Tstar_v == 0.0_pReal)) Tstar_v = 0.5_pReal*matmul(C_66,math_Mandel33to6(A-math_I3))
|
||
! QUESTION follow former plastic slope to guess better?
|
||
Rstress = Tstar_v
|
||
iStress = 0_pInt
|
||
|
||
state: do ! outer iteration: state
|
||
iState = iState+1
|
||
if (iState > nState) then
|
||
msg = 'limit state iteration'
|
||
return
|
||
endif
|
||
stress: do ! inner iteration: stress
|
||
iStress = iStress+1
|
||
if (iStress > nStress) then ! too many loops required
|
||
msg = 'limit stress iteration'
|
||
return
|
||
endif
|
||
call constitutive_LpAndItsTangent(Lp,dLp, Tstar_v,state_new,grain,CPFEM_in,cp_en)
|
||
B = math_I3-dt*Lp
|
||
Rstress = Tstar_v - 0.5_pReal*matmul(C_66,math_Mandel33to6(matmul(transpose(B),matmul(A,B))-math_I3))
|
||
if (maxval(abs(Rstress/maxval(abs(Tstar_v)))) < tol_Stress) exit stress
|
||
|
||
! update stress guess using inverse of dRes/dTstar (Newton--Raphson)
|
||
AB = matmul(A,B)
|
||
LTL = 0.0_pReal
|
||
do i=1,3
|
||
do j=1,3
|
||
do k=1,3
|
||
do l=1,3
|
||
do m=1,3
|
||
! LTL(i,j,k,l) = LTL(i,j,k,l) + AB(i,m)*dLp(m,j,k,l) + AB(j,m)*dLp(m,i,l,k) ! old
|
||
LTL(i,j,k,l) = LTL(i,j,k,l) + dLp(j,i,k,m)*AB(m,l) + AB(m,i)*dLp(m,j,k,l) ! new (and correct??)
|
||
enddo
|
||
enddo
|
||
enddo
|
||
enddo
|
||
enddo
|
||
|
||
Jacobi = math_identity2nd(6) + 0.5_pReal*dt*matmul(C_66,math_Mandel3333to66(LTL))
|
||
j = 0_pInt ; failed = .true.
|
||
do while (failed .and. j <= nReg)
|
||
call math_invert6x6(Jacobi,invJacobi,dummy,failed)
|
||
forall (i=1:6) Jacobi(i,i) = 1.05_pReal*maxval(Jacobi(i,:)) ! regularization
|
||
j = j+1
|
||
enddo
|
||
if (failed) then
|
||
msg = 'regularization Jacobi'
|
||
return
|
||
endif
|
||
|
||
dTstar_v = matmul(invJacobi,Rstress) ! correction to Tstar
|
||
forall(i=1:6, abs(dTstar_v(i)) > crite*maxval(abs(Tstar_v))) &
|
||
dTstar_v(i) = sign(crite*maxval(abs(Tstar_v)),dTstar_v(i)) ! cap to maximum correction
|
||
Tstar_v = Tstar_v-dTstar_v
|
||
|
||
enddo stress
|
||
|
||
dstate = dt*constitutive_dotState(Tstar_v,state_new,grain,CPFEM_in,cp_en) ! evolution of microstructure
|
||
Rstate = state_new - (state_old+dstate)
|
||
RstateS = 0.0_pReal
|
||
forall (i=1:constitutive_Nstatevars(grain,CPFEM_in,cp_en), state_new(i)/=0.0_pReal) &
|
||
RstateS(i) = Rstress(i)/state_new(i)
|
||
if (maxval(abs(RstateS)) < tol_State) exit state
|
||
state_new = state_old+dstate
|
||
|
||
enddo state
|
||
|
||
invFp_new = matmul(invFp_old,B)
|
||
call math_invert3x3(invFp_new,Fp_new,det,failed)
|
||
if (failed) then
|
||
msg = 'inversion Fp_new'
|
||
return
|
||
endif
|
||
Fp_new = Fp_new*det**(1.0_pReal/3.0_pReal) ! det = det(InvFp_new) !!
|
||
Fe_new = matmul(Fg_new,invFp_new)
|
||
|
||
return
|
||
END SUBROUTINE
|
||
|
||
|
||
FUNCTION CPFEM_CauchyStress(PK_v,Fe)
|
||
!***********************************************************************
|
||
!*** Cauchy stress calculation ***
|
||
!***********************************************************************
|
||
use prec, only: pReal,pInt
|
||
use math, only: math_Mandel33to6,math_Mandel6to33,math_det3x3
|
||
implicit none
|
||
! *** Subroutine parameters ***
|
||
real(pReal) PK_v(6), Fe(3,3), CPFEM_CauchyStress(6)
|
||
|
||
CPFEM_CauchyStress = math_Mandel33to6(matmul(matmul(Fe,math_Mandel6to33(PK_v)),transpose(Fe))/math_det3x3(Fe))
|
||
return
|
||
END FUNCTION
|
||
|
||
|
||
END MODULE
|
||
|